Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highlights and challenges in the selective reduction of carbon dioxide to methanol

Abstract

Carbon dioxide (CO2) is the iconic greenhouse gas and the major factor driving present global climate change, incentivizing its capture and recycling into valuable products and fuels. The 6H+/6e reduction of CO2 affords CH3OH, a key compound that is a fuel and a platform molecule. In this Review, we compare different routes for CO2 reduction to CH3OH, namely, heterogeneous and homogeneous catalytic hydrogenation, as well as enzymatic catalysis, photocatalysis and electrocatalysis. We describe the leading catalysts and the conditions under which they operate, and then consider their advantages and drawbacks in terms of selectivity, productivity, stability, operating conditions, cost and technical readiness. At present, heterogeneous hydrogenation catalysis and electrocatalysis have the greatest promise for large-scale CO2 reduction to CH3OH. The availability and price of sustainable electricity appear to be essential prerequisites for efficient CH3OH synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Carbon cycle of CH3OH, a platform molecule for the chemical industry.
Fig. 2: The Cu–ZnO/Al2O3 catalyst and comparison with other solid materials.
Fig. 3: Molecular complexes of tridentate ligands are active catalysts for CH3OH production.
Fig. 4: Multienzymatic schemes can affect overall CO2-to-CH3OH conversion.
Fig. 5: Photocatalytic CO2 reduction.
Fig. 6: Performances of CO2 reduction electrocatalysts.

References

  1. 1.

    Earth System Research Laboratories. Trends in atmospheric carbon dioxide. Global Monitoring Laboratory https://gml.noaa.gov/ccgg/trends/ (2021).

  2. 2.

    D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products — closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Ordomsky, V. V., Dros, A.-B., Schwiedernoch, R. & Khodakov, A. Y. in Nanotechnology in Catalysis (eds Van de Voorde, M. & Sels, B.) 803–850 (Wiley, 2017).

  6. 6.

    Centi, G. & Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Centi, G., Quadrelli, E. A. & Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 6, 1711–1731 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Silberberg, M. & Amateis, P. Chemistry: The Molecular Nature of Matter and Change 5th edn (McGraw-Hill, 2009).

  10. 10.

    Wang, W.-H., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Methanol Institute. The methanol industry. Methanol Institute https://www.methanol.org/the-methanol-industry/ (2021).

  12. 12.

    Alper, E. & Yuksel Orhan, O. CO2 utilization: developments in conversion processes. Petroleum 3, 109–126 (2017).

    Article  Google Scholar 

  13. 13.

    Carbon Recycling International. Resource efficiency by carbon recycling. CRI https://www.carbonrecycling.is (2020).

  14. 14.

    MefCO2. Methanol fuel from CO2. MefCO2 http://www.mefco2.eu/ (2016).

  15. 15.

    Nørskov, J. K., Latimer, A. & Dickens C. F. Research needs towards sustainable production of fuels and chemicals. Energy-X https://www.energy-x.eu/research-needs-report/ (2019)

  16. 16.

    Ali, K. A., Abdullah, A. Z. & Mohamed, A. R. Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew. Sustain. Energy Rev. 44, 508–518 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Zhong, J. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Prieto, G. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis. ChemSusChem 10, 1056–1070 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Jiang, X., Nie, X., Guo, X., Song, C. & Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 120, 7984–8034 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Huš, M., Dasireddy, V. D. B. C., Strah Štefančič, N. & Likozar, B. Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts. Appl. Catal. B 207, 267–278 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Le Valant, A. et al. The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: origin of active site explained by experimental studies and a sphere contact quantification model on Cu +ZnO mechanical mixtures. J. Catal. 324, 41–49 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    Dang, S. et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal. Today 330, 61–75 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Bansode, A., Tidona, B., von Rohr, P. R. & Urakawa, A. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catal. Sci. Technol. 3, 767–778 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Álvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017). A review discussing CO2 hydrogenation to different products of interest (formates/formic acid, CH3OH and DME) using heterogeneous catalysis.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Kattel, S., Ramírez, P. J., Chen, J. G., Rodríguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017). This article focuses on the elucidation of the active sites for CH3OH synthesis from CO2 using traditional Cu/ZnO catalysts.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Mota, N., Guil-Lopez, R., Pawelec, B. G., Fierro, J. L. G. & Navarro, R. M. Highly active Cu/ZnO–Al catalyst for methanol synthesis: effect of aging on its structure and activity. RSC Adv. 8, 20619–20629 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zabilskiy, M. et al. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. Nat. Commun. 11, 2409 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kondrat, S. A. et al. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catal. Today 317, 12–20 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Zwiener, L. et al. Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis. Appl. Catal. B 249, 218–226 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Kondrat, S. A. et al. Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531, 83–87 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Dasireddy, V. D. B. C. & Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew. Energy 140, 452–460 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Behrens, M. Promoting the synthesis of methanol: understanding the requirements for an industrial catalyst for the conversion of CO2. Angew. Chem. Int. Ed. 55, 14906–14908 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Guil-López, R. et al. Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials 12, 3902 (2019).

    PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Wang, Y. et al. Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 10, 1166 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Mureddu, M., Ferrara, F. & Pettinau, A. Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2. Appl. Catal. B 258, 117941 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Fang, X. et al. Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). J. CO2 Util. 29, 57–64 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Jiang, Q. et al. Tuning the highly dispersed metallic Cu species via manipulating Brønsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions. Appl. Catal. B 269, 118804 (2020).

    Article  CAS  Google Scholar 

  39. 39.

    Deng, K., Hu, B., Lu, Q. & Hong, X. Cu/g-C3N4 modified ZnO/Al2O3 catalyst: methanol yield improvement of CO2 hydrogenation. Catal. Commun. 100, 81–84 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Ban, H., Li, C., Asami, K. & Fujimoto, K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2. Catal. Commun. 54, 50–54 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Bahruji, H. et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 343, 133–146 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Fujitani, T. et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl. Catal. A 125, L199–L202 (1995).

    CAS  Article  Google Scholar 

  43. 43.

    Bonivardi, A. L., Chiavassa, D. L., Querini, C. A. & Baltanás, M. A. Enhancement of the catalytic performance to methanol synthesis from CO2/H2 by gallium addition to palladium/silica catalysts. Stud. Surf. Sci. Catal. 130, 3747–3752 (2000).

    Article  Google Scholar 

  44. 44.

    Yang, X. et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J. Am. Chem. Soc. 137, 10104–10107 (2015).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Jiang, X., Koizumi, N., Guo, X. & Song, C. Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Appl. Catal. B 170–171, 173–185 (2015).

    Article  CAS  Google Scholar 

  46. 46.

    Snider, J. L. et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In–Pd catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 3399–3412 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Duyar, M. S., Gallo, A., Snider, J. L. & Jaramillo, T. F. Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. J. CO2 Util. 39, 101151 (2020).

    CAS  Article  Google Scholar 

  48. 48.

    Wang, J. et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Wang, J. et al. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 10253–10259 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    Dang, S. et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity. Sci. Adv. 6, eaaz2060 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Frei, M. S. et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Commun. 10, 3377 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Hu, J. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 4, 242–250 (2021).

    Article  Google Scholar 

  53. 53.

    Schieweck, B. G., Jürling-Will, P. & Klankermayer, J. Structurally versatile ligand system for the ruthenium catalyzed one-pot hydrogenation of CO2 to methanol. ACS Catal. 10, 3890–3894 (2020). In this work, the authors showed the importance of ligand structure in one-pot hydrogenation of CO2 to CH3OH using homogeneous Ru catalysts.

    CAS  Article  Google Scholar 

  54. 54.

    Kar, S., Kothandaraman, J., Goeppert, A. & Prakash, G. K. S. Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. J. CO2 Util. 23, 212–218 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Kar, S., Goeppert, A. & Prakash, G. K. S. Integrated CO2 capture and conversion to formate and methanol: connecting two threads. Acc. Chem. Res. 52, 2892–2903 (2019).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Liu, W., Sahoo, B., Junge, K. & Beller, M. Cobalt complexes as an emerging class of catalysts for homogeneous hydrogenations. Acc. Chem. Res. 51, 1858–1869 (2018). This review describes Co complexes as selective and highly efficient catalysts for homogeneous hydrogenation reactions. These catalysts were the first transition metal complexes used for the CO2 hydrogenation to CH3OH.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Sen, R., Goeppert, A., Kar, S. & Prakash, G. K. S. Hydroxide based integrated CO2 capture from air and conversion to methanol. J. Am. Chem. Soc. 142, 4544–4549 (2020).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Chu, W.-Y., Culakova, Z., Wang, B. T. & Goldberg, K. I. Acid-assisted hydrogenation of CO2 to methanol in a homogeneous catalytic cascade system. ACS Catal. 9, 9317–9326 (2019).

    CAS  Article  Google Scholar 

  59. 59.

    Schneidewind, J., Adam, R., Baumann, W., Jackstell, R. & Beller, M. Low-temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst. Angew. Chem. Int. Ed. 56, 1890–1893 (2017).

    CAS  Article  Google Scholar 

  60. 60.

    Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–288 (2020).

    CAS  Article  Google Scholar 

  61. 61.

    Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W. & Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 3, 609–614 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Rezayee, N. M., Huff, C. A. & Sanford, M. S. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 137, 1028–1031 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Wesselbaum, S. et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem. Sci. 6, 693–704 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Kar, S., Goeppert, A., Kothandaraman, J. & Prakash, G. K. S. Manganese-catalyzed sequential hydrogenation of CO2 to methanol via formamide. ACS Catal. 7, 6347–6351 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    Ribeiro, A. P. C., Martins, L. M. D. R. S. & Pombeiro, A. J. L. Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(ii) catalyst. Green Chem. 19, 4811–4815 (2017).

    CAS  Article  Google Scholar 

  67. 67.

    Shi, J. et al. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44, 5981–6000 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Ma, K., Yehezkeli, O., Park, E. & Cha, J. N. Enzyme mediated increase in methanol production from photoelectrochemical cells and CO2. ACS Catal. 6, 6982–6986 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    Kuk, S. K. et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem. Int. Ed. 56, 3827–3832 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Oliveira, A. R. et al. Toward the mechanistic understanding of enzymatic CO2 reduction. ACS Catal. 10, 3844–3856 (2020).

    CAS  Article  Google Scholar 

  71. 71.

    Katagiri, T. & Amao, Y. Double-electron reduced diphenylviologen as a coenzyme for biocatalytic building carbon–carbon bonds from CO2 as a carbon feedstock. ACS Sustain. Chem. Eng. 7, 9080–9085 (2019).

    CAS  Article  Google Scholar 

  72. 72.

    Zhang, S. et al. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide. ACS Catal. 9, 3913–3925 (2019).

    CAS  Article  Google Scholar 

  73. 73.

    Cai, Z. et al. Chloroplast-inspired artificial photosynthetic capsules for efficient and sustainable enzymatic hydrogenation. ACS Sustain. Chem. Eng. 6, 17114–17123 (2018).

    CAS  Article  Google Scholar 

  74. 74.

    Schwarz, F. M., Schuchmann, K. & Müller, V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol. Biofuels 11, 237 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Zhang, Z. et al. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chem. 20, 4339–4348 (2018).

    CAS  Article  Google Scholar 

  76. 76.

    Singh, R. K. et al. Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal. 8, 11085–11093 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Kuwabata, S., Tsuda, R. & Yoneyama, H. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. J. Am. Chem. Soc. 116, 5437–5443 (1994).

    CAS  Article  Google Scholar 

  78. 78.

    Marques Netto, C. G. C., Andrade, L. H. & Toma, H. E. Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. An. Acad. Bras. Cienc. 90, 593–606 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    Rusching, U., Müller, U., Willnow, P. & Höpner, T. CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. Eur. J. Biochem. 70, 325–330 (1976).

    Article  Google Scholar 

  80. 80.

    Wang, Y., Li, M., Zhao, Z. & Liu, W. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions. J. Mol. Catal. B 116, 89–94 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Baskaya, F. S., Zhao, X., Flickinger, M. C. & Wang, P. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol. Appl. Biochem. Biotechnol. 162, 391–398 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Obert, R. & Dave, B. C. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc. 121, 12192–12193 (1999).

    CAS  Article  Google Scholar 

  83. 83.

    Xu, S.-w., Lu, Y., Li, J., Jiang, Z.-y. & Wu, H. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate–silica (ALG–SiO2) hybrid gel. Ind. Eng. Chem. Res. 45, 4567–4573 (2006).

    CAS  Article  Google Scholar 

  84. 84.

    Beller, M. & Bornscheuer, U. T. CO2 fixation through hydrogenation by chemical or enzymatic methods. Angew. Chem. Int. Ed. 53, 4527–4528 (2014).

    CAS  Article  Google Scholar 

  85. 85.

    Kinastowska, K. et al. Photocatalytic cofactor regeneration involving triethanolamine revisited: the critical role of glycolaldehyde. Appl. Catal. B 243, 686–692 (2019). The development of efficient and viable enzymatic processes depends strongly on the cofactor regeneration, a task demonstrated here for NAD+/NADH with excellent results.

    CAS  Article  Google Scholar 

  86. 86.

    El-Zahab, B., Donnelly, D. & Wang, P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol. Bioeng. 99, 508–514 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Cazelles, R. et al. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New J. Chem. 37, 3721–3730 (2013).

    CAS  Article  Google Scholar 

  88. 88.

    Yu, X., Moldovan, S., Ordomsky, V. V. & Khodakov, A. Y. Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature. Nanoscale Adv. 1, 4321–4330 (2019).

    CAS  Article  Google Scholar 

  89. 89.

    Dau, H., Fujita, E. & Sun, L. Artificial photosynthesis: beyond mimicking nature. ChemSusChem 10, 4228–4235 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Butburee, T., Chakthranont, P., Phawa, C. & Faungnawakij, K. Beyond artificial photosynthesis: prospects on photobiorefinery. ChemCatChem 12, 1873–1890 (2020).

    CAS  Article  Google Scholar 

  91. 91.

    Yan, T. et al. Polymorph selection towards photocatalytic gaseous CO2 hydrogenation. Nat. Commun. 10, 2521 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Jia, J. et al. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering — perfecting imperfection. Chem. Soc. Rev. 46, 4631–4644 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Yan, X. et al. Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nat. Commun. 10, 2608 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Jia, J. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 3, 1600189 (2016).

    Article  CAS  Google Scholar 

  95. 95.

    Guan, G., Kida, T. & Yoshida, A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B 41, 387–396 (2003).

    CAS  Article  Google Scholar 

  96. 96.

    Wang, L. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2, 1369–1381 (2018).

    CAS  Article  Google Scholar 

  97. 97.

    Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L. & Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 8, 3602–3635 (2018). A review describing light absorption, charge separation and surface reactions, as well as thermodynamics, to improve the efficiency of photochemical H2O oxidation and CO2 reduction.

    CAS  Article  Google Scholar 

  98. 98.

    Kowalska, E., Wei, Z. & Janczarek, M. in Visible Light-Active Photocatalysis 447–484 (Wiley, 2018).

  99. 99.

    Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013).

    CAS  Article  Google Scholar 

  100. 100.

    Kubacka, A., Fernández-García, M. & Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Lehn, J.-M. & Ziessel, R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl Acad. Sci.USA 79, 701–704 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Navalón, S., Dhakshinamoorthy, A., Álvaro, M. & Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 6, 562–577 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  103. 103.

    Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Malathi, A., Madhavan, J., Ashokkumar, M. & Arunachalam, P. A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 555, 47–74 (2018).

    CAS  Article  Google Scholar 

  105. 105.

    Wu, Y. A. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019).

    CAS  Article  Google Scholar 

  106. 106.

    Bae, K.-L., Kim, J., Lim, C. K., Nam, K. M. & Song, H. Colloidal zinc oxide-copper(i) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 8, 1156 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Zhou, R. & Guzman, M. I. CO2 reduction under periodic illumination of ZnS. J. Phys. Chem. C 118, 11649–11656 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    Jiang, Z. et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30, 1706108 (2018).

    Article  CAS  Google Scholar 

  109. 109.

    Wang, H., Zhang, L., Wang, K., Sun, X. & Wang, W. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping. Appl. Catal. B 243, 771–779 (2019).

    CAS  Article  Google Scholar 

  110. 110.

    Terranova, U., Viñes, F., de Leeuw, N. H. & Illas, F. Mechanisms of carbon dioxide reduction on strontium titanate perovskites. J. Mater. Chem. A 8, 9392–9398 (2020).

    CAS  Article  Google Scholar 

  111. 111.

    Shoji, S., Yamaguchi, A., Sakai, E. & Miyauchi, M. Strontium titanate based artificial leaf loaded with reduction and oxidation cocatalysts for selective CO2 reduction using water as an electron donor. ACS Appl. Mater. Interfaces 9, 20613–20619 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Pan, Y.-X. et al. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 9, 1689–1700 (2016).

    CAS  Article  Google Scholar 

  113. 113.

    Kohno, Y., Tanaka, T., Funabiki, T. & Yoshida, S. Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys. Chem. Chem. Phys. 2, 2635–2639 (2000).

    CAS  Article  Google Scholar 

  114. 114.

    Lin, J., Pan, Z. & Wang, X. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustain. Chem. Eng. 2, 353–358 (2014).

    CAS  Article  Google Scholar 

  115. 115.

    Sun, Z., Wang, H., Wu, Z. & Wang, L. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 300, 160–172 (2018).

    CAS  Article  Google Scholar 

  116. 116.

    Wang, Y. et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11, 2531 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Xie, S., Zhang, Q., Liu, G. & Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52, 35–59 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Sun, Z. et al. Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion. Adv. Sustain. Syst. 1, 1700003 (2017).

    Article  CAS  Google Scholar 

  119. 119.

    Dong, Y. et al. Tailoring surface frustrated Lewis pairs of In2O3−x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+. Adv. Sci. 5, 1700732 (2018).

    Article  CAS  Google Scholar 

  120. 120.

    Zhang, X., Peng, T. & Song, S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 4, 2365–2402 (2016).

    CAS  Article  Google Scholar 

  121. 121.

    Truong, Q. D., Hoa, H. T., Vo, D.-V. N. & Le, T. S. Controlling the shape of anatase nanocrystals for enhanced photocatalytic reduction of CO2 to methanol. New J. Chem. 41, 5660–5668 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    Xu, Q., Yu, J., Zhang, J., Zhang, J. & Liu, G. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem. Commun. 51, 7950–7953 (2015).

    CAS  Article  Google Scholar 

  123. 123.

    Yuan, Y.-P., Ruan, L.-W., Barber, J., Loo, S. C. J. & Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 7, 3934–3951 (2014).

    CAS  Article  Google Scholar 

  124. 124.

    Qian, R. et al. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal. Today 335, 78–90 (2019).

    CAS  Article  Google Scholar 

  125. 125.

    Hori, Y. et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    CAS  Article  Google Scholar 

  126. 126.

    Zeng, Z. et al. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 29, 1806500 (2019).

    Article  CAS  Google Scholar 

  127. 127.

    Wang, H. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Gusain, R., Kumar, P., Sharma, O. P., Jain, S. L. & Khatri, O. P. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B 181, 352–362 (2016).

    CAS  Article  Google Scholar 

  129. 129.

    Jiang, W.-X., Liu, W.-X., Wang, C.-L., Zhan, S.-Z. & Wu, S.-P. A bis(thiosemicarbazonato)-copper complex, a new catalyst for electro- and photo-reduction of CO2 to methanol. New J. Chem. 44, 2721–2726 (2020).

    CAS  Article  Google Scholar 

  130. 130.

    Navaee, A. & Salimi, A. Sulfur doped-copper oxide nanoclusters synthesized through a facile electroplating process assisted by thiourea for selective photoelectrocatalytic reduction of CO2. J. Colloid Interface Sci. 505, 241–252 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Tseng, I.-H., Wu, J. C. S. & Chou, H.-Y. Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal. 221, 432–440 (2004).

    CAS  Article  Google Scholar 

  132. 132.

    Xiang, T. et al. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol. Beilstein J. Nanotechnol. 7, 776–783 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Yisilamu, G. et al. Preparation of cuprous oxide nanoparticles coated with aminated cellulose for the photocatalytic reduction of carbon dioxide to methanol. Energy Technol. 6, 1168–1177 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Madhusudan, P. et al. Graphene-Zn0.5Cd0.5S nanocomposite with enhanced visible-light photocatalytic CO2 reduction activity. Appl. Surf. Sci. 506, 144683 (2020).

    CAS  Article  Google Scholar 

  135. 135.

    Yang, C., Li, Q., Xia, Y., Lv, K. & Li, M. Enhanced visible-light photocatalytic CO2 reduction performance of ZnIn2S4 microspheres by using CeO2 as cocatalyst. Appl. Surf. Sci. 464, 388–395 (2019).

    CAS  Article  Google Scholar 

  136. 136.

    Christoforidis, K. C. & Fornasiero, P. Photocatalysis for hydrogen production and CO2 reduction: the case of copper-catalysts. ChemCatChem 11, 368–382 (2019).

    CAS  Article  Google Scholar 

  137. 137.

    Alves Melo Júnior, M., Morais, A. & Nogueira, A. F. Boosting the solar-light-driven methanol production through CO2 photoreduction by loading Cu2O on TiO2-pillared K2Ti4O9. Microporous Mesoporous Mater. 234, 1–11 (2016).

    Article  CAS  Google Scholar 

  138. 138.

    Gao, P. et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 298, 51–60 (2013).

    CAS  Article  Google Scholar 

  139. 139.

    Li, B. et al. Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH. Chem. Phys. Lett. 700, 57–63 (2018).

    CAS  Article  Google Scholar 

  140. 140.

    Guan, G., Kida, T., Harada, T., Isayama, M. & Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A 249, 11–18 (2003).

    CAS  Article  Google Scholar 

  141. 141.

    Kumar, P. et al. Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B 205, 654–665 (2017).

    CAS  Article  Google Scholar 

  142. 142.

    Wang, Z.-j. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B 250, 10–16 (2019).

    CAS  Article  Google Scholar 

  143. 143.

    Yendrapati Taraka, T. P., Gautam, A., Jain, S. L., Bojja, S. & Pal, U. Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH. J. CO2 Util. 31, 207–214 (2019).

    CAS  Article  Google Scholar 

  144. 144.

    Zheng, Y. et al. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol. Energy Technol. 7, 1900582 (2019).

    CAS  Article  Google Scholar 

  145. 145.

    Yu, B. et al. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8, 11870–11874 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Wang, X. et al. BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B 270, 118876 (2020).

    CAS  Article  Google Scholar 

  147. 147.

    Gondal, M. A., Dastageer, M. A., Oloore, L. E., Baig, U. & Rashid, S. G. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol. J. Environ. Sci. Health A 52, 785–793 (2017).

    CAS  Article  Google Scholar 

  148. 148.

    Meng, A., Wu, S., Cheng, B., Yu, J. & Xu, J. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 6, 4729–4736 (2018).

    CAS  Article  Google Scholar 

  149. 149.

    Spadaro, L., Arena, F. & Palella, A. in Methanol: Science and Engineering (eds Basile, A. & Dalena, F.) 429–472 (Elsevier, 2018).

  150. 150.

    Spadaro, L., Arena, F., Negro, P. & Palella, A. Sunfuels from CO2 exhaust emissions: insights into the role of photoreactor configuration by the study in laboratory and industrial environment. J. CO2 Util. 26, 445–453 (2018).

    CAS  Article  Google Scholar 

  151. 151.

    Edelmannová, M. et al. Photocatalytic hydrogenation and reduction of CO2 over CuO/TiO2 photocatalysts. Appl. Surf. Sci. 454, 313–318 (2018). Details how semibatch, packed bed and multitubular photoreactor designs and process conditions can impact the performance of a photochemical transformation.

    Article  CAS  Google Scholar 

  152. 152.

    Xie, S., Wang, Y., Zhang, Q., Deng, W. & Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 4, 3644–3653 (2014).

    CAS  Article  Google Scholar 

  153. 153.

    Albo, J., Sáez, A., Solla-Gullón, J., Montiel, V. & Irabien, A. Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Appl. Catal. B 176–177, 709–717 (2015).

    Article  CAS  Google Scholar 

  154. 154.

    Al-Rowaili, F. N., Jamal, A., Shammakh, M. S. B. & Rana, A. A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non-MOF catalysts: challenges and future prospects. ACS Sustain. Chem. Eng. 6, 15895–15914 (2018). This review addresses electroreduction of CO2 to CH3OH over non-metal–organic frameworks, metal–organic frameworks and their composites, suggesting improvements for catalyst design.

    CAS  Article  Google Scholar 

  155. 155.

    Zhang, L., Zhao, Z.-J. & Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

    CAS  Article  Google Scholar 

  156. 156.

    Albo, J. & Irabien, A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 343, 232–239 (2016).

    CAS  Article  Google Scholar 

  157. 157.

    Albo, J., Beobide, G., Castaño, P. & Irabien, A. Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. Biochem. Pharmacol. 18, 164–172 (2017).

    CAS  Google Scholar 

  158. 158.

    Jiwanti, P. K., Natsui, K. & Einaga, Y. Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv. 6, 102214–102217 (2016).

    CAS  Article  Google Scholar 

  159. 159.

    Faggion, D. Jr, Gonçalves, W. D. G. & Dupont, J. CO2 electroreduction in ionic liquids. Front. Chem. 7, 00102 (2019).

    CAS  Article  Google Scholar 

  160. 160.

    Lu, L. et al. Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels. Angew. Chem. Int. Ed. 57, 14149–14153 (2018).

    CAS  Article  Google Scholar 

  161. 161.

    Moura de Salles Pupo, M. & Kortlever, R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem 20, 2926–2935 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Yang, D. et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 677 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. 163.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Jiang, Y., Long, R. & Xiong, Y. Regulating C–C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chem. Sci. 10, 7310–7326 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Raciti, D. & Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). This review paper focuses on structure–property relationships of monometallic Cu electrocatalysts and their mechanisms.

    CAS  Article  Google Scholar 

  166. 166.

    Jiang, X. et al. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. J. Catal. 369, 21–32 (2019).

    CAS  Article  Google Scholar 

  167. 167.

    Bai, S. et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J. Am. Chem. Soc. 139, 6827–6830 (2017).

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Feng, G. et al. Oxygenates from the electrochemical reduction of carbon dioxide. Chem. Asian J. 13, 1992–2008 (2018).

    CAS  Article  Google Scholar 

  169. 169.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    CAS  Article  Google Scholar 

  170. 170.

    Perry, S. C., Leung, P.-k., Wang, L. & Ponce de León, C. Developments on carbon dioxide reduction: their promise, achievements and challenges. Curr. Opin. Electrochem. 20, 88–98 (2020).

    CAS  Article  Google Scholar 

  171. 171.

    Zhao, K., Liu, Y., Quan, X., Chen, S. & Yu, H. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl. Mater. Interfaces 9, 5302–5311 (2017).

    CAS  PubMed  Article  Google Scholar 

  172. 172.

    Huang, J., Guo, X., Yue, G., Hu, Q. & Wang, L. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene. ACS Appl. Mater. Interfaces 10, 44403–44414 (2018).

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Zhao, Q. et al. Selective etching quaternary max phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019). This paper describes electrocatalytic CO2 reduction to CH3OH using a Co phthalocyanine on carbon nanotubes.

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    CAS  Article  Google Scholar 

  176. 176.

    De, R. et al. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew. Chem. Int. Ed. 59, 10527–10534 (2020).

    CAS  Article  Google Scholar 

  177. 177.

    Toyir, J. et al. Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Phys. Procedia 2, 1075–1079 (2009).

    CAS  Article  Google Scholar 

  178. 178.

    European Commssion. Horizon 2020. Work programme 2016–2017. 20. General Annexes (EC, 2020).

  179. 179.

    Roy, S., Cherevotan, A. & Peter, S. C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 3, 1938–1966 (2018).

    CAS  Article  Google Scholar 

  180. 180.

    Jarvis, S. M. & Samsatli, S. Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 85, 46–68 (2018).

    CAS  Article  Google Scholar 

  181. 181.

    Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A. & Tzimas, E. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl. Energy 161, 718–732 (2016).

    Article  CAS  Google Scholar 

  182. 182.

    Pérez-Fortes, M. & Tzimas, E. Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid. European Commission https://publications.jrc.ec.europa.eu/repository/handle/JRC99380 (2016).

  183. 183.

    Methanex Corporation. Our business. Current posted prices. Methanex https://www.methanex.com/our-business/pricing (2021).

  184. 184.

    Hank, C. et al. Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide — power-to-methanol. Sustain. Energy Fuels 2, 1244–1261 (2018).

    CAS  Article  Google Scholar 

  185. 185.

    Bellotti, D., Rivarolo, M. & Magistri, L. Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage. Energy Procedia 158, 4721–4728 (2019).

    CAS  Article  Google Scholar 

  186. 186.

    Bos, M. J., Kersten, S. R. A. & Brilman, D. W. F. Wind power to methanol: renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl. Energy 264, 114672 (2020).

    CAS  Article  Google Scholar 

  187. 187.

    Energy Technology System Analysis Programme and International Renewable Energy Agency. Production of bio-methanol: policy brief. IRENA https://www.irena.org/publications/2013/Jan/Production-of-Bio-methanol (2013).

  188. 188.

    Lu, Q. & Jiao, F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016).

    CAS  Article  Google Scholar 

  189. 189.

    Verma, S., Kim, B., Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  190. 190.

    Asif, M., Gao, X., Lv, H., Xi, X. & Dong, P. Catalytic hydrogenation of CO2 from 600 MW supercritical coal power plant to produce methanol: a techno-economic analysis. Int. J. Hydrog. Energy 43, 2726–2741 (2018).

    CAS  Article  Google Scholar 

  191. 191.

    Herron, J. A. & Maravelias, C. T. Assessment of solar-to-fuels strategies: photocatalysis and electrocatalytic reduction. Energy Technol. 4, 1369–1391 (2016).

    CAS  Article  Google Scholar 

  192. 192.

    Kuld, S. et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science. 352, 969–974 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Li, L. et al. Ga-Pd/Ga2O3 catalysts: the role of gallia polymorphs, intermetallic compounds, and pretreatment conditions on selectivity and stability in different reactions. ChemCatChem 4, 1764–1775 (2012).

    CAS  Article  Google Scholar 

  194. 194.

    Angelo, L. et al. Study of CuZnMOx oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol. C. R. Chim. 18, 250–260 (2015).

    CAS  Article  Google Scholar 

  195. 195.

    Zhao, G., Huang, X., Wang, X. & Wang, X. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review. J. Mater. Chem. A 5, 21625–21649 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.N.-J., M.V., R.W. and A.Y.K. acknowledge financial support from the European Union (‘Electrons to high value Chemical products’ (E2C) Interreg 2 Seas project). Partial financial support to M.R. from the Institut Universitaire de France (IUF) is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

All authors contributed to writing, editing and reviewing the manuscript before submission.

Corresponding authors

Correspondence to Marc Robert or Andrei Y. Khodakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navarro-Jaén, S., Virginie, M., Bonin, J. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 5, 564–579 (2021). https://doi.org/10.1038/s41570-021-00289-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing