Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

POLYCYCLIC AROMATICS

Rearrangements come to Scholl

Recent findings on the skeletal rearrangement of polycyclic aromatics under oxidative and acidic conditions are envisioned to help development of these Scholl reactions into a more useful and versatile method for synthesizing polycyclic aromatics on the basis of rational design rather than luck.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scholl reactions with and without rearrangement.

References

  1. 1.

    Scholl, R., Seer, C. & Weitzenböck, R. Perylen, ein hoch kondensierter aromatischer Kohlenwasserstoff C20H12. Ber. Dtsch. Chem. Ges. 43, 2202–2209 (1910).

    CAS  Article  Google Scholar 

  2. 2.

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Zhai, L., Shukla, R. & Rathore, R. Oxidative C−C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant. Org. Lett. 11, 3474–3477 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Xia, Z., Pun, S. H., Chen, H. & Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem. Int. Ed. 60, 10311–10318 (2021).

    CAS  Article  Google Scholar 

  5. 5.

    Grzybowski, M., Sadowski, B., Butenschön, H. & Gryko, D. T. Synthetic applications of oxidative aromatic coupling — from biphenols to nanographenes. Angew. Chem. Int. Ed. 59, 2998–3027 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Zhai, L., Shukla, R., Wadumethrige, S. H. & Rathore, R. Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of Scholl reaction using DDQ as oxidant. J. Org. Chem. 75, 4748–4760 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Rempala, P., Kroulík, J. & King, B. T. Investigation of the mechanism of the intramolecular Scholl reaction of contiguous phenylbenzenes. J. Org. Chem. 71, 5067–5081 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Shen, C. et al. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat. Commun. 12, 2786 (2021).

    CAS  Article  Google Scholar 

  9. 9.

    Qiu, Z. et al. Amplification of dissymmetry factors in π‑extended [7]- and [9]helicenes. J. Am. Chem. Soc. 143, 4661–4667 (2021).

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, X. et al. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration. Nat. Commun. 8, 15073 (2017).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qian Miao.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miao, Q. Rearrangements come to Scholl. Nat Rev Chem (2021). https://doi.org/10.1038/s41570-021-00308-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing