Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Arndt, N. T. & Nisbet, E. G. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012).
Darwin, C. The Correspondence of Charles Darwin Vol. 19 (eds Burkhardt, F. & Smith, S.) (Cambridge Univ. Press, 2012).
Luisi, P. L. The Emergence of Life: From Chemical Origins to Synthetic Biology 7–10 (Cambridge Univ. Press, 2016).
Lai, Y.-C. & Chen, I. A. Protocells. Curr. Biol. 30, R482–R485 (2020).
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
Pross, A. What is Life? How Chemistry Becomes Biology viii–xiv (Oxford Univ. Press, 2016).
Roberts, M. A. J., Cranenburgh, R. M., Stevens, M. P. & Oyston, P. C. F. Synthetic biology: biology by design. Microbiology 159, 1219–1220 (2013).
Göpfrich, K., Platzman, I. & Spatz, J. P. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol. 36, 938–951 (2018).
Chyba, C. & Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125–132 (1992).
Bada, J. L. Prebiotic soup–revisiting the Miller experiment. Science 300, 745–746 (2003).
Deamer, D. W. Assembling Life: How Can Life Begin on Earth and Other Habitable Planets? 1–10 (Oxford Univ. Press, 2019).
Trainer, M. G. Atmospheric prebiotic chemistry and organic hazes. Curr. Org. Chem. 17, 1710–1723 (2013).
Ritson, D. J., Mojzsis, S. J. & Sutherland, J. D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 13, 344–348 (2020).
Saladino, R., Di Mauro, E. & García-Ruiz, J. M. A universal geochemical scenario for formamide condensation and prebiotic chemistry. Chem. Eur. J. 25, 3181–3189 (2019).
Damer, B. & Deamer, D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5, 872–887 (2015).
Rimmer, P. B. & Shorttle, O. Origin of life’s building blocks in carbon- and nitrogen-rich surface hydrothermal vents. Life 9, 12 (2019).
Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).
Oró, J. & Kimball, A. P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227 (1961).
Saladino, R., Crestini, C., Pino, S., Costanzo, G. & Di Mauro, E. Formamide and the origin of life. Phys. Life Rev. 9, 84–104 (2012).
Butlerow, A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 120, 295–298 (1861).
Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210, 183–185 (1980).
Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8657–8661 (2018).
Zhang, S. J., Duzdevich, D. & Szostak, J. W. Potentially prebiotic activation chemistry compatible with nonenzymatic RNA copying. J. Am. Chem. Soc. 142, 14810–14813 (2020).
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Liu, Z. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020).
Islam, S., Bučar, D.-K. & Powner, M. W. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 9, 584–589 (2017).
Xu, J. et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66 (2020).
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).
Anderson, R. B., Friedel, R. A. & Storch, H. H. Fischer-Tropsch reaction mechanism involving stepwise growth of carbon chain. J. Chem. Phys. 19, 313–319 (1951).
Nooner, D. W. & Oró, J. in Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen Vol. 178, 159–171 (American Chemical Society, 1979).
Rushdi, A. I. & Simoneit, B. R. T. Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400 °C. Orig. Life Evol. Biosph. 31, 103–118 (2001).
McCollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).
Scheidler, C., Sobotta, J., Eisenreich, W., Wächtershäuser, G. & Huber, C. Unsaturated C3,5,7,9-monocarboxylic acids by aqueous, one-pot carbon fixation: possible relevance for the origin of life. Sci. Rep. 6, 27595 (2016).
Langworthy, T. A., Smith, P. F. & Mayberry, W. R. Lipids of Thermoplasma acidophilum. J. Bacteriol. 112, 1193–1200 (1972).
Woese, C. R., Magrum, L. J. & Fox, G. E. Archaebacteria. J. Mol. Evol. 11, 245–252 (1978).
Kates, M., Yengoyan, L. S. & Sastry, P. S. A diether analog of phosphatidyl glycerophosphate in Halobacterium cutirubrum. Biochim. Biophys. Acta 98, 252–268 (1965).
Lombard, J., López-García, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515 (2012).
Nooner, D. W., Sherwood, E., More, M. A. & Oró, J. Cyanamide mediated syntheses under plausible primitive earth conditions. III. Synthesis of peptides. J. Mol. Evol. 10, 211–220 (1977).
Sherwood, E., Joshi, A. & Orb, J. Cyanamide mediated syntheses under plausible primitive earth conditions. II. The polymerization of deoxythymidine 5′-triphosphate. J. Mol. Evol. 10, 193–209 (1977).
Eichberg, J., Sherwood, E., Epps, D. E. & Oró, J. Cyanamide mediated syntheses under plausible primitive earth conditions. IV. The synthesis of acylglycerols. J. Mol. Evol. 10, 221–230 (1977).
Simoneit, B. R. T., Rushdi, A. I. & Deamer, D. W. Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products. Adv. Space Res. 40, 1649–1656 (2007).
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 52, 5845–5847 (2013).
Tsanakopoulou, M. & Sutherland, J. D. Cyanamide as a prebiotic phosphate activating agent – catalysis by simple 2-oxoacid salts. Chem. Commun. 53, 11893–11896 (2017).
Xu, J. et al. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide. Chem. Commun. 54, 5566–5569 (2018).
Hargreaves, W. R., Mulvihill, S. J. & Deamer, D. W. Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266, 78–80 (1977).
Epps, D. E., Sherwood, E., Eichberg, J. & Oró, J. Cyanamide mediated syntheses under plausible primitive earth conditions. V. The synthesis of phosphatidic acids. J. Mol. Evol. 11, 279–292 (1978).
Rao, M., Eichberg, J. & Oró, J. Synthesis of phosphatidylcholine under possible primitive Earth conditions. J. Mol. Evol. 18, 196–202 (1982).
Fayolle, D. et al. Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Sci. Rep. 7, 18106 (2017).
Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Joshi, M. P., Samanta, A., Tripathy, G. R. & Rajamani, S. Formation and stability of prebiotically relevant vesicular systems in terrestrial geothermal environments. Life 7, 51 (2017).
Maurer, S. The impact of salts on single chain amphiphile membranes and implications for the location of the origin of life. Life 7, 44 (2017).
Maurer, S. E. & Nguyen, G. Prebiotic vesicle formation and the necessity of salts. Orig. Life Evol. Biosph. 46, 215–222 (2016).
Monnard, P.-A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).
Milshteyn, D., Damer, B., Havig, J. & Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8, 11 (2018).
Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).
Toparlak, Ö. D., Karki, M., Ortuno, V. E., Krishnamurthy, R. & Mansy, S. S. Cyclophospholipids increase protocellular stability to metal ions. Small 16, 1903381 (2020).
Jung, H. T., Coldren, B., Zasadzinski, J. A., Iampietro, D. J. & Kaler, E. W. The origins of stability of spontaneous vesicles. Proc. Natl Acad. Sci. USA 98, 1353–1357 (2001).
Kindt, J. T., Szostak, J. W. & Wang, A. Bulk self-assembly of giant, unilamellar vesicles. ACS Nano 14, 14627–14634 (2020).
Hanczyc, M. M., Mansy, S. S. & Szostak, J. W. Mineral surface directed membrane assembly. Orig. Life Evol. Biosph. 37, 67–82 (2007).
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).
Xu, J., Stevens, M. J., Oleson, T. A., Last, J. A. & Sahai, N. Role of oxide surface chemistry and phospholipid phase on adsorption and self-assembly: isotherms and atomic force microscopy. J. Phys. Chem. 113, 2187–2196 (2009).
Oleson, T. A., Sahai, N. & Pedersen, J. A. Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces. J. Colloid Interface Sci. 352, 327–336 (2010).
Oleson, T. A. & Sahai, N. Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory. J. Colloid Interface Sci. 352, 316–326 (2010).
Oleson, T. A. et al. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (11\(\bar{2}\)0) sapphire. J. Colloid Interface Sci. 370, 192–200 (2012).
Sahai, N. et al. Mineral surface chemistry and nanoparticle-aggregation control membrane self-assembly. Sci. Rep. 7, 43418 (2017).
Fiore, M., Maniti, O., Girard-Egrot, A., Monnard, P.-A. & Strazewski, P. Glass microsphere-supported giant vesicles for the observation of self-reproduction of lipid boundaries. Angew. Chem. 130, 288–292 (2018).
Dalai, P. & Sahai, N. Mineral–lipid interactions in the origins of life. Trends Biochem. Sci. 44, 331–341 (2019).
Walde, P., Wick, R., Fresta, M., Mangone, A. & Luisi, P. L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994).
Wick, R., Walde, P. & Luisi, P. L. Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117, 1435–1436 (1995).
Budin, I., Debnath, A. & Szostak, J. W. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 134, 20812–20819 (2012).
Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).
Toparlak, Ö. D., Wang, A. & Mansy, S. S. Population-level membrane diversity triggers growth and division of protocells. JACS Au 1, 560–568 (2021).
Bonfio, C. et al. Length-selective synthesis of acylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).
Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014).
Jin, L., Kamat, N. P., Jena, S. & Szostak, J. W. Fatty acid/phospholipid blended membranes: a potential intermediate state in protocellular evolution. Small 14, 1704077 (2018).
Dalai, P., Ustriyana, P. & Sahai, N. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth. Geochim. Cosmochim. Acta 223, 216–228 (2018).
Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).
Gompertz, D. Phospholipids and their metabolism. J. Clin. Pathol. 26 (Suppl. 1), 11–16 (1973).
Devaraj, N. K. In situ synthesis of phospholipid membranes. J. Org. Chem. 82, 5997–6005 (2017).
Budin, I. & Devaraj, N. K. Membrane assembly driven by a biomimetic coupling reaction. J. Am. Chem. Soc. 134, 751–753 (2012).
Hardy, M. D., Konetski, D., Bowman, C. N. & Devaraj, N. K. Ruthenium photoredox-triggered phospholipid membrane formation. Org. Biomol. Chem. 14, 5555–5558 (2016).
Enomoto, T., Brea, R. J., Bhattacharya, A. & Devaraj, N. K. In situ lipid membrane formation triggered by intramolecular photoinduced electron transfer. Langmuir 34, 750–755 (2018).
Konetski, D., Gong, T. & Bowman, C. N. Photoinduced vesicle formation via the copper-catalyzed azide–alkyne cycloaddition reaction. Langmuir 32, 8195–8201 (2016).
Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).
Brea, R. J., Cole, C. M. & Devaraj, N. K. In situ vesicle formation by native chemical ligation. Angew. Chem. Int. Ed. 53, 14102–14105 (2014).
Brea, R., Bhattacharya, A. & Devaraj, N. Spontaneous phospholipid membrane formation by histidine ligation. Synlett 28, 108–112 (2016).
Ruff, Y., Garavini, V. & Giuseppone, N. Reversible native chemical ligation: a facile access to dynamic covalent peptides. J. Am. Chem. Soc. 136, 6333–6339 (2014).
Brea, R. J., Rudd, A. K. & Devaraj, N. K. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proc. Natl Acad. Sci. USA 113, 8589–8594 (2016).
Seoane, A., Brea, R. J., Fuertes, A., Podolsky, K. A. & Devaraj, N. K. Biomimetic generation and remodeling of phospholipid membranes by dynamic imine chemistry. J. Am. Chem. Soc. 140, 8388–8391 (2018).
Konetski, D., Mavila, S., Wang, C., Worrell, B. & Bowman, C. N. Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chem. Commun. 54, 8108–8111 (2018).
Huynh, H. et al. Control of vesicle fusion by a tyrosine phosphatase. Nat. Cell Biol. 6, 831–839 (2004).
Marsden, H. R., Korobko, A. V., Zheng, T., Voskuhl, J. & Kros, A. Controlled liposome fusion mediated by SNARE protein mimics. Biomater. Sci. 1, 1046–1054 (2013).
Xu, W., Wang, J., Rothman, J. E. & Pincet, F. Accelerating SNARE-mediated membrane fusion by DNA–lipid tethers. Angew. Chem. Int. Ed. 54, 14388–14392 (2015).
Kong, L., Askes, S. H. C., Bonnet, S., Kros, A. & Campbell, F. Temporal control of membrane fusion through photolabile PEGylation of liposome membranes. Angew. Chem. 128, 1418–1422 (2016).
Löffler, P. M. G. et al. A DNA-programmed liposome fusion cascade. Angew. Chem. Int. Ed. 56, 13228–13231 (2017).
Ries, O., Löffler, P. M. G., Rabe, A., Malavan, J. J. & Vogel, S. Efficient liposome fusion mediated by lipid–nucleic acid conjugates. Org. Biomol. Chem. 15, 8936–8945 (2017).
Deshpande, S., Spoelstra, W. K., van Doorn, M., Kerssemakers, J. & Dekker, C. Mechanical division of cell-sized liposomes. ACS Nano 12, 2560–2568 (2018).
Caspi, Y. & Dekker, C. Divided we stand: splitting synthetic cells for their proliferation. Syst. Synth. Biol. 8, 249–269 (2014).
van den Bogaart, G. et al. Membrane protein sequestering by ionic protein–lipid interactions. Nature 479, 552–555 (2011).
Konetski, D., Baranek, A., Mavila, S., Zhang, X. & Bowman, C. N. Formation of lipid vesicles in situ utilizing the thiol-Michael reaction. Soft Matter 14, 7645–7652 (2018).
Xiong, F. et al. A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis. Nat. Commun. 8, 15912 (2017).
Liu, L. et al. Enzyme-free synthesis of natural phospholipids in water. Nat. Chem. 12, 1029–1034 (2020).
Bachmann, P. A., Walde, P., Luisi, P. L. & Lang, J. Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc. 112, 8200–8201 (1990).
Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).
Bachmann, P. A., Walde, P., Luisi, P. L. & Lang, J. Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles. J. Am. Chem. Soc. 113, 8204–8209 (1991).
Schmidli, P. K., Schurtenberger, P. & Luisi, P. L. Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J. Am. Chem. Soc. 113, 8127–8130 (1991).
Takahashi, H. et al. Autocatalytic membrane-amplification on a pre-existing vesicular surface. Chem. Commun. 46, 8791–8793 (2010).
Matsuo, M. et al. A sustainable self-reproducing liposome consisting of a synthetic phospholipid. Chem. Phys. Lipids 222, 1–7 (2019).
Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).
Post, E. A. J., J. Bissette, A. & Fletcher, S. P. Self-reproducing micelles coupled to a secondary catalyst. Chem. Commun. 54, 8777–8780 (2018).
Post, E. A. J. & Fletcher, S. P. Controlling the kinetics of self-reproducing micelles by catalyst compartmentalization in a biphasic system. J. Org. Chem. 84, 2741–2755 (2019).
Bissette, A. J., Odell, B. & Fletcher, S. P. Physical autocatalysis driven by a bond-forming thiol–ene reaction. Nat. Commun. 5, 4607 (2014).
Ortega-Arroyo, J., Bissette, A. J., Kukura, P. & Fletcher, S. P. Visualization of the spontaneous emergence of a complex, dynamic, and autocatalytic system. Proc. Natl Acad. Sci. USA 113, 11122–11126 (2016).
Colomer, I., Morrow, S. M. & Fletcher, S. P. A transient self-assembling self-replicator. Nat. Commun. 9, 2239 (2018).
Colomer, I., Borissov, A. & Fletcher, S. P. Selection from a pool of self-assembling lipid replicators. Nat. Commun. 11, 176 (2020).
Schrödinger, E. What is Life? (Cambridge Univ. Press, 1992).
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).
Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fuelled self-replicator. Nat. Commun. 10, 1011 (2019).
Engwerda, A. H. J. et al. Coupled metabolic cycles allow out-of-equilibrium autopoietic vesicle replication. Angew. Chem. Int. Ed. 59, 20361–20366 (2020).
Post, E. A. J. & Fletcher, S. P. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem. Sci. 11, 9434–9442 (2020).
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).
Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).
Wanzke, C. et al. Dynamic vesicles formed by dissipative self-assembly. ChemSystemsChem 2, e1900044 (2020).
Singh, N., Formon, G. J. M., Piccoli, S. D. & Hermans, T. M. Devising synthetic reaction cycles for dissipative nonequilibrium self-assembly. Adv. Mater. 32, 1906834 (2020).
Lange, N. de, Leermakers, F. A. M. & Kleijn, J. M. Self-limiting aggregation of phospholipid vesicles. Soft Matter 16, 2379–2389 (2020).
Alcinesio, A. et al. Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues. Nat. Commun. 11, 2105 (2020).
Ai, Y., Xie, R., Xiong, J. & Liang, Q. Microfluidics for biosynthesizing: from droplets and vesicles to artificial cells. Small 16, 1903940 (2020).
Robinson, T. Microfluidic handling and analysis of giant vesicles for use as artificial cells: a review. Adv. Biosyst. 3, 1800318 (2019).
Ugrinic, M., deMello, A. & Tang, T.-Y. D. Microfluidic tools for bottom-up synthetic cellularity. Chem 5, 1727–1742 (2019).
Deng, N.-N., Yelleswarapu, M. & Huck, W. T. S. Monodisperse uni- and multicompartment liposomes. J. Am. Chem. Soc. 138, 7584–7591 (2016).
Lange, N., de, Leermakers, F. & Mieke Kleijn, J. Step-wise linking of vesicles by combining reversible and irreversible linkers–towards total control on vesicle aggregate sizes. Soft Matter 16, 6773–6783 (2020).
Haller, B. et al. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab. Chip 18, 2665–2674 (2018).
Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–96 (2018).
Wang, L. et al. Single-step fabrication of multi-compartmentalized biphasic proteinosomes. Chem. Commun. 53, 8537–8540 (2017).
Göpfrich, K. et al. One-pot assembly of complex giant unilamellar vesicle-based synthetic cells. ACS Synth. Biol. 8, 937–947 (2019).
Saha, R. & Chen, I. A. Origin of life: protocells red in tooth and claw. Curr. Biol. 25, R1175–R1177 (2015).
Chen, I. A., Roberts, R. W. & Szostak, J. W. The emergence of competition between model protocells. Science 305, 1474–1476 (2004).
Chakrabarti, A. C., Breaker, R. R., Joyce, G. F. & Deamer, D. W. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol. 39, 555–559 (1994).
Deamer, D. W. & Barchfeld, G. L. Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions. J. Mol. Evol. 18, 203–206 (1982).
Rajamani, S. et al. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig. Life Evol. Biosph. 38, 57–74 (2008).
O’Flaherty, D. K. et al. Copying of mixed-sequence RNA templates inside model protocells. J. Am. Chem. Soc. 140, 5171–5178 (2018).
Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).
Tsuji, G., Fujii, S., Sunami, T. & Yomo, T. Sustainable proliferation of liposomes compatible with inner RNA replication. Proc. Natl Acad. Sci. USA 113, 590–595 (2016).
Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).
Kurihara, K. et al. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352 (2015).
Matsuo, M. et al. DNA length-dependent division of a giant vesicle-based model protocell. Sci. Rep. 9, 6916 (2019).
Matsuo, M. et al. Environment-sensitive intelligent self-reproducing artificial cell with a modification-active lipo-deoxyribozyme. Micromachines 11, 606 (2020).
Saha, R., Verbanic, S. & Chen, I. A. Lipid vesicles chaperone an encapsulated RNA aptamer. Nat. Commun. 9, 2313 (2018).
Engelhart, A. E., Adamala, K. P. & Szostak, J. W. A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem. 8, 448–453 (2016).
van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).
Caschera, F., Woo Lee, J., Kenneth, K. Y. H., Liu, A. P. & Michael, C. J. Cell-free compartmentalized protein synthesis inside double emulsion templated liposomes with in vitro synthesized and assembled ribosomes. Chem. Commun. 52, 5467–5469 (2016).
Godino, E. et al. De novo synthesized Min proteins drive oscillatory liposome deformation and regulate FtsA-FtsZ cytoskeletal patterns. Nat. Commun. 10, 4969 (2019).
Godino, E. et al. Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes. Commun. Biol. 3, 539 (2020).
Garenne, D., Libchaber, A. & Noireaux, V. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc. Natl Acad. Sci. USA 117, 1902–1909 (2020).
Garenne, D. & Noireaux, V. Analysis of cytoplasmic and membrane molecular crowding in genetically programmed synthetic cells. Biomacromolecules 21, 2808–2817 (2020).
Vibhute, M. A. et al. Transcription and translation in cytomimetic protocells perform most efficiently at distinct macromolecular crowding conditions. ACS Synth. Biol. 9, 2797–2807 (2020).
Exterkate, M., Caforio, A., Stuart, M. C. A. & Driessen, A. J. M. Growing membranes in vitro by continuous phospholipid biosynthesis from free fatty acids. ACS Synth. Biol. 7, 153–165 (2018).
Stano, P., Wehrli, E. & Luisi, P. L. Insights into the self-reproduction of oleate vesicles. J. Phys. Condens. Matter 18, S2231–S2238 (2006).
Bhattacharya, A., Brea, R. J., Niederholtmeyer, H. & Devaraj, N. K. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 10, 300 (2019).
Scott, A. et al. Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes. PLoS ONE 11, e0163058 (2016).
Blanken, D., Foschepoth, D., Serrão, A. C. & Danelon, C. Genetically controlled membrane synthesis in liposomes. Nat. Commun. 11, 4317 (2020).
Ikari, K. et al. Dynamics of fatty acid vesicles in response to pH stimuli. Soft Matter 11, 6327–6334 (2015).
Miele, Y. et al. Self-division of giant vesicles driven by an internal enzymatic reaction. Chem. Sci. 11, 3228–3235 (2020).
Kurisu, M. et al. Reproduction of vesicles coupled with a vesicle surface-confined enzymatic polymerisation. Commun. Chem. 2, 117 (2019).
Allolio, C. et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl Acad. Sci. USA 115, 11923–11928 (2018).
Banerjee, P., Pal, S., Kundu, N., Mondal, D. & Sarkar, N. A cell-penetrating peptide induces the self-reproduction of phospholipid vesicles: understanding the role of the bilayer rigidity. Chem. Commun. 54, 11451–11454 (2018).
Schwille, P. Division in synthetic cells. Emerg. Top. Life Sci. 3, 551–558 (2019).
Kretschmer, S., Ganzinger, K. A., Franquelim, H. G. & Schwille, P. Synthetic cell division via membrane-transforming molecular assemblies. BMC Biol. 17, 43 (2019).
Hürtgen, D., Härtel, T., Murray, S. M., Sourjik, V. & Schwille, P. Functional modules of minimal cell division for synthetic biology. Adv. Biosyst. 3, 1800315 (2019).
Gaut, N. J. & Adamala, K. P. Reconstituting natural cell elements in synthetic cells. Adv. Biol. 5, 2000188 (2021).
Elani, Y., V. Law, R. & Ces, O. Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys. Chem. Chem. Phys. 17, 15534–15537 (2015).
Chakraborty, T., Bartelt, S. M., Steinkühler, J., Dimova, R. & Wegner, S. V. Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells. Chem. Commun. 55, 9448–9451 (2019).
Elani, Y., Law, R. V. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).
Li, S., Wang, X., Mu, W. & Han, X. Chemical signal communication between two protoorganelles in a lipid-based artificial cell. Anal. Chem. 91, 6859–6864 (2019).
Hindley, J. W. et al. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc. Natl Acad. Sci. USA 116, 16711–16716 (2019).
Lee, K. Y. et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).
Lentini, R., Yeh Martín, N. & Mansy, S. S. Communicating artificial cells. Curr. Opin. Chem. Biol. 34, 53–61 (2016).
Yeh Martín, N., Valer, L. & Mansy, S. S. Toward long-lasting artificial cells that better mimic natural living cells. Emerg. Top. Life Sci. 3, 597–607 (2019).
Aufinger, L. & Simmel, F. C. Establishing communication between artificial cells. Chem. Eur. J. 25, 12659–12670 (2019).
Tang, T.-Y. D. et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018).
Niederholtmeyer, H., Chaggan, C. & Devaraj, N. K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun. 9, 5027 (2018).
Buddingh’, B. C., Elzinga, J. & van Hest, J. C. M. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat. Commun. 11, 1652 (2020).
Tian, L., Li, M., Patil, A. J., Drinkwater, B. W. & Mann, S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat. Commun. 10, 3321 (2019).
Acknowledgements
This work was supported by US National Science Foundation grant EF-1935372. The authors thank J. R. Winnikoff for helpful manuscript edits prior to submission and image inspiration, and A. Fracassi and R. J. Brea for their critical reading of the manuscript.
Author information
Authors and Affiliations
Contributions
K.A.P. drafted the manuscript and figures. K.A.P. and N.K.D. discussed, wrote and edited the manuscript prior to submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
NASA Astrobiology: https://astrobiology.nasa.gov/research/life-detection/about/
Glossary
- Protocells
-
Primitive, abiotic ‘original’ cells. In synthetic biology, refers to self-assembling chemical systems with life-like characteristics.
- Kennedy pathway
-
Biochemical pathway for the de novo synthesis of phosphatidylethanolamine and phosphatidylcholine in cells; this was the first pathway elucidated for phospholipid biosynthesis.
- Lands cycle
-
Biochemical pathway of deacylation and reacylation for the remodelling of phospholipids.
- Autopoiesis
-
From the Greek auto ‘self’ and poiesis ‘formation’: a property of a system that enables maintenance and reproduction of itself through self-regulation.
- Organelles
-
Specialized subcellular structures that perform specific functions for the cell.
- In vitro transcription and translation
-
(TXTL). A cell-free system of minimal biochemical components necessary to synthesize a protein from a DNA template.
- Proteoliposomes
-
Liposomes in which proteins have been incorporated in the membrane.
Rights and permissions
About this article
Cite this article
Podolsky, K.A., Devaraj, N.K. Synthesis of lipid membranes for artificial cells. Nat Rev Chem 5, 676–694 (2021). https://doi.org/10.1038/s41570-021-00303-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00303-3
This article is cited by
-
Control of artificial membrane fusion in physiological ionic solutions beyond the limits of electroformation
Nature Communications (2024)
-
Hybrid bilayer membranes as platforms for biomimicry and catalysis
Nature Reviews Chemistry (2022)
-
Microfluidic production of liposomes through liquid-liquid phase separation in ternary droplets
Frontiers of Chemical Science and Engineering (2022)