Abstract
The emerging field of 3D electron diffraction (3D ED) opens new opportunities for structure determination from sub-micrometre-sized crystals. Although the foundations of this technology emerged earlier, the past decade has seen developments in cryo-electron microscopy and (X-ray) crystallography that particularly enable the widespread use of 3D ED. This Perspective describes to chemists and chemical crystallographers just how similar electron and X-ray diffraction are and discusses their complementary aspects. We wish to establish 3D ED in the broader chemistry community, such that electron crystallography becomes a common part of the analytical chemistry toolkit. With a suitable instrument at their disposal, every skilled crystallographer can quickly learn to perform structure determinations using 3D ED.

This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Atomic-level structure determination of amorphous molecular solids by NMR
Nature Communications Open Access 23 August 2023
-
Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction
Communications Chemistry Open Access 07 June 2023
-
Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data
Nature Chemistry Open Access 20 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Heinke, F. et al. Structure and thermoelectric properties of the silver lead bismuth selenides Ag5Pb9Bi19Se40 and AgPb3Bi7Se14. Dalton Trans. 47, 12431–12438 (2018).
Ende, M. et al. High-pressure behavior of nickel sulfate monohydrate: Isothermal compressibility, structural polymorphism, and transition pathway. Inorg. Chem. 59, 6255–6266 (2020).
Parsons, S., Flack, H. D. & Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B69, 249–259 (2013).
Parsons, S. Determination of absolute configuration using X-ray diffraction. Tetrahedron Asymmetry 28, 1304–1313 (2017).
Krupp, F., Frey, W. & Richert, C. Absolute configuration of small molecules by co-crystallization. Angew. Chem. Int. Ed. 59, 15875–15879 (2020).
Dimmeler, E., Vossen, O. & Schröder, R. R. Determination of lattice-transform density profiles for multilayered three-dimensional microcrystals in electron crystallography. J. Appl. Crystallogr. 33, 1102–1112 (2000).
Dimmeler, E. & Schröder, R. R. Global least-squares determination of Eulerian angles from single electron diffraction patterns of tilted crystals. J. Appl. Crystallogr. 33, 1088–1101 (2000).
Kolb, U. & Matveeva, G. N. Electron crystallography on polymorphic organics. Z. Kristallogr. 218, 259–268 (2003).
Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507–513 (2007).
Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010).
Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).
Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).
Gemmi, M. & Lanza, A. E. 3D electron diffraction techniques. Acta. Crystallogr. B75, 495–504 (2019).
Nannenga, B. L. & Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 16, 369–379 (2019).
Huang, Z., Grape, E. S., Li, J., Inge, A. K. & Zou, X. 3D electron diffraction as an important technique for structure elucidation of metal–organic frameworks and covalent organic frameworks. Coord. Chem. Rev. 427, 213583 (2021).
Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57, 16313–16317 (2018).
Jones, C. G. et al. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).
Sitsel, O. & Raunser, S. Big insights from tiny crystals. Nat. Chem. 11, 106–108 (2019).
Nangia, A. K. & Desiraju, G. R. Crystal engineering: an outlook for the future. Angew. Chem. Int. Ed. 58, 4100–4107 (2019).
Guzmán-Afonso, C. et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 10, 3537 (2019).
Wang, Y. et al. Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chem. Commun. 53, 7018–7021 (2017).
Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. 228, 51–58 (2013).
Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. Fast electron diffraction tomography. J. Appl. Crystallogr. 48, 718–727 (2015).
Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).
Boullay, P., Palatinus, L. & Barrier, N. Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg. Chem. 52, 6127–6135 (2013).
Reimer, L. & Kohl, H. Transmission Electron Microscopy (Springer, 2008).
Carter, C. B. & Williams, D. B. Transmission Electron Microscopy (Springer, 2016).
Zuo, J. M. & Spence, J. C. H. Advanced Transmission Electron Microscopy (Springer, 2016).
Clegg, W. Distortions, deviations and alternative facts: reliability in crystallography. IUCrJ 8, 4–11 (2021).
Danelius, E., Halaby, S., van der Donk, W. A. & Gonen, T. MicroED in natural product and small molecule research. Nat. Prod. Rep. 38, 423–431 (2021).
Kunde, T. & Schmidt, B. M. Microcrystal electron diffraction (MicroED) for small-molecule structure determination. Angew. Chem. Int. Ed. 58, 666–668 (2019).
Lanza, A. et al. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 6, 178–188 (2019).
Arndt, U. W. & Wonacott, A. J. (eds) The Rotation Method in Crystallography (North-Holland, 1977).
Pflugrath, J. W. Diffraction-data processing for electronic detectors: theory and practice. Methods Enzymol. 276, 286–306 (1997).
Leslie, A. G. W. The integration of macromolecular diffraction data. Acta Crystallogr. D62, 48–57 (2006).
Kabsch, W. XDS. Acta Crystallogr. D66, 125–132 (2010).
Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D74, 506–518 (2018).
Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).
Sheldrick, G. M. SHELXT — integrated space-group and crystal-structure determination. Acta Crystallogr. A71, 3–8 (2015).
Palatinus, L. & Chapuis, G. SUPERFLIP — a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).
Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr. 36, 1487 (2003).
Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. OLEX: new software for visualization and analysis of extended crystal structures. J. Appl. Crystallogr. 36, 1283–1284 (2003).
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).
Authier, A. Dynamical Theory of X-Ray Diffraction (Oxford Univ. Press, 2001).
Palatinus, L., Petříček, V. & Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. A71, 235–244 (2015).
Palatinus, L. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. B71, 740–751 (2015).
Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. B75, 512–522 (2019).
Hynek, J., Brázda, P., Rohlíček, J., Londesborough, M. G. S. & Demel, J. Phosphinic acid based linkers: building blocks in metal–organic framework chemistry. Angew. Chem. Int. Ed. 57, 5016–5019 (2018).
Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).
Debost, M. et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture. Angew. Chem. Int. Ed. 59, 23491–23495 (2020).
Palatinus, L. in The 41st Ad Hoc Workshop on Jana Electron Diffraction http://jana.fzu.cz/w041.html (2021).
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).
Diederichs, K. & Karplus, P. A. Better models by discarding data? Acta Crystallogr. D69, 1215–1222 (2013).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D69, 1204–1214 (2013).
Rupp, B. Against method: Table 1 — cui bono? Structure 26, 919–923 (2018).
Vaĭnshteĭn, B. K. Structure Analysis by Electron Diffraction (Pergamon, 1964).
Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).
Hynes, R. C. & Le Page, Y. Sucrose, a convenient test crystal for absolute structures. J. Appl. Crystallogr. 24, 352–354 (1991).
Escudero-Adán, E. C., Benet-Buchholz, J. & Ballester, P. The use of Mo Kα radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data. Acta Crystallogr. B70, 660–668 (2014).
Derewenda, Z. S. On wine, chirality and crystallography. Acta Crystallogr. A64, 246–258 (2008).
Burmester, C. & Schröder, R. Solving the phase problem in protein electron crystallography: multiple isomorphous replacement and anomalous dispersion as alternatives to imaging. Scanning Microsc. 11, 323–334 (1997).
Ma, Y., Oleynikov, P. & Terasaki, O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nat. Mater. 16, 755–759 (2017).
Jansen, J., Tang, D., Zandbergen, H. W. & Schenk, H. MSLS, a least-squares procedure for accurate crystal structure refinement from dynamical electron diffraction patterns. Acta Crystallogr. A54, 91–101 (1998).
Wang, Y., Yang, T., Xu, H., Zou, X. & Wan, W. On the quality of the continuous rotation electron diffraction data for accurate atomic structure determination of inorganic compounds. J. Appl. Crystallogr. 51, 1094–1101 (2018).
Ångström, J., Chen, H. & Wan, W. Accurate lattice-parameter determination from electron diffraction tomography data using two-dimensional diffraction vectors. J. Appl. Crystallogr. 51, 982–989 (2018).
Fröjdh, E. et al. Discrimination of aluminum from silicon by electron crystallography with the JUNGFRAU detector. Crystals 10, 1148 (2020).
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B58, 364–369 (2002).
Simancas, J. et al. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 138, 10116–10119 (2016).
Maki-Yonekura, S., Hamaguchi, T., Naitow, H., Takaba, K. & Yonekura, K. Advances in cryo-EM and ED with a cold-field emission beam and energy filtration — refinements of the CRYO ARM 300 system in RIKEN SPring-8 center. Microscopy 70, 232–240 (2020).
Wennmacher, J. T. C. et al. 3D-structured supports create complete data sets for electron crystallography. Nat. Commun. 10, 3316 (2019).
Andrusenko, I. et al. The crystal structure of orthocetamol solved by 3D electron diffraction. Angew. Chem. Int. Ed. 58, 10919–10922 (2019).
de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399–402 (2017).
Clabbers, M. T. & Xu, H. Microcrystal electron diffraction in macromolecular and pharmaceutical structure determination. Drug Discov. Today Technol. https://doi.org/10.1016/j.ddtec.2020.12.002 (2020).
Luft, J. R. & DeTitta, G. T. A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr. D55, 988–993 (1999).
D’Arcy, A., Villard, F. & Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D63, 550–554 (2007).
Stevenson, H. P. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D72, 603–615 (2016).
Zhang, Y.-B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).
Leubner, S. et al. Expanding the variety of zirconium-based inorganic building units for metal–organic frameworks. Angew. Chem. Int. Ed. 58, 10995–11000 (2019).
Cui, P. et al. An expandable hydrogen-bonded organic framework characterized by three-dimensional electron diffraction. J. Am. Chem. Soc. 142, 12743–12750 (2020).
Tsuda, T., Kawakami, K., Mochizuki, E. & Kuwabata, S. Ionic liquid-based transmission electron microscopy for herpes simplex virus type 1. Biophys. Rev. 10, 927–929 (2018).
Kashin, A. S. & Ananikov, V. P. Monitoring chemical reactions in liquid media using electron microscopy. Nat. Rev. Chem. 3, 624–637 (2019).
Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).
Kumar, S. & Adams, W. Electron beam damage in high temperature polymers. Polymer 31, 15–19 (1990).
Garman, E. F. Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr. D66, 339–351 (2010).
Kolb, U., Gorelik, T. E., Mugnaioli, E. & Stewart, A. Structural characterization of organics using manual and automated electron diffraction. Polym. Rev. 50, 385–409 (2010).
Leijten, Z. J. W. A., Keizer, A. D. A., de With, G. & Friedrich, H. Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. C 121, 10552–10561 (2017).
Nass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D75, 211–218 (2019).
Christensen, J. et al. Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6, 703–713 (2019).
Ravelli, R. B., Leiros, H.-K. S., Pan, B., Caffrey, M. & McSweeney, S. Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11, 217–224 (2003).
Schiltz, M. et al. Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr. D Biol. Crystallogr. 60, 1024–1031 (2004).
de Sanctis, D. & Nanao, M. H. Segmenting data sets for RIP. Acta Crystallogr. D68, 1152–1162 (2012).
Martynowycz, M. W., Hattne, J. & Gonen, T. Experimental phasing of MicroED data using radiation damage. Structure 28, 458–464.e2 (2020).
Bricogne, G. Micro-ED “pushing the frontiers” again … but which frontiers? CCP4BB mailing list. JISCMail https://www.jiscmail.ac.uk/cgi-bin/wa-jisc.exe?A2=CCP4BB;21969684.2004 (2020).
Tsirelson, V. G. et al. Quantitative analysis of the electrostatic potential in rock-salt crystals using accurate electron diffraction data. J. Phys. Chem. B 105, 5068–5074 (2001).
Avilov, A., Lepeshov, G., Pietsch, U. & Tsirelson, V. Multipole analysis of the electron density and electrostatic potential in germanium by high-resolution electron diffraction. J. Phys. Chem. Solids 62, 2135–2142 (2001).
Avilov, A. in Uniting Electron Crystallography and Powder Diffraction 349–357 (Springer, 2012).
Hansen, N. K. & Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34, 909–921 (1978).
Su, Z. & Coppens, P. On the mapping of electrostatic properties from the multipole description of the charge density. Acta Crystallogr. A48, 188–197 (1992).
Michael, D. & Mingos, P. (eds) The Chemical Bond I (Springer, 2016).
Kumar Shyam Vinod, P., Raghavendra, V. & Subramanian, V. Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J. Chem. Sci. 128, 1527–1536 (2016).
Genoni, A. et al. Quantum crystallography: current developments and future perspectives. Chem. Eur. J. 24, 10881–10905 (2018).
Gruza, B., Chodkiewicz, M. L., Krzeszczakowska, J. & Dominiak, P. M. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr. A76, 92–109 (2020).
Jayatilaka, D. & Dittrich, B. X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Crystallogr. A64, 383–393 (2008).
Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. Hirshfeld atom refinement. IUCrJ 1, 361–379 (2014).
Fugel, M. et al. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2. IUCrJ 5, 32–44 (2018).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Bergmann, J., Davidson, M., Oksanen, E., Ryde, U. & Jayatilaka, D. fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCrJ 7, 158–165 (2020).
Kleemiss, F. et al. Accurate crystal structures and chemical properties from NoSpherA2. Chem. Sci. 12, 1675–1692 (2021).
Yonekura, K., Kato, K., Ogasawara, M., Tomita, M. & Toyoshima, C. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc. Natl Acad. Sci. USA 112, 3368–3373 (2015).
Yonekura, K. et al. Ionic scattering factors of atoms that compose biological molecules. IUCrJ 5, 348–353 (2018).
Johnson, N. Electron diffraction data in the CSD. CCDC https://www.ccdc.cam.ac.uk/Community/blog/2020-05-04-electron-diffraction-data-in-the-csd/ (2020).
Wang, B., Zou, X. & Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ 6, 854–867 (2019).
Bücker, R. et al. Serial protein crystallography in an electron microscope. Nat. Commun. 11, 996 (2020).
Losev, E. A., Zakharov, B. A., Drebushchak, T. N. & Boldyreva, E. V. Glycinium semi-malonate and a glutaric acid–glycine cocrystal: new structures with short O—H…O hydrogen bonds. Acta. Crystallogr. C67, o297–o300 (2011).
Broadhurst, E. T. et al. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCrJ 7, 5–9 (2020).
Holstein, J. J., Hübschle, C. B. & Dittrich, B. Electrostatic properties of nine fluoroquinolone antibiotics derived directly from their crystal structure refinements. CrystEngComm 14, 2520–2531 (2012).
Acknowledgements
We thank the reviewers for their constructive comments.
Author information
Authors and Affiliations
Contributions
T.G. and J.J.H. drafted the manuscript. All authors contributed to the final version.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
We dedicate this manuscript to Prof. Christian Robl on the occasion of his 65th birthday
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gruene, T., Holstein, J.J., Clever, G.H. et al. Establishing electron diffraction in chemical crystallography. Nat Rev Chem 5, 660–668 (2021). https://doi.org/10.1038/s41570-021-00302-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00302-4
This article is cited by
-
Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data
Nature Chemistry (2023)
-
High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction
Nature Chemistry (2023)
-
Atomic-level structure determination of amorphous molecular solids by NMR
Nature Communications (2023)
-
Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction
Communications Chemistry (2023)
-
Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction
Nature Protocols (2022)