Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radical-pairing-induced molecular assembly and motion

A Publisher Correction to this article was published on 18 June 2021

This article has been updated

Abstract

Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Radical-recognition pairs.
Fig. 2: Radical-pairing-interactions-driven supramolecular assembly.
Fig. 3: Radical-pairing-interactions-templated assembly of mechanically interlocked molecules.
Fig. 4: Redox-controlled molecular switches driven by radical-pairing interactions.
Fig. 5: Radical-pairing-interactions-driven switchable molecular motions within mechanically interlocked molecules.
Fig. 6: Timeline for the advances in the design and synthesis of molecular pumps.
Fig. 7: Working mechanisms of different generations of the molecular pumps.
Fig. 8: Two examples of utilizing molecular pumps in the syntheses of mechanically interlocked polymers.

Change history

References

  1. 1.

    Jenkins, R. R. Free radical chemistry. Sports Med. 5, 156–170 (1988).

    CAS  PubMed  Google Scholar 

  2. 2.

    Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (1991).

    CAS  Google Scholar 

  3. 3.

    Hicks, R. G. What’s new in stable radical chemistry? Org. Biomol. Chem. 5, 1321–1338 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Train, C., Norel, L. & Baumgarten, M. Organic radicals, a promising route towards original molecule-based magnetic materials. Coord. Chem. Rev. 253, 2342–2351 (2009).

    CAS  Google Scholar 

  5. 5.

    Sun, Z. & Wu, J. Open-shell polycyclic aromatic hydrocarbons. J. Mater. Chem. 22, 4151–4160 (2012).

    CAS  Google Scholar 

  6. 6.

    Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Gopalakrishna, T. Y., Zeng, W., Lu, X. & Wu, J. From open-shell singlet diradicaloids to polyradicaloids. Chem. Commun. 54, 2186–2199 (2018).

    Google Scholar 

  8. 8.

    Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Google Scholar 

  9. 9.

    Tang, B., Zhao, J., Xu, J.-F. & Zhang, X. Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chem. Sci. 11, 1192–1204 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Blundell, S. J. & Pratt, F. L. Organic and molecular magnets. J. Phys. Condens. Matter. 16, R771–R828 (2004).

    CAS  Google Scholar 

  11. 11.

    Phan, H. et al. Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks. Chem 5, 1223–1234 (2019).

    CAS  Google Scholar 

  12. 12.

    Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 10680 (2016).

    Google Scholar 

  14. 14.

    Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Phaniendra, A., Jestadi, D. B. & Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30, 11–26 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Sakamaki, D., Ghosh, S. & Seki, S. Dynamic covalent bonds: approaches from stable radical species. Mater. Chem. Front. 3, 2270–2282 (2019).

    CAS  Google Scholar 

  17. 17.

    Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012).

    CAS  PubMed  Google Scholar 

  18. 18.

    Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    CAS  Google Scholar 

  19. 19.

    Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    CAS  Google Scholar 

  20. 20.

    Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

    CAS  Google Scholar 

  21. 21.

    Whitesides, G. M., Mathias, J. P. & Seto, T. C. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  PubMed  Google Scholar 

  22. 22.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  PubMed  Google Scholar 

  23. 23.

    Preuss, K. E. Pancake bonds: π-stacked dimers of organic and light-atom radicals. Polyhedron 79, 1–15 (2014).

    CAS  Google Scholar 

  24. 24.

    Kertesz, M. Pancake bonding: an unusual pi-stacking interaction. Chem. Eur. J. 25, 400–416 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kosower, E. M. & Cotter, J. L. Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 86, 5524–5527 (1964).

    CAS  Google Scholar 

  26. 26.

    Nishinaga, T. & Komatsu, K. Persistent π radical cations: self-association and its steric control in the condensed phase. Org. Biomol. Chem. 3, 561–569 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Google Scholar 

  28. 28.

    Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (Wiley, 2013).

  29. 29.

    Olson, M. A., Botros, Y. Y. & Stoddart, J. F. Mechanostereochemistry. Pure Appl. Chem. 82, 1569–1574 (2010).

    CAS  Google Scholar 

  30. 30.

    Spruell, J. M. Molecular recognition and switching via radical dimerization. Pure Appl. Chem. 82, 2281–2294 (2010).

    CAS  Google Scholar 

  31. 31.

    Zhang, D.-W., Tian, J., Chen, L., Zhang, L. & Li, Z.-T. Dimerization of conjugated radical cations: an emerging non-covalent interaction for self-assembly. Chem. Asian J. 10, 56–68 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    CAS  Google Scholar 

  33. 33.

    Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 18021820 (2009).

    Google Scholar 

  34. 34.

    Stoddart, J. F. Mechanically interlocked molecules (MIMs) — Molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    CAS  Google Scholar 

  35. 35.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2017).

  36. 36.

    Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    CAS  Google Scholar 

  37. 37.

    Hünig, S. Stable radical ions. Pure Appl. Chem. 15, 109–122 (1967).

    Google Scholar 

  38. 38.

    Kosower, E. M. & Hajdu, J. Pyridinyl diradical π-mer. Magnesium iodide complexes. J. Am. Chem. Soc. 93, 2534–2535 (1971).

    CAS  Google Scholar 

  39. 39.

    Geuder, W., Hünig, S. & Suchy, A. Single and double bridged viologenes and intramolecular pimerization of their cation radicals. Tetrahedron 42, 1665–1677 (1986).

    CAS  Google Scholar 

  40. 40.

    Itoh, M. & Kosower, E. M. Stable free radicals. IV. Intramolecular association in pyridinyl diradicals. J. Am. Chem. Soc. 90, 1843–1849 (1968).

    CAS  Google Scholar 

  41. 41.

    Mou, Z. & Kertesz, M. Pancake bond orders of a series of π-stacked triangulene radicals. Angew. Chem. Int. Ed. 56, 10188–10191 (2017).

    CAS  Google Scholar 

  42. 42.

    Suzuki, S. et al. Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J. Am. Chem. Soc. 128, 2530–2531 (2006).

    CAS  PubMed  Google Scholar 

  43. 43.

    Beaujean, P. & Kertesz, M. Helical molecular redox actuators with pancake bonds? Theor. Chem. Acc. 134, 147 (2015).

    Google Scholar 

  44. 44.

    Bozio, R., Zanon, I., Girlando, A. & Pecile, C. Vibrational spectroscopy of molecular constituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer. J. Chem. Phys. 71, 2282–2293 (1979).

    CAS  Google Scholar 

  45. 45.

    Torrance, J. B., Scott, B. A., Welber, B., Kaufman, F. B. & Seiden, P. E. Optical properties of the radical cation tetrathiafulvalenium (TTF+) in its mixed-valence and monovalence halide salts. Phys. Rev. B 19, 730–741 (1979).

    CAS  Google Scholar 

  46. 46.

    Penneau, J. F., Stallman, B. J., Kasai, P. H. & Miller, L. L. An imide anion radical that dimerizes and assembles into π-stacks in solution. Chem. Mater. 3, 791–796 (1991).

    CAS  Google Scholar 

  47. 47.

    Wu, Y. et al. Electron delocalization in a rigid cofacial naphthalene-1,8:4,5-bis(dicarboximide) dimer. Angew. Chem. Int. Ed. 53, 9476–9481 (2014).

    CAS  Google Scholar 

  48. 48.

    Penneau, J.-F. & Miller, L. L. An imide radical anion which assembles into π-stacks in solution. Angew. Chem. Int. Ed. Engl. 30, 986–987 (1991).

    Google Scholar 

  49. 49.

    Andric, G. et al. Spectroscopy of naphthalene diimides and their anion radicals. Aust. J. Chem. 57, 1011–1019 (2004).

    CAS  Google Scholar 

  50. 50.

    Boyd, R. H. & Phillips, W. D. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927–2929 (1965).

    CAS  Google Scholar 

  51. 51.

    Lü, J. M., Rosokha, S. V. & Kochi, J. K. Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged π-radicals: structures, energetics, and optical transitions. J. Am. Chem. Soc. 125, 12161–12171 (2003).

    PubMed  Google Scholar 

  52. 52.

    Cui, Z.-h, Lischka, H., Beneberu, H. Z. & Kertesz, M. Rotational barrier in phenalenyl neutral radical dimer: separating pancake and van der Waals interactions. J. Am. Chem. Soc. 136, 5539–5542 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kubo, T. Phenalenyl-based open-shell polycyclic aromatic hydrocarbons. Chem. Rec. 15, 218–232 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Bag, P. et al. Synthesis, structure and solid state properties of benzannulated phenalenyl based neutral radical conductor. J. Phys. Org. Chem. 25, 566–573 (2012).

    CAS  Google Scholar 

  55. 55.

    Fuhrhop, J. H., Wasser, P., Riesner, D. & Mauzerall, D. Dimerization and π-bonding of a zinc porphyrin cation radical. Thermodynamics and fast reaction kinetics. J. Am. Chem. Soc. 94, 7996–8001 (1972).

    CAS  PubMed  Google Scholar 

  56. 56.

    Hill, M. G., Mann, K. R., Miller, L. L. & Penneau, J. F. Oligothiophene cation radical dimers. An alternative to bipolarons in oxidized polythiophene. J. Am. Chem. Soc. 114, 2728–2730 (1992).

    CAS  Google Scholar 

  57. 57.

    Scherlis, D. A. & Marzari, N. π-Stacking in thiophene oligomers as the driving force for electroactive materials and devices. J. Am. Chem. Soc. 127, 3207–3212 (2005).

    CAS  PubMed  Google Scholar 

  58. 58.

    Song, C. & Swager, T. M. π-Dimer formation as the driving force for calix[4]arene-based molecular actuators. Org. Lett. 10, 3575–3578 (2008).

    CAS  PubMed  Google Scholar 

  59. 59.

    Fujiwara, T. et al. Preparation, spectroscopic characterization and theoretical study of a three-dimensional conjugated 70 π-electron thiophene 6-mer radical cation π-dimer. J. Am. Chem. Soc. 142, 5933–5937 (2020).

    CAS  PubMed  Google Scholar 

  60. 60.

    van Haare, J. A. E. H., Groenendaal, L., Havinga, E. E., Janssen, R. A. J. & Meijer, E. W. π-Dimers of end-capped oligopyrrole cation radicals. Angew. Chem. Int. Ed. Engl. 35, 638–640 (1996).

    Google Scholar 

  61. 61.

    De Sorgo, M., Wasserman, B. & Szwarc, M. Aggregation of salts of thianthrene radical cations. J. Phys. Chem. 76, 3468–3471 (1972).

    Google Scholar 

  62. 62.

    van het Goor, L. et al. π-Dimerization of pleiadiene radical cations at low temperatures revealed by UV–vis spectroelectrochemistry and quantum theory. J. Solid State Electrochem. 15, 2107–2117 (2011).

    Google Scholar 

  63. 63.

    Britten, J., Hearns, N. G. R., Preuss, K. E., Richardson, J. F. & Bin-Salamon, S. Mn(II) and Cu(II) complexes of a dithiadiazolyl radical ligand: monomer/dimer equilibria in solution. Inorg. Chem. 46, 3934–3945 (2007).

    CAS  PubMed  Google Scholar 

  64. 64.

    Beneberu, H. Z., Tian, Y.-H. & Kertesz, M. Bonds or not bonds? Pancake bonding in 1,2,3,5-dithiadiazolyl and 1,2,3,5-diselenadiazolyl radical dimers and their derivatives. Phys. Chem. Chem. Phys. 14, 10713–10725 (2012).

    CAS  PubMed  Google Scholar 

  65. 65.

    Beldjoudi, Y. et al. Structural, magnetic, and optical studies of the polymorphic 9′-anthracenyl dithiadiazolyl radical. J. Am. Chem. Soc. 141, 6875–6889 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Cui, Z.-h, Lischka, H., Beneberu, H. Z. & Kertesz, M. Double pancake bonds: pushing the limits of strong π–π stacking interactions. J. Am. Chem. Soc. 136, 12958–12965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Mou, Z., Tian, Y.-H. & Kertesz, M. Validation of density functionals for pancake-bonded π-dimers; dispersion is not enough. Phys. Chem. Chem. Phys. 19, 24761–24768 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020).

    CAS  PubMed  Google Scholar 

  69. 69.

    Okino, K., Hira, S., Inoue, Y., Sakamaki, D. & Seki, S. The divergent dimerization behavior of N-substituted dicyanomethyl radicals: dynamically stabilized versus stable radicals. Angew. Chem. Int. Ed. 56, 16597–16601 (2017).

    CAS  Google Scholar 

  70. 70.

    Peterson, J. P. & Winter, A. H. Solvent effects on the stability and delocalization of aryl dicyanomethyl radicals: the captodative effect revisited. J. Am. Chem. Soc. 141, 12901–12906 (2019).

    CAS  Google Scholar 

  71. 71.

    Peterson, J. P., Ellern, A. & Winter, A. H. Spin delocalization, polarization, and London dispersion forces govern the formation of diradical pimers. J. Am. Chem. Soc. 142, 5304–5313 (2020).

    CAS  PubMed  Google Scholar 

  72. 72.

    Miller, J. S. Four-center carbon–carbon bonding. Acc. Chem. Res. 40, 189–196 (2007).

    CAS  PubMed  Google Scholar 

  73. 73.

    Tuo, D.-H. et al. Magnetic multistability in an anion-radical pimer. Angew. Chem. Int. Ed. 59, 14040–14043 (2020).

    CAS  Google Scholar 

  74. 74.

    Michaelis, L. & Hill, E. S. The viologen indicators. J. Gen. Physiol. 16, 859–873 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Odell, B. et al. Cyclobis(paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew. Chem. Int. Ed. Engl. 27, 1547–1550 (1988).

    Google Scholar 

  76. 76.

    Madasamy, K., Velayutham, D., Suryanarayanan, V., Kathiresan, M. & Ho, K.-C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 7, 4622–4637 (2019).

    CAS  Google Scholar 

  77. 77.

    Ding, J. et al. Viologen-inspired functional materials: synthetic strategies and applications. J. Mater. Chem. A 7, 23337–23360 (2019).

    CAS  Google Scholar 

  78. 78.

    Geraskina, M. R., Dutton, A. S., Juetten, M. J., Wood, S. A. & Winter, A. H. The viologen cation radical pimer: a case of dispersion-driven bonding. Angew. Chem. Int. Ed. 56, 9435–9439 (2017).

    CAS  Google Scholar 

  79. 79.

    Zheng, X. et al. Coulombic-enhanced hetero radical pairing interactions. Nat. Commun. 9, 1961–1969 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Mou, Z., Kubo, T. & Kertesz, M. Hetero-π-dimers of phenalenyls. Chem. Eur. J. 21, 18230–18236 (2015).

    CAS  PubMed  Google Scholar 

  81. 81.

    Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    CAS  PubMed  Google Scholar 

  82. 82.

    Jeon, W. S., Kim, H.-J., Lee, C. & Kim, K. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 17, 1828–1829 (2002).

    Google Scholar 

  83. 83.

    Lee, C. et al. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 416, 139–144 (1996).

    CAS  Google Scholar 

  84. 84.

    Lee, C., Sung, Y. W. & Park, J. W. Dependence of dimerization of electrogenerated methylalkylviologen radical cations on the length of alkyl chain in the presence of γ-cyclodextrin. J. Electroanal. Chem. 431, 133–139 (1997).

    CAS  Google Scholar 

  85. 85.

    Ziganshina, A. Y., Ko, Y. H., Jeon, W. S. & Kim, K. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chem. Commun. 10, 806–807 (2004).

    Google Scholar 

  86. 86.

    Yin, Z. et al. Dissipative supramolecular polymerization powered by light. CCS Chem. 1, 335–342 (2019).

    CAS  Google Scholar 

  87. 87.

    Tang, B. et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew. Chem. Int. Ed. 58, 15526–15531 (2019).

    CAS  Google Scholar 

  88. 88.

    Trabolsi, A. et al. Radically enhanced molecular recognition. Nat. Chem. 2, 42–49 (2010).

    CAS  PubMed  Google Scholar 

  89. 89.

    Cheng, C. et al. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes. J. Am. Chem. Soc. 138, 8288–8300 (2016).

    CAS  PubMed  Google Scholar 

  90. 90.

    Cai, K. et al. Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chem. Sci. 11, 107–112 (2020).

    CAS  PubMed  Google Scholar 

  91. 91.

    Lipke, M. C. et al. Size-matched radical multivalency. J. Am. Chem. Soc. 139, 3986–3998 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Lipke, M. C. et al. Shuttling rates, electronic states, and hysteresis in a ring-in-ring rotaxane. ACS Cent. Sci. 4, 362–371 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Dumartin, M., Lipke, M. C. & Stoddart, J. F. A redox-switchable molecular zipper. J. Am. Chem. Soc. 141, 18308–18317 (2019).

    CAS  PubMed  Google Scholar 

  94. 94.

    Cai, K. et al. Molecular Russian dolls. Nat. Commun. 9, 5275 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Spanggaard, H. et al. Multiple-bridged bis-tetrathiafulvalenes: new synthetic protocols and spectroelectrochemical investigations. J. Am. Chem. Soc. 122, 9486–9494 (2000).

    CAS  Google Scholar 

  96. 96.

    Spruell, J. M. et al. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat. Chem. 2, 870–879 (2010).

    CAS  PubMed  Google Scholar 

  97. 97.

    Kannappan, R. et al. Viologen-based redox-switchable anion-binding receptors. New J. Chem. 34, 1373–1386 (2010).

    CAS  Google Scholar 

  98. 98.

    Nakamura, K.-i et al. Dimeric and trimeric tetrathiafulvalenes with strong intramolecular interactions in the oxidized states. Org. Lett. 13, 3122–3125 (2011).

    CAS  PubMed  Google Scholar 

  99. 99.

    Kahlfuss, C. et al. Dynamic molecular metamorphism involving palladium-assisted dimerization of π-cation radicals. Chem. Eur. J. 25, 1573–1580 (2019).

    CAS  PubMed  Google Scholar 

  100. 100.

    Jung, J., Liu, W., Kim, S. & Lee, D. Redox-driven folding, unfolding, and refolding of bis(tetrathiafulvalene) molecular switch. J. Org. Chem. 84, 6258–6269 (2019).

    CAS  PubMed  Google Scholar 

  101. 101.

    Rosokha, S. V. & Kochi, J. K. Molecular and electronic structures of the long-bonded π-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity. J. Am. Chem. Soc. 129, 828–838 (2007).

    CAS  PubMed  Google Scholar 

  102. 102.

    Chi, X. et al. Dimeric phenalenyl-based neutral radical molecular conductors. J. Am. Chem. Soc. 123, 4041–4048 (2001).

    CAS  PubMed  Google Scholar 

  103. 103.

    Pal, S. K. et al. Synthesis, structure and physical properties of the first one-dimensional phenalenyl-based neutral radical molecular conductor. J. Am. Chem. Soc. 126, 1478–1484 (2004).

    CAS  PubMed  Google Scholar 

  104. 104.

    Pal, S. K. et al. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005).

    CAS  PubMed  Google Scholar 

  105. 105.

    Leitch, A. A. et al. An alternating π-stacked bisdithiazolyl radical conductor. J. Am. Chem. Soc. 129, 7903–7914 (2007).

    CAS  PubMed  Google Scholar 

  106. 106.

    Moon, K., Grindstaff, J., Sobransingh, D. & Kaifer, A. E. Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. Angew. Chem. Int. Ed. 43, 5496–5499 (2004).

    CAS  Google Scholar 

  107. 107.

    Zhang, Q., Qu, D.-H., Wang, Q.-C. & Tian, H. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction. Angew. Chem. Int. Ed. 54, 15789–15793 (2015).

    CAS  Google Scholar 

  108. 108.

    Zhang, L. et al. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 5, 4715–4721 (2014).

    CAS  Google Scholar 

  109. 109.

    Tian, J., Chen, L., Zhang, D.-W., Liu, Y. & Li, Z.-T. Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chem. Commun. 52, 6351–6362 (2016).

    CAS  Google Scholar 

  110. 110.

    Zhou, C. et al. A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym. Chem. 5, 341–345 (2014).

    CAS  Google Scholar 

  111. 111.

    Madasamy, K., Shanmugam, V. M., Velayutham, D. & Kathiresan, M. Reversible 2D supramolecular organic frameworks encompassing viologen cation radicals and CB[8]. Sci. Rep. 8, 1354–1312 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    CAS  Google Scholar 

  113. 113.

    Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kern, J. M. Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984).

    CAS  Google Scholar 

  114. 114.

    Dietrich-Buchecker, C. O. & Sauvage, J.-P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795–810 (1987).

    CAS  Google Scholar 

  115. 115.

    Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    CAS  Google Scholar 

  116. 116.

    Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    CAS  Google Scholar 

  117. 117.

    Crowley, J. D., Goldup, S. M., Lee, A.-L., Leigh, D. A. & McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38, 1530–1541 (2009).

    CAS  PubMed  Google Scholar 

  118. 118.

    Stoddart, J. F. The master of chemical topology. Chem. Soc. Rev. 38, 1521–1529 (2009).

    CAS  PubMed  Google Scholar 

  119. 119.

    Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    CAS  PubMed  Google Scholar 

  120. 120.

    Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).

    CAS  PubMed  Google Scholar 

  121. 121.

    Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    CAS  PubMed  Google Scholar 

  122. 122.

    Ashton, P. R. et al. A [2] catenane made to order. Angew. Chem. Int. Ed. Engl. 28, 1396–1399 (1989).

    Google Scholar 

  123. 123.

    Amabilino, D. B., Ashton, P. R., Reder, A. S., Spencer, N. & Stoddart, J. F. Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290 (1994).

    Google Scholar 

  124. 124.

    Kirsten, E. G. & Stoddart, J. F. Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes. Pure Appl. Chem. 80, 485–506 (2008).

    Google Scholar 

  125. 125.

    Stoddart, J. F. & Colquhoun, H. M. Big and little Meccano. Tetrahedron 64, 8231–8263 (2008).

    CAS  Google Scholar 

  126. 126.

    Sluysmans, D. et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13, 209–213 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Hunter, C. A. Synthesis and structure elucidation of a new [2]-catenane. J. Am. Chem. Soc. 114, 5303–5311 (1992).

    CAS  Google Scholar 

  128. 128.

    Vögtle, F., Meier, S. & Hoss, R. One-step synthesis of a fourfold functionalized catenane. Angew. Chem. Int. Ed. Engl. 31, 1619–1622 (1992).

    Google Scholar 

  129. 129.

    Johnston, A. G., Leigh, D. A., Pritchard, R. J. & Deegan, M. D. Facile synthesis and solid-state structure of a benzylic amide [2]catenane. Angew. Chem. Int. Ed. Engl. 34, 1209–1212 (1995).

    CAS  Google Scholar 

  130. 130.

    Ashton, P. R. et al. Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995).

    CAS  Google Scholar 

  131. 131.

    Kolchinski, A. G., Busch, D. H. & Alcock, N. W. Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis. J. Chem. Soc. Chem. Commun. 12, 1289–1291 (1995).

    Google Scholar 

  132. 132.

    Vögtle, F., Dünnwald, T. & Schmidt, T. Catenanes and rotaxanes of the amide type. Acc. Chem. Res. 29, 451–460 (1996).

    Google Scholar 

  133. 133.

    Glink, P. T., Schiavo, C., Stoddart, J. F. & Williams, D. J. The genesis of a new range of interlocked molecules. Chem. Commun. 13, 1483–1490 (1996).

    Google Scholar 

  134. 134.

    Ashton, P. R. et al. Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 709–728 (1996).

    CAS  Google Scholar 

  135. 135.

    Martínez-Díaz, M. V., Spencer, N. & Stoddart, J. F. The self-assembly of a switchable [2]rotaxane. Angew. Chem. Int. Ed. Engl. 36, 1904–1907 (1997).

    Google Scholar 

  136. 136.

    Kolchinski, A. G., Roesner, R. A., Busch, D. H. & Alcock, N. W. Molecular riveting: high yield preparation of a [3]-rotaxane. Chem. Commun. 13, 1437–1438 (1998).

    Google Scholar 

  137. 137.

    Kidd, T. J., Leigh, D. A. & Wilson, A. J. Organic “magic rings”: the hydrogen bond-directed assembly of catenanes under thermodynamic control. J. Am. Chem. Soc. 121, 1599–1600 (1999).

    CAS  Google Scholar 

  138. 138.

    Schalley, C. A., Weilandt, T., Brüggemann, J. & Vögtle, F. in Templates in Chemistry I (eds Schalley, C. A., Vögtle, F. & Dötz, K. H.) 141–200 (Springer, 2004).

  139. 139.

    Belowich, M. E. et al. Positive cooperativity in the template-directed synthesis of monodisperse macromolecules. J. Am. Chem. Soc. 134, 5243–5261 (2012).

    CAS  PubMed  Google Scholar 

  140. 140.

    Zheng, Z., Knobler, C. B. & Hawthorne, M. F. Stereoselective anion template effects: syntheses and molecular structures of tetraphenyl [12]mercuracarborand-4 complexes of halide ions. J. Am. Chem. Soc. 117, 5105–5113 (1995).

    CAS  Google Scholar 

  141. 141.

    Hasenknopf, B., Lehn, J.-M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840 (1996).

    CAS  Google Scholar 

  142. 142.

    Hübner, G. M., Gläser, J., Seel, C. & Vögtle, F. High-yielding rotaxane synthesis with an anion template. Angew. Chem. Int. Ed. 38, 383–386 (1999).

    Google Scholar 

  143. 143.

    Wisner, J. A., Beer, P. D., Drew, M. G. B. & Sambrook, M. R. Anion-templated rotaxane formation. J. Am. Chem. Soc. 124, 12469–12476 (2002).

    CAS  PubMed  Google Scholar 

  144. 144.

    Sambrook, M. R., Beer, P. D., Wisner, J. A., Paul, R. L. & Cowley, A. R. Anion-templated assembly of a [2]catenane. J. Am. Chem. Soc. 126, 15364–15365 (2004).

    CAS  PubMed  Google Scholar 

  145. 145.

    Vickers, M. S. & Beer, P. D. Anion templated assembly of mechanically interlocked structures. Chem. Soc. Rev. 36, 211–225 (2007).

    CAS  PubMed  Google Scholar 

  146. 146.

    Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

    CAS  PubMed  Google Scholar 

  147. 147.

    Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C–H hydrogen-bonding cage. Science 365, 159–161 (2019).

    CAS  PubMed  Google Scholar 

  148. 148.

    Zhao, W., Flood, A. H. & White, N. G. Recognition and applications of anion–anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chem. Soc. Rev. 49, 7893–7906 (2020).

    CAS  PubMed  Google Scholar 

  149. 149.

    Metrangolo, P. & Resnati, G. Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001).

    CAS  PubMed  Google Scholar 

  150. 150.

    Serpell, C. J., Kilah, N. L., Costa, P. J., Felix, V. & Beer, P. D. Halogen bond anion templated assembly of an imidazolium pseudorotaxane. Angew. Chem. Int. Ed. 49, 5322–5326 (2010).

    CAS  Google Scholar 

  151. 151.

    Kilah, N. L. et al. Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. J. Am. Chem. Soc. 132, 11893–11895 (2010).

    CAS  PubMed  Google Scholar 

  152. 152.

    Beale, T. M., Chudzinski, M. G., Sarwar, M. G. & Taylor, M. S. Halogen bonding in solution: thermodynamics and applications. Chem. Soc. Rev. 42, 1667–1680 (2013).

    CAS  PubMed  Google Scholar 

  153. 153.

    Tepper, R. & Schubert, U. S. Halogen bonding in solution: anion recognition, templated self-assembly, and organocatalysis. Angew. Chem. Int. Ed. 57, 6004–6016 (2018).

    CAS  Google Scholar 

  154. 154.

    Qu, D.-H. & Tian, H. Novel and efficient templates for assembly of rotaxanes and catenanes. Chem. Sci. 2, 1011–1015 (2011).

    CAS  Google Scholar 

  155. 155.

    Li, H. et al. Mechanical bond formation by radical templation. Angew. Chem. Int. Ed. 49, 8260–8265 (2010).

    CAS  Google Scholar 

  156. 156.

    Wang, Y. et al. Oligorotaxane radicals under orders. ACS Cent. Sci. 2, 89–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Wang, Y. et al. Symbiotic control in mechanical bond formation. Angew. Chem. Int. Ed. 55, 12387–12392 (2016).

    CAS  Google Scholar 

  158. 158.

    Nguyen, M. T., Ferris, D. P., Pezzato, C., Wang, Y. & Stoddart, J. F. Densely charged dodecacationic [3]- and tetracosacationic radial [5]catenanes. Chem 4, 2329–2344 (2018).

    CAS  Google Scholar 

  159. 159.

    Barnes, J. C. et al. A radically configurable six-state compound. Science 339, 429–433 (2013).

    CAS  PubMed  Google Scholar 

  160. 160.

    Li, H. et al. Mechanical bond-induced radical stabilization. J. Am. Chem. Soc. 135, 456–467 (2013).

    CAS  PubMed  Google Scholar 

  161. 161.

    Sun, J. et al. Mechanical-bond-protected, air-stable radicals. J. Am. Chem. Soc. 139, 12704–12709 (2017).

    CAS  PubMed  Google Scholar 

  162. 162.

    Cai, K. et al. Highly stable organic bisradicals protected by mechanical bonds. J. Am. Chem. Soc. 142, 7190–7197 (2020).

    CAS  PubMed  Google Scholar 

  163. 163.

    Cai, K. et al. Radical cyclic [3]daisy chains. Chem 7, 174–189 (2020).

    Google Scholar 

  164. 164.

    Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).

    CAS  PubMed  Google Scholar 

  165. 165.

    Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015).

    CAS  Google Scholar 

  166. 166.

    Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    CAS  PubMed  Google Scholar 

  167. 167.

    Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    CAS  Google Scholar 

  168. 168.

    Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    CAS  PubMed  Google Scholar 

  169. 169.

    Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    CAS  PubMed  Google Scholar 

  170. 170.

    Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Google Scholar 

  171. 171.

    Tian, H. & Wang, Q.-C. Recent progress on switchable rotaxanes. Chem. Soc. Rev. 35, 361–374 (2006).

    CAS  PubMed  Google Scholar 

  172. 172.

    Silvi, S., Venturi, M. & Credi, A. Artificial molecular shuttles: from concepts to devices. J. Mater. Chem. 19, 2279–2294 (2009).

    CAS  Google Scholar 

  173. 173.

    Goujon, A., Moulin, E., Fuks, G. & Giuseppone, N. [c2]Daisy chain rotaxanes as molecular muscles. CCS Chem. 1, 83–96 (2019).

    CAS  Google Scholar 

  174. 174.

    Asakawa, M. et al. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 37, 333–337 (1998).

    CAS  Google Scholar 

  175. 175.

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  PubMed  Google Scholar 

  176. 176.

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  PubMed  Google Scholar 

  177. 177.

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    PubMed  Google Scholar 

  178. 178.

    Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    CAS  PubMed  Google Scholar 

  179. 179.

    van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Google Scholar 

  180. 180.

    Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    CAS  Google Scholar 

  181. 181.

    Krause, S. & Feringa, B. L. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    CAS  Google Scholar 

  182. 182.

    Iordache, A. et al. Redox control of rotary motions in ferrocene-based elemental ball bearings. J. Am. Chem. Soc. 134, 2653–2671 (2012).

    CAS  PubMed  Google Scholar 

  183. 183.

    Takai, A., Yasuda, T., Ishizuka, T., Kojima, T. & Takeuchi, M. A directly linked ferrocene–naphthalenediimide conjugate: precise control of stacking structures of π-systems by redox stimuli. Angew. Chem. Int. Ed. 52, 9167–9171 (2013).

    CAS  Google Scholar 

  184. 184.

    Buck, A. T., Paletta, J. T., Khindurangala, S. A., Beck, C. L. & Winter, A. H. A noncovalently reversible paramagnetic switch in water. J. Am. Chem. Soc. 135, 10594–10597 (2013).

    CAS  PubMed  Google Scholar 

  185. 185.

    Geraskina, M. R., Buck, A. T. & Winter, A. H. An organic spin crossover material in water from a covalently linked radical dyad. J. Org. Chem. 79, 7723–7727 (2014).

    CAS  PubMed  Google Scholar 

  186. 186.

    Wang, Y. et al. Folding of oligoviologens induced by radical–radical interactions. J. Am. Chem. Soc. 137, 876–885 (2015).

    CAS  PubMed  Google Scholar 

  187. 187.

    Chen, L., Wang, H., Zhang, D.-W., Zhou, Y. & Li, Z.-T. Quadruple switching of pleated foldamers of tetrathiafulvalene–bipyridinium alternating dynamic covalent polymers. Angew. Chem. Int. Ed. 54, 4028–4031 (2015).

    CAS  Google Scholar 

  188. 188.

    Juetten, M. J., Buck, A. T. & Winter, A. H. A radical spin on viologen polymers: organic spin crossover materials in water. Chem. Commun. 51, 5516–5519 (2015).

    CAS  Google Scholar 

  189. 189.

    Faour, L. et al. Redox-controlled hybridization of helical foldamers. Chem. Commun. 55, 5743–5746 (2019).

    CAS  Google Scholar 

  190. 190.

    Greene, A. F. et al. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem. Mater. 29, 9498–9508 (2017).

    CAS  Google Scholar 

  191. 191.

    Liles, K. P. et al. Photoredox-based actuation of an artificial molecular muscle. Macromol. Rapid Commun. 39, 1700781 (2018).

    Google Scholar 

  192. 192.

    Amir, F. et al. Reversible hydrogel photopatterning: spatial and temporal control over gel mechanical properties using visible light photoredox catalysis. ACS Appl. Mater. Inter. 11, 24627–24638 (2019).

    CAS  Google Scholar 

  193. 193.

    Li, H. et al. A light-stimulated molecular switch driven by radical–radical interactions in water. Angew. Chem. Int. Ed. 50, 6782–6788 (2011).

    CAS  Google Scholar 

  194. 194.

    Sun, J. et al. Visible light-driven artificial molecular switch actuated by radical–radical and donor–acceptor interactions. J. Phys. Chem. A 119, 6317–6325 (2015).

    CAS  PubMed  Google Scholar 

  195. 195.

    Ashton, P. R. et al. Acid–base controllable molecular shuttles. J. Am. Chem. Soc. 120, 11932–11942 (1998).

    CAS  Google Scholar 

  196. 196.

    Grunder, S. et al. A water-soluble pH-triggered molecular switch. J. Am. Chem. Soc. 135, 17691–17694 (2013).

    CAS  PubMed  Google Scholar 

  197. 197.

    Kumar, S. et al. Chemical locking in molecular tunneling junctions enables nonvolatile memory with large on–off ratios. Adv. Mater. 31, 1807831 (2019).

    Google Scholar 

  198. 198.

    Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    PubMed  Google Scholar 

  199. 199.

    Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    CAS  PubMed  Google Scholar 

  200. 200.

    Cho, B., Song, S., Ji, Y., Kim, T. W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    CAS  Google Scholar 

  201. 201.

    Nijhuis, C. A., Reus, W. F., Siegel, A. C. & Whitesides, G. M. A molecular half-wave rectifier. J. Am. Chem. Soc. 133, 15397–15411 (2011).

    CAS  PubMed  Google Scholar 

  202. 202.

    Fahrenbach, A. C. et al. Radically enhanced molecular switches. J. Am. Chem. Soc. 134, 16275–16288 (2012).

    CAS  PubMed  Google Scholar 

  203. 203.

    Sun, J. et al. An electrochromic tristable molecular switch. J. Am. Chem. Soc. 137, 13484–13487 (2015).

    CAS  PubMed  Google Scholar 

  204. 204.

    Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014).

    CAS  PubMed  Google Scholar 

  205. 205.

    Fahrenbach, A. C. et al. Ground-state kinetics of bistable redox-active donor–acceptor mechanically interlocked molecules. Acc. Chem. Res. 47, 482–493 (2014).

    CAS  PubMed  Google Scholar 

  206. 206.

    Deng, W.-Q., Flood, A. H., Stoddart, J. F. & Goddard, W. A., III. An electrochemical color-switchable RGB dye: tristable [2]catenane. J. Am. Chem. Soc. 127, 15994–15995 (2005).

    CAS  PubMed  Google Scholar 

  207. 207.

    Astumian, R. D., Chock, P. B., Tsong, T. Y. & Westerhoff, H. V. Effects of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phy. Rev. A 39, 6416–6435 (1989).

    CAS  Google Scholar 

  208. 208.

    Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    CAS  Google Scholar 

  209. 209.

    Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    PubMed  PubMed Central  Google Scholar 

  210. 210.

    Astumian, R. D. Chemical peristalsis. Proc. Natl Acad. Sci. USA 102, 1843–1847 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Durola, F. et al. Cyclic [4]rotaxanes containing two parallel porphyrinic plates: toward switchable molecular receptors and compressors. Acc. Chem. Res. 47, 633–645 (2014).

    CAS  PubMed  Google Scholar 

  212. 212.

    Chang, J.-C. et al. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017).

    CAS  Google Scholar 

  213. 213.

    Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    CAS  PubMed  Google Scholar 

  214. 214.

    Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    CAS  Google Scholar 

  216. 216.

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  217. 217.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Leigh, D. A. Genesis of the nanomachines: the 2016 Nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016).

    CAS  Google Scholar 

  219. 219.

    Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. Front. 4, 1304–1314 (2020).

    CAS  Google Scholar 

  220. 220.

    Balzani, V., Credi, A. & Venturi, M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009).

    CAS  PubMed  Google Scholar 

  221. 221.

    Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).

    CAS  PubMed  Google Scholar 

  222. 222.

    Wang, Y., Frasconi, M. & Stoddart, J. F. Introducing stable radicals into molecular machines. ACS Cent. Sci. 3, 927–935 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    CAS  PubMed  Google Scholar 

  224. 224.

    Garcia-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

    PubMed  Google Scholar 

  225. 225.

    Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).

    CAS  PubMed  Google Scholar 

  227. 227.

    Cheng, C. et al. Energetically demanding transport in a supramolecular assembly. J. Am. Chem. Soc. 136, 14702–14705 (2014).

    CAS  PubMed  Google Scholar 

  228. 228.

    Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    CAS  PubMed  Google Scholar 

  229. 229.

    Pezzato, C. et al. An efficient artificial molecular pump. Tetrahedron 73, 4849–4857 (2017).

    CAS  Google Scholar 

  230. 230.

    Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    CAS  Google Scholar 

  231. 231.

    Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019).

    CAS  PubMed  Google Scholar 

  232. 232.

    Cai, K. et al. Molecular-pump-enabled synthesis of a daisy chain polymer. J. Am. Chem. Soc. 142, 10308–10313 (2020).

    CAS  PubMed  Google Scholar 

  233. 233.

    Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    Guo, Q.-H. et al. Artificial molecular pump operating in response to electricity and light. J. Am. Chem. Soc. 142, 14443–14449 (2020).

    CAS  PubMed  Google Scholar 

  235. 235.

    Astumian, R. D. & Derenyi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    CAS  PubMed  Google Scholar 

  236. 236.

    Astumian, R. D. & Bier, M. Fluctuation driven ratchets: molecular motors. Phys. Rev. Lett. 72, 1766–1769 (1994).

    CAS  PubMed  Google Scholar 

  237. 237.

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    CAS  PubMed  Google Scholar 

  238. 238.

    Mena-Hernando, S. & Perez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    CAS  PubMed  Google Scholar 

  239. 239.

    Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    CAS  PubMed  Google Scholar 

  240. 240.

    Arunachalam, M. & Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 39, 1043–1073 (2014).

    CAS  Google Scholar 

  241. 241.

    Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    CAS  PubMed  Google Scholar 

  242. 242.

    Ito, K. Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym. J. 44, 38–41 (2012).

    CAS  Google Scholar 

  243. 243.

    Ito, K. Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci. 14, 28–34 (2010).

    CAS  Google Scholar 

  244. 244.

    Yu, G. et al. Polyrotaxane-based supramolecular theranostics. Nat. Commun. 9, 766 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. 245.

    Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    CAS  PubMed  Google Scholar 

  246. 246.

    Castro, R., Nixon, K. R., Evanseck, J. D. & Kaifer, A. E. Effects of side arm length and structure of para-substituted phenyl derivatives on their binding to the host cyclobis(paraquat-p-phenylene). J. Org. Chem. 61, 7298–7303 (1996).

    CAS  PubMed  Google Scholar 

  247. 247.

    Ashton, P. R. et al. A three-pole supramolecular switch. J. Am. Chem. Soc. 121, 3951–3957 (1999).

    CAS  Google Scholar 

  248. 248.

    Tsong, T. Y. & Astumian, R. D. 863 — absorption and conversion of electric field energy by membrane bound ATPases. Bioelectrochem. Bioenerg. 15, 457–476 (1986).

    CAS  Google Scholar 

  249. 249.

    Robertson, B. & Astumian, R. D. Michaelis-Menten equation for an enzyme in an oscillating electric field. Biophys. J. 58, 969–974 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250.

    Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    CAS  PubMed  Google Scholar 

  251. 251.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  PubMed  Google Scholar 

  252. 252.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  PubMed  Google Scholar 

  253. 253.

    Astumian, R. D. Stochastically pumped adaptation and directional motion of molecular machines. Proc. Natl Acad. Sci. USA 115, 9405–9413 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors thank Northwestern University for its continuing financial support.

Author information

Affiliations

Authors

Contributions

K.C. and L.Z. contributed equally to this manuscript. All authors contributed to every aspect of the manuscript.

Corresponding authors

Correspondence to Kang Cai or R. Dean Astumian or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Zhang, L., Astumian, R.D. et al. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 5, 447–465 (2021). https://doi.org/10.1038/s41570-021-00283-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing