Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radical philicity and its role in selective organic transformations


Radical intermediates in organic chemistry lack a full octet of electrons and, thus, are commonly said to be electron deficient. By denotation, such a statement is technically correct; however, in modern literature, the term ‘electron deficient’ carries a connotation of electrophilicity. This lexical quirk leads one to predict that all radicals should behave as electrophiles, when this is not the case. Indeed, practitioners of radical chemistry have known for decades that many radicals behave as nucleophiles, sometimes strongly so. This Review aims to establish guidelines for understanding radical philicity by highlighting examples from recent literature as a demonstration of general reactivity paradigms across a series of different carbon-based and heteroatom-based radicals. We present strategies for predicting the philicity of a given radical on the basis of qualitative features of the radical’s structure. Finally, we discuss the implications of radical philicity to selective hydrogen atom transfer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The importance of understanding radical philicity.
Fig. 2: Philicity of carbon-centred alkyl radicals.
Fig. 3: Reactivity and philicity of carbon-centred radicals with α-heteroatoms.
Fig. 4: Philicity of sp and sp2 hybrid radicals.
Fig. 5: Philicity of heteroatom-centred radicals.
Fig. 6: Flow chart of radical philicity, including carbon-centred and heteroatom-centred radicals.
Fig. 7: The origin of polar effects in hydrogen atom transfer and polarity-reversal catalysis.


  1. 1.

    Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 1988, 417–439 (1988).

    Google Scholar 

  2. 2.

    Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 2. Synthesis 1988, 489–513 (1988).

    Google Scholar 

  3. 3.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Smith, J. M., Dixon, J. A., deGruyter, J. N. & Baran, P. S. Alkyl sulfinates: radical precursors enabling drug discovery. J. Med. Chem. 62, 2256–2264 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Li, P., Terrett, J. A. & Zbieg, J. R. Visible-light photocatalysis as an enabling technology for drug discovery: a paradigm shift for chemical reactivity. ACS Med. Chem. Lett. 11, 2120–2130 (2020).

    CAS  PubMed  Google Scholar 

  11. 11.

    Douglas, J. J., Sevrin, M. J. & Stephenson, C. R. J. Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Org. Process Res. Dev. 20, 1134–1147 (2016).

    CAS  Google Scholar 

  12. 12.

    Harper, K. C., Moschetta, E. G., Bordawekar, S. V. & Wittenberger, S. J. A laser driven flow chemistry platform for scaling photochemical reactions with visible light. ACS Cent. Sci. 5, 109–115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Corcoran, E. B., McMullen, J. P., Lévesque, F., Wismer, M. K. & Naber, J. R. Photon equivalents as a parameter for scaling photoredox reactions in flow: translation of photocatalytic C–N cross-coupling from lab scale to multikilogram scale. Angew. Chem. Int. Ed. 59, 11964–11968 (2020).

    CAS  Google Scholar 

  14. 14.

    Héberger, K. & Lopata, A. Assessment of nucleophilicity and electrophilicity of radicals, and of polar and enthalpy effects on radical addition reactions. J. Org. Chem. 63, 8646–8653 (1998).

    Google Scholar 

  15. 15.

    De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P. & De Proft, F. Electrophilicity and nucleophilicity index for radicals. Org. Lett. 9, 2721–2724 (2007). A useful reference to obtain some idea of the relative philicity of various organic and inorganic radicals.

    PubMed  Google Scholar 

  16. 16.

    De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P. & De Proft, F. An intrinsic radical stability scale from the perspective of bond dissociation enthalpies: a companion to radical electrophilicities. J. Org. Chem. 73, 9109–9120 (2008).

    PubMed  Google Scholar 

  17. 17.

    Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. Engl. 22, 753–764 (1983).

    Google Scholar 

  18. 18.

    Farney, E. P., Feng, S. S., Schäfers, F. & Reisman, S. E. Total synthesis of (+)-pleuromutilin. J. Am. Chem. Soc. 140, 1267–1270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955).

    CAS  Google Scholar 

  20. 20.

    Moore, M. J. et al. Next-generation total synthesis of vancomycin. J. Am. Chem. Soc. 142, 16039–16050 (2020).

    CAS  PubMed  Google Scholar 

  21. 21.

    Fischer, H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem. Rev. 101, 3581–3610 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    CAS  Google Scholar 

  23. 23.

    Anslyn, E. V. & Dougherty, D. A. in Modern Physical Organic Chemistry 112–120 (University Science Books, 2006).

  24. 24.

    Pitre, S. P., Weires, N. A. & Overman, L. E. Forging C(sp3)–C(sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 141, 2800–2813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sun, Y., Li, R., Zhang, W. & Li, A. Total synthesis of indotertine A and drimentines A, F, and G. Angew. Chem. Int. Ed. 52, 9201–9204 (2013).

    CAS  Google Scholar 

  26. 26.

    Schnermann, M. J. & Overman, L. E. A concise synthesis of (−)-aplyviolene facilitated by a strategic tertiary radical conjugate addition. Angew. Chem. Int. Ed. 51, 9576–9580 (2012).

    CAS  Google Scholar 

  27. 27.

    Yang, H.-B., Feceu, A. & Martin, D. B. C. Catalyst-controlled C–H functionalization of adamantanes using selective H-atom transfer. ACS Catal. 9, 5708–5715 (2019).

    CAS  Google Scholar 

  28. 28.

    Fors, B. P. & Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. Int. Ed. 51, 8850–8853 (2012).

    CAS  Google Scholar 

  29. 29.

    Swift, E. C., Williams, T. M. & Stephenson, C. R. J. Intermolecular photocatalytic C–H functionalization of electron-rich heterocycles with tertiary alkyl halides. Synlett 27, 754–758 (2016).

    CAS  Google Scholar 

  30. 30.

    Laudadio, G. et al. C(sp3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 369, 92–96 (2020).

    CAS  PubMed  Google Scholar 

  31. 31.

    Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Shih, H.-W., Vander Wal, M. N., Grange, R. L. & MacMillan, D. W. C. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 132, 13600–13603 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nacsa, E. A. & MacMillan, D. W. C. Spin-center shift-enabled direct enantioselective α-benzylation of aldehydes with alcohols. J. Am. Chem. Soc. 140, 3322–3330 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Welin, E. R., Warkentin, A. A., Conrad, J. C. & MacMillan, D. W. C. Enantioselective α-alkylation of aldehydes by photoredox organocatalysis: rapid access to pharmacophore fragments from β-cyanoaldehydes. Angew. Chem. Int. Ed. 54, 9668–9672 (2015).

    CAS  Google Scholar 

  35. 35.

    Beeson, T. D., Mastracchio, A., Hong, J.-B., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    CAS  PubMed  Google Scholar 

  36. 36.

    Um, J. M., Gutierrez, O., Schoenebeck, F., Houk, K. N. & MacMillan, D. W. C. Nature of intermediates in organo-SOMO catalysis of α-arylation of aldehydes. J. Am. Chem. Soc. 132, 6001–6005 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wilson, J. E., Casarez, A. D. & MacMillan, D. W. C. Enantioselective aldehyde α-nitroalkylation via oxidative organocatalysis. J. Am. Chem. Soc. 131, 11332–11334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wong, M. W., Pross, A. & Radom, L. Are polar interactions important in the addition of methyl radical to alkenes? J. Am. Chem. Soc. 115, 11050–11051 (1993).

    CAS  Google Scholar 

  39. 39.

    Wong, M. W., Pross, A. & Radom, L. Addition of methyl radical to substituted alkenes: a theoretical study of the reaction mechanism. Isr. J. Chem. 33, 415–425 (1993).

    CAS  Google Scholar 

  40. 40.

    Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes — an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    CAS  Google Scholar 

  41. 41.

    Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kariofillis, S. K., Shields, B. J., Tekle-Smith, M. A., Zacuto, M. J. & Doyle, A. G. Nickel/photoredox-catalyzed methylation of (hetero)aryl chlorides using trimethyl orthoformate as a methyl radical source. J. Am. Chem. Soc. 142, 7683–7689 (2020). Reports a clever method of generating methyl radicals.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Leitch, J. A., Rossolini, T., Rogova, T., Maitland, J. A. P. & Dixon, D. J. α-Amino radicals via photocatalytic single-electron reduction of imine derivatives. ACS Catal. 10, 2009–2025 (2020).

    CAS  Google Scholar 

  44. 44.

    Xia, Q., Dong, J., Song, H. & Wang, Q. Visible-light photocatalysis of the ketyl radical coupling reaction. Chem. Eur. J. 25, 2949–2961 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    Carey, F. A. & Sundberg, R. J. in Advanced Organic Chemistry, Part A: Structure and Mechanisms 5th edn 997–999 (Springer, 2007).

  46. 46.

    Wang, L., Lear, J., Rafferty, S. M., Fosu, S. C. & Nagib, D. A. Ketyl radical reactivity via atom transfer catalysis. Science 362, 225–229 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nakajima, K., Miyake, Y. & Nishibayashi, Y. Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res. 49, 1946–1956 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014). A useful resource for learning about common functional groups in drug-like molecules.

    CAS  PubMed  Google Scholar 

  49. 49.

    Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    CAS  Google Scholar 

  50. 50.

    Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Qi, L. & Chen, Y. Polarity-reversed allylations of aldehydes, ketones, and imines enabled by Hantzsch ester in photoredox catalysis. Angew. Chem. Int. Ed. 55, 13312–13315 (2016).

    CAS  Google Scholar 

  52. 52.

    Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017). Features an excellent systematic study of α-heteroatom radicals.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wappes, E. A., Vanitcha, A. & Nagib, D. A. β C–H di-halogenation via iterative hydrogen atom transfer. Chem. Sci. 9, 4500–4504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kumar, N., Reddy, R. R., Eghbarieh, N. & Masarwa, A. α-Borylalkyl radicals: their distinctive reactivity in modern organic synthesis. Chem. Commun. 56, 13–25 (2020).

    CAS  Google Scholar 

  55. 55.

    Kurandina, D. et al. Transition-metal- and light-free directed amination of remote unactivated C(sp3)–H bonds of alcohols. J. Am. Chem. Soc. 141, 8104–8109 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Nagib, D. A. & MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480, 224–228 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ji, Y. et al. Innate C-H trifluoromethylation of heterocycles. Proc. Natl Acad. Sci. USA 108, 14411–14415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Choi, W. J. et al. Mechanisms and applications of cyclometalated Pt(II) complexes in photoredox catalytic trifluoromethylation. Chem. Sci. 6, 1454–1464 (2015).

    CAS  PubMed  Google Scholar 

  59. 59.

    Le, C., Chen, T. Q., Liang, T., Zhang, P. & MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 360, 1010–1014 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Bacauanu, V. et al. Metallaphotoredox difluoromethylation of aryl bromides. Angew. Chem. Int. Ed. 57, 12543–12548 (2018).

    CAS  Google Scholar 

  61. 61.

    Yoshioka, E. et al. Polarity-mismatched addition of electrophilic carbon radicals to an electron-deficient acceptor: cascade radical addition-cyclization-trapping reaction. J. Org. Chem. 77, 8588–8604 (2012).

    CAS  PubMed  Google Scholar 

  62. 62.

    Hartmann, M., Li, Y. & Studer, A. Determination of rate constants for trifluoromethyl radical addition to various alkenes via a practical method. Org. Biomol. Chem. 14, 206–210 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Anslyn, E. V. & Dougherty, D. A. in Modern Physical Organic Chemistry 1–64 (University Science Books, 2006).

  64. 64.

    Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011). Highlights how electrophilic aryl radicals can be.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sehnal, P., Taylor, R. J. K. & Fairlamb, I. J. S. Emergence of palladium(IV) chemistry in synthesis and catalysis. Chem. Rev. 110, 824–889 (2010).

    CAS  PubMed  Google Scholar 

  66. 66.

    Candish, L., Freitag, M., Gensch, T. & Glorius, F. Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals. Chem. Sci. 8, 3618–3622 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Seiple, I. B. et al. Direct C–H arylation of electron-deficient heterocycles with arylboronic acids. J. Am. Chem. Soc. 132, 13194–13196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Aycock, R. A., Wang, H. & Jui, N. T. A mild catalytic system for radical conjugate addition of nitrogen heterocycles. Chem. Sci. 8, 3121–3125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Aycock, R. A., Vogt, D. B. & Jui, N. T. A practical and scalable system for heteroaryl amino acid synthesis. Chem. Sci. 8, 7998–8003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Boyington, A. J., Riu, M.-L. Y. & Jui, N. T. Anti-Markovnikov hydroarylation of unactivated olefins via pyridyl radical intermediates. J. Am. Chem. Soc. 139, 6582–6585 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Stork, G. & Baine, N. H. Cyclization of vinyl radicals: a versatile method for the construction of five- and six-membered rings. J. Am. Chem. Soc. 104, 2321–2323 (1982).

    CAS  Google Scholar 

  72. 72.

    Miura, K., Itoh, D., Hondo, T. & Hosomi, A. Stereoselective synthesis of di- and trisubstituted alkenes via intermolecular addition of vinyl radicals to alkenes. Tetrahedron Lett. 35, 9605–9608 (1994).

    CAS  Google Scholar 

  73. 73.

    Stork, G. & Baine, N. H. Vinyl radical cyclization in the synthesis of natural products: seychellene. Tetrahedron Lett. 26, 5927–5930 (1985).

    CAS  Google Scholar 

  74. 74.

    Zhang, J. et al. Tandem decarboxylative cyclization/alkenylation strategy for total syntheses of (+)-longirabdiol, (–)-longirabdolactone, and (–)-effusin. J. Am. Chem. Soc. 141, 8372–8380 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    Martelli, G., Spagnolo, P. & Tiecco, M. Homolytic aromatic substitution by phenylethynyl radicals. J. Chem. Soc. B 1970, 1413–1418 (1970).

    Google Scholar 

  76. 76.

    Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals. Chem. Rev. 99, 1991–2070 (1999).

    CAS  PubMed  Google Scholar 

  77. 77.

    Lei, J., Huang, J. & Zhu, Q. Recent progress in imidoyl radical-involved reactions. Org. Biomol. Chem. 14, 2593–2602 (2016).

    CAS  PubMed  Google Scholar 

  78. 78.

    de Pedro Beato, E., Mazzarella, D., Balletti, M. & Melchiorre, P. Photochemical generation of acyl and carbamoyl radicals using a nucleophilic organic catalyst: applications and mechanism thereof. Chem. Sci. 11, 6312–6324 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Maimone, T. J., Shi, J., Ashida, S. & Baran, P. S. Total synthesis of vinigrol. J. Am. Chem. Soc. 131, 17066–17067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Allen, L. C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111, 9003–9014 (1989).

    CAS  Google Scholar 

  81. 81.

    Tsui, E., Wang, H. & Knowles, R. R. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem. Sci. 11, 11124–11141 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hafeman, N. J. et al. The total synthesis of (−)-scabrolide A. J. Am. Chem. Soc. 142, 8585–8590 (2020).

    CAS  PubMed  Google Scholar 

  83. 83.

    Hung, K. et al. Development of a terpene feedstock-based oxidative synthetic approach to the Illicium sesquiterpenes. J. Am. Chem. Soc. 141, 3083–3099 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Tsui, E., Metrano, A. J., Tsuchiya, Y. & Knowles, R. R. Catalytic hydroetherification of unactivated alkenes enabled by proton-coupled electron transfer. Angew. Chem. Int. Ed. 59, 11845–11849 (2020).

    CAS  Google Scholar 

  85. 85.

    Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

    CAS  PubMed  Google Scholar 

  86. 86.

    Ganley, J. M., Murray, P. R. D. & Knowles, R. R. Photocatalytic generation of aminium radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).

    CAS  PubMed  Google Scholar 

  87. 87.

    Svejstrup, T. D., Ruffoni, A., Juliá, F., Aubert, V. M. & Leonori, D. Synthesis of arylamines via aminium radicals. Angew. Chem. Int. Ed. 56, 14948–14952 (2017).

    CAS  Google Scholar 

  88. 88.

    Margrey, K. A., Levens, A. & Nicewicz, D. A. Direct aryl C–H amination with primary amines using organic photoredox catalysis. Angew. Chem. Int. Ed. 56, 15644–15648 (2017).

    CAS  Google Scholar 

  89. 89.

    Davies, J., Svejstrup, T. D., Fernandez Reina, D., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).

    CAS  PubMed  Google Scholar 

  90. 90.

    Taniguchi, T. Boryl radical addition to multiple bonds in organic synthesis. Eur. J. Org. Chem. 2019, 6308–6319 (2019).

    CAS  Google Scholar 

  91. 91.

    Leffler, J. E., Dolan, E. & Tanigaki, T. Aryl boron free radicals. J. Am. Chem. Soc. 87, 927–928 (1965).

    CAS  Google Scholar 

  92. 92.

    Weissman, S. I. & van Willigen, H. On arylboron free radicals. J. Am. Chem. Soc. 87, 2285–2286 (1965).

    CAS  Google Scholar 

  93. 93.

    Subervie, D. et al. Difluorination at boron leads to the first electrophilic ligated boryl radical (NHC-BF2). Angew. Chem. Int. Ed. 57, 10251–10256 (2018).

    CAS  Google Scholar 

  94. 94.

    Chatgilialoglu, C. Structural and chemical properties of silyl radicals. Chem. Rev. 95, 1229–1251 (1995).

    CAS  Google Scholar 

  95. 95.

    Zhang, P., Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Jiang, X.-K., Ding, W. F.-X. & Zhang, Y.-H. The nucleophilic silyl radical: dual-parameter correlation analysis of the relative rates of bromine-atom abstraction reactions as measured by a rigorous methodology. Tetrahedron 53, 8479–8490 (1997).

    CAS  Google Scholar 

  97. 97.

    Zhang, Z. & Hu, X. Arylsilylation of electron-deficient alkenes via cooperative photoredox and nickel catalysis. ACS Catal. 10, 777–782 (2020).

    Google Scholar 

  98. 98.

    Sinha, A. K. & Equbal, D. Thiol–ene reaction: synthetic aspects and mechanistic studies of an anti-Markovnikov-selective hydrothiolation of olefins. Asian J. Org. Chem. 8, 32–47 (2019).

    CAS  Google Scholar 

  99. 99.

    Goddard-Borger, E. D. et al. Rapid assembly of a library of lipophilic iminosugars via the thiol–ene reaction yields promising pharmacological chaperones for the treatment of Gaucher disease. J. Med. Chem. 55, 2737–2745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Marque, S. & Tordo, P. Reactivity of phosphorus centered radicals. Top. Curr. Chem. 250, 43–76 (2005).

    CAS  Google Scholar 

  101. 101.

    Buquoi, J. Q., Lear, J. M., Gu, X. & Nagib, D. A. Heteroarene phosphinylalkylation via a catalytic, polarity-reversing cascade. ACS Catal. 9, 5330–5335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Luo, Y.-R. in Handbook of Bond Dissociation Energies in Organic Compounds 297–298 (CRC Press, 2003).

  103. 103.

    Newcomb, M. & Park, S. U. N-Hydroxypyridine-2-thione esters as radical precursors in kinetic studies. Measurements of rate constants for hydrogen-atom-abstraction reactions. J. Am. Chem. Soc. 108, 4132–4134 (1986).

    CAS  Google Scholar 

  104. 104.

    Brumwell, J. E., Simpkins, N. S. & Terrett, N. K. Cyclisation of dienes and enynes using phosphorus-centred radicals. Tetrahedron Lett. 34, 1215–1218 (1993).

    CAS  Google Scholar 

  105. 105.

    Kippo, T., Hamaoka, K. & Ryu, I. Bromine radical-mediated sequential radical rearrangement and addition reaction of alkylidenecyclopropanes. J. Am. Chem. Soc. 135, 632–635 (2013).

    CAS  PubMed  Google Scholar 

  106. 106.

    Luo, Y.-R. in Handbook of Bond Dissociation Energies in Organic Compounds 11–93 (CRC Press, 2003).

  107. 107.

    Paul, V. & Roberts, B. P. Polarity reversal catalysis of hydrogen atom abstraction reactions. J. Chem. Soc. Chem. Commun. 1987, 1322–1324 (1987).

    Google Scholar 

  108. 108.

    Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999). Considered the seminal study of polarity-reversal catalysis.

    CAS  Google Scholar 

  109. 109.

    Enquist, J. A. & Stoltz, B. M. The total synthesis of (−)-cyanthiwigin F by means of double catalytic enantioselective alkylation. Nature 453, 1228–1231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    CAS  Google Scholar 

  113. 113.

    Paul, V., Roberts, B. P. & Willis, C. R. Homolytic reactions of ligated boranes. Part 12. Amine–alkylboranes as polarity reversal catalysts for hydrogen-atom abstraction by t-butoxyl radicals. J. Chem. Soc. Perkin Trans. 2 1989, 1953–1961 (1989).

    Google Scholar 

  114. 114.

    Pan, X., Lacôte, E., Lavalée, J. & Curran, D. P. Polarity reversal catalysis in radical reductions of halides by N-heterocyclic carbene boranes. J. Am. Chem. Soc. 134, 5669–5674 (2012).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the Cancer Prevention and Research Institute of Texas (grant no. RR190084) and startup funds from the University of Texas at Dallas.

Author information




E.R.W. conceived and directed the project. All authors contributed to the writing and editing of the manuscript prior to submission; F.P., M.C.S., P.B.K., S.N.A. and P.D.E.A. contributed equally.

Corresponding author

Correspondence to Eric R. Welin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parsaee, F., Senarathna, M.C., Kannangara, P.B. et al. Radical philicity and its role in selective organic transformations. Nat Rev Chem 5, 486–499 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing