Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radical-pairing-induced molecular assembly and motion

A Publisher Correction to this article was published on 18 June 2021

This article has been updated

Abstract

Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radical-recognition pairs.
Fig. 2: Radical-pairing-interactions-driven supramolecular assembly.
Fig. 3: Radical-pairing-interactions-templated assembly of mechanically interlocked molecules.
Fig. 4: Redox-controlled molecular switches driven by radical-pairing interactions.
Fig. 5: Radical-pairing-interactions-driven switchable molecular motions within mechanically interlocked molecules.
Fig. 6: Timeline for the advances in the design and synthesis of molecular pumps.
Fig. 7: Working mechanisms of different generations of the molecular pumps.
Fig. 8: Two examples of utilizing molecular pumps in the syntheses of mechanically interlocked polymers.

Similar content being viewed by others

Change history

References

  1. Jenkins, R. R. Free radical chemistry. Sports Med. 5, 156–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (1991).

    Article  CAS  Google Scholar 

  3. Hicks, R. G. What’s new in stable radical chemistry? Org. Biomol. Chem. 5, 1321–1338 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Train, C., Norel, L. & Baumgarten, M. Organic radicals, a promising route towards original molecule-based magnetic materials. Coord. Chem. Rev. 253, 2342–2351 (2009).

    Article  CAS  Google Scholar 

  5. Sun, Z. & Wu, J. Open-shell polycyclic aromatic hydrocarbons. J. Mater. Chem. 22, 4151–4160 (2012).

    Article  CAS  Google Scholar 

  6. Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Gopalakrishna, T. Y., Zeng, W., Lu, X. & Wu, J. From open-shell singlet diradicaloids to polyradicaloids. Chem. Commun. 54, 2186–2199 (2018).

    Article  Google Scholar 

  8. Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Article  Google Scholar 

  9. Tang, B., Zhao, J., Xu, J.-F. & Zhang, X. Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chem. Sci. 11, 1192–1204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blundell, S. J. & Pratt, F. L. Organic and molecular magnets. J. Phys. Condens. Matter. 16, R771–R828 (2004).

    Article  CAS  Google Scholar 

  11. Phan, H. et al. Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks. Chem 5, 1223–1234 (2019).

    Article  CAS  Google Scholar 

  12. Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 10680 (2016).

    Article  Google Scholar 

  14. Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Phaniendra, A., Jestadi, D. B. & Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30, 11–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Sakamaki, D., Ghosh, S. & Seki, S. Dynamic covalent bonds: approaches from stable radical species. Mater. Chem. Front. 3, 2270–2282 (2019).

    Article  CAS  Google Scholar 

  17. Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  CAS  Google Scholar 

  19. Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Article  CAS  Google Scholar 

  20. Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

    Article  CAS  Google Scholar 

  21. Whitesides, G. M., Mathias, J. P. & Seto, T. C. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Preuss, K. E. Pancake bonds: π-stacked dimers of organic and light-atom radicals. Polyhedron 79, 1–15 (2014).

    Article  CAS  Google Scholar 

  24. Kertesz, M. Pancake bonding: an unusual pi-stacking interaction. Chem. Eur. J. 25, 400–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kosower, E. M. & Cotter, J. L. Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 86, 5524–5527 (1964).

    Article  CAS  Google Scholar 

  26. Nishinaga, T. & Komatsu, K. Persistent π radical cations: self-association and its steric control in the condensed phase. Org. Biomol. Chem. 3, 561–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  28. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (Wiley, 2013).

  29. Olson, M. A., Botros, Y. Y. & Stoddart, J. F. Mechanostereochemistry. Pure Appl. Chem. 82, 1569–1574 (2010).

    Article  CAS  Google Scholar 

  30. Spruell, J. M. Molecular recognition and switching via radical dimerization. Pure Appl. Chem. 82, 2281–2294 (2010).

    Article  CAS  Google Scholar 

  31. Zhang, D.-W., Tian, J., Chen, L., Zhang, L. & Li, Z.-T. Dimerization of conjugated radical cations: an emerging non-covalent interaction for self-assembly. Chem. Asian J. 10, 56–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    Article  CAS  Google Scholar 

  33. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 18021820 (2009).

    Article  Google Scholar 

  34. Stoddart, J. F. Mechanically interlocked molecules (MIMs) — Molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  35. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2017).

  36. Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    Article  CAS  Google Scholar 

  37. Hünig, S. Stable radical ions. Pure Appl. Chem. 15, 109–122 (1967).

    Article  Google Scholar 

  38. Kosower, E. M. & Hajdu, J. Pyridinyl diradical π-mer. Magnesium iodide complexes. J. Am. Chem. Soc. 93, 2534–2535 (1971).

    Article  CAS  Google Scholar 

  39. Geuder, W., Hünig, S. & Suchy, A. Single and double bridged viologenes and intramolecular pimerization of their cation radicals. Tetrahedron 42, 1665–1677 (1986).

    Article  CAS  Google Scholar 

  40. Itoh, M. & Kosower, E. M. Stable free radicals. IV. Intramolecular association in pyridinyl diradicals. J. Am. Chem. Soc. 90, 1843–1849 (1968).

    Article  CAS  Google Scholar 

  41. Mou, Z. & Kertesz, M. Pancake bond orders of a series of π-stacked triangulene radicals. Angew. Chem. Int. Ed. 56, 10188–10191 (2017).

    Article  CAS  Google Scholar 

  42. Suzuki, S. et al. Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J. Am. Chem. Soc. 128, 2530–2531 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Beaujean, P. & Kertesz, M. Helical molecular redox actuators with pancake bonds? Theor. Chem. Acc. 134, 147 (2015).

    Article  Google Scholar 

  44. Bozio, R., Zanon, I., Girlando, A. & Pecile, C. Vibrational spectroscopy of molecular constituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer. J. Chem. Phys. 71, 2282–2293 (1979).

    Article  CAS  Google Scholar 

  45. Torrance, J. B., Scott, B. A., Welber, B., Kaufman, F. B. & Seiden, P. E. Optical properties of the radical cation tetrathiafulvalenium (TTF+) in its mixed-valence and monovalence halide salts. Phys. Rev. B 19, 730–741 (1979).

    Article  CAS  Google Scholar 

  46. Penneau, J. F., Stallman, B. J., Kasai, P. H. & Miller, L. L. An imide anion radical that dimerizes and assembles into π-stacks in solution. Chem. Mater. 3, 791–796 (1991).

    Article  CAS  Google Scholar 

  47. Wu, Y. et al. Electron delocalization in a rigid cofacial naphthalene-1,8:4,5-bis(dicarboximide) dimer. Angew. Chem. Int. Ed. 53, 9476–9481 (2014).

    Article  CAS  Google Scholar 

  48. Penneau, J.-F. & Miller, L. L. An imide radical anion which assembles into π-stacks in solution. Angew. Chem. Int. Ed. Engl. 30, 986–987 (1991).

    Article  Google Scholar 

  49. Andric, G. et al. Spectroscopy of naphthalene diimides and their anion radicals. Aust. J. Chem. 57, 1011–1019 (2004).

    Article  CAS  Google Scholar 

  50. Boyd, R. H. & Phillips, W. D. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927–2929 (1965).

    Article  CAS  Google Scholar 

  51. Lü, J. M., Rosokha, S. V. & Kochi, J. K. Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged π-radicals: structures, energetics, and optical transitions. J. Am. Chem. Soc. 125, 12161–12171 (2003).

    Article  PubMed  Google Scholar 

  52. Cui, Z.-h, Lischka, H., Beneberu, H. Z. & Kertesz, M. Rotational barrier in phenalenyl neutral radical dimer: separating pancake and van der Waals interactions. J. Am. Chem. Soc. 136, 5539–5542 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Kubo, T. Phenalenyl-based open-shell polycyclic aromatic hydrocarbons. Chem. Rec. 15, 218–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Bag, P. et al. Synthesis, structure and solid state properties of benzannulated phenalenyl based neutral radical conductor. J. Phys. Org. Chem. 25, 566–573 (2012).

    Article  CAS  Google Scholar 

  55. Fuhrhop, J. H., Wasser, P., Riesner, D. & Mauzerall, D. Dimerization and π-bonding of a zinc porphyrin cation radical. Thermodynamics and fast reaction kinetics. J. Am. Chem. Soc. 94, 7996–8001 (1972).

    Article  CAS  PubMed  Google Scholar 

  56. Hill, M. G., Mann, K. R., Miller, L. L. & Penneau, J. F. Oligothiophene cation radical dimers. An alternative to bipolarons in oxidized polythiophene. J. Am. Chem. Soc. 114, 2728–2730 (1992).

    Article  CAS  Google Scholar 

  57. Scherlis, D. A. & Marzari, N. π-Stacking in thiophene oligomers as the driving force for electroactive materials and devices. J. Am. Chem. Soc. 127, 3207–3212 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Song, C. & Swager, T. M. π-Dimer formation as the driving force for calix[4]arene-based molecular actuators. Org. Lett. 10, 3575–3578 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Fujiwara, T. et al. Preparation, spectroscopic characterization and theoretical study of a three-dimensional conjugated 70 π-electron thiophene 6-mer radical cation π-dimer. J. Am. Chem. Soc. 142, 5933–5937 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. van Haare, J. A. E. H., Groenendaal, L., Havinga, E. E., Janssen, R. A. J. & Meijer, E. W. π-Dimers of end-capped oligopyrrole cation radicals. Angew. Chem. Int. Ed. Engl. 35, 638–640 (1996).

    Article  Google Scholar 

  61. De Sorgo, M., Wasserman, B. & Szwarc, M. Aggregation of salts of thianthrene radical cations. J. Phys. Chem. 76, 3468–3471 (1972).

    Article  Google Scholar 

  62. van het Goor, L. et al. π-Dimerization of pleiadiene radical cations at low temperatures revealed by UV–vis spectroelectrochemistry and quantum theory. J. Solid State Electrochem. 15, 2107–2117 (2011).

    Article  Google Scholar 

  63. Britten, J., Hearns, N. G. R., Preuss, K. E., Richardson, J. F. & Bin-Salamon, S. Mn(II) and Cu(II) complexes of a dithiadiazolyl radical ligand: monomer/dimer equilibria in solution. Inorg. Chem. 46, 3934–3945 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Beneberu, H. Z., Tian, Y.-H. & Kertesz, M. Bonds or not bonds? Pancake bonding in 1,2,3,5-dithiadiazolyl and 1,2,3,5-diselenadiazolyl radical dimers and their derivatives. Phys. Chem. Chem. Phys. 14, 10713–10725 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Beldjoudi, Y. et al. Structural, magnetic, and optical studies of the polymorphic 9′-anthracenyl dithiadiazolyl radical. J. Am. Chem. Soc. 141, 6875–6889 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Cui, Z.-h, Lischka, H., Beneberu, H. Z. & Kertesz, M. Double pancake bonds: pushing the limits of strong π–π stacking interactions. J. Am. Chem. Soc. 136, 12958–12965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mou, Z., Tian, Y.-H. & Kertesz, M. Validation of density functionals for pancake-bonded π-dimers; dispersion is not enough. Phys. Chem. Chem. Phys. 19, 24761–24768 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Okino, K., Hira, S., Inoue, Y., Sakamaki, D. & Seki, S. The divergent dimerization behavior of N-substituted dicyanomethyl radicals: dynamically stabilized versus stable radicals. Angew. Chem. Int. Ed. 56, 16597–16601 (2017).

    Article  CAS  Google Scholar 

  70. Peterson, J. P. & Winter, A. H. Solvent effects on the stability and delocalization of aryl dicyanomethyl radicals: the captodative effect revisited. J. Am. Chem. Soc. 141, 12901–12906 (2019).

    Article  CAS  Google Scholar 

  71. Peterson, J. P., Ellern, A. & Winter, A. H. Spin delocalization, polarization, and London dispersion forces govern the formation of diradical pimers. J. Am. Chem. Soc. 142, 5304–5313 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, J. S. Four-center carbon–carbon bonding. Acc. Chem. Res. 40, 189–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Tuo, D.-H. et al. Magnetic multistability in an anion-radical pimer. Angew. Chem. Int. Ed. 59, 14040–14043 (2020).

    Article  CAS  Google Scholar 

  74. Michaelis, L. & Hill, E. S. The viologen indicators. J. Gen. Physiol. 16, 859–873 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Odell, B. et al. Cyclobis(paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew. Chem. Int. Ed. Engl. 27, 1547–1550 (1988).

    Article  Google Scholar 

  76. Madasamy, K., Velayutham, D., Suryanarayanan, V., Kathiresan, M. & Ho, K.-C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 7, 4622–4637 (2019).

    Article  CAS  Google Scholar 

  77. Ding, J. et al. Viologen-inspired functional materials: synthetic strategies and applications. J. Mater. Chem. A 7, 23337–23360 (2019).

    Article  CAS  Google Scholar 

  78. Geraskina, M. R., Dutton, A. S., Juetten, M. J., Wood, S. A. & Winter, A. H. The viologen cation radical pimer: a case of dispersion-driven bonding. Angew. Chem. Int. Ed. 56, 9435–9439 (2017).

    Article  CAS  Google Scholar 

  79. Zheng, X. et al. Coulombic-enhanced hetero radical pairing interactions. Nat. Commun. 9, 1961–1969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mou, Z., Kubo, T. & Kertesz, M. Hetero-π-dimers of phenalenyls. Chem. Eur. J. 21, 18230–18236 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Jeon, W. S., Kim, H.-J., Lee, C. & Kim, K. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 17, 1828–1829 (2002).

    Article  Google Scholar 

  83. Lee, C. et al. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 416, 139–144 (1996).

    Article  CAS  Google Scholar 

  84. Lee, C., Sung, Y. W. & Park, J. W. Dependence of dimerization of electrogenerated methylalkylviologen radical cations on the length of alkyl chain in the presence of γ-cyclodextrin. J. Electroanal. Chem. 431, 133–139 (1997).

    Article  CAS  Google Scholar 

  85. Ziganshina, A. Y., Ko, Y. H., Jeon, W. S. & Kim, K. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chem. Commun. 10, 806–807 (2004).

    Article  Google Scholar 

  86. Yin, Z. et al. Dissipative supramolecular polymerization powered by light. CCS Chem. 1, 335–342 (2019).

    Article  CAS  Google Scholar 

  87. Tang, B. et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew. Chem. Int. Ed. 58, 15526–15531 (2019).

    Article  CAS  Google Scholar 

  88. Trabolsi, A. et al. Radically enhanced molecular recognition. Nat. Chem. 2, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, C. et al. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes. J. Am. Chem. Soc. 138, 8288–8300 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Cai, K. et al. Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chem. Sci. 11, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Lipke, M. C. et al. Size-matched radical multivalency. J. Am. Chem. Soc. 139, 3986–3998 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Lipke, M. C. et al. Shuttling rates, electronic states, and hysteresis in a ring-in-ring rotaxane. ACS Cent. Sci. 4, 362–371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dumartin, M., Lipke, M. C. & Stoddart, J. F. A redox-switchable molecular zipper. J. Am. Chem. Soc. 141, 18308–18317 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Cai, K. et al. Molecular Russian dolls. Nat. Commun. 9, 5275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Spanggaard, H. et al. Multiple-bridged bis-tetrathiafulvalenes: new synthetic protocols and spectroelectrochemical investigations. J. Am. Chem. Soc. 122, 9486–9494 (2000).

    Article  CAS  Google Scholar 

  96. Spruell, J. M. et al. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat. Chem. 2, 870–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kannappan, R. et al. Viologen-based redox-switchable anion-binding receptors. New J. Chem. 34, 1373–1386 (2010).

    Article  CAS  Google Scholar 

  98. Nakamura, K.-i et al. Dimeric and trimeric tetrathiafulvalenes with strong intramolecular interactions in the oxidized states. Org. Lett. 13, 3122–3125 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Kahlfuss, C. et al. Dynamic molecular metamorphism involving palladium-assisted dimerization of π-cation radicals. Chem. Eur. J. 25, 1573–1580 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Jung, J., Liu, W., Kim, S. & Lee, D. Redox-driven folding, unfolding, and refolding of bis(tetrathiafulvalene) molecular switch. J. Org. Chem. 84, 6258–6269 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Rosokha, S. V. & Kochi, J. K. Molecular and electronic structures of the long-bonded π-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity. J. Am. Chem. Soc. 129, 828–838 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Chi, X. et al. Dimeric phenalenyl-based neutral radical molecular conductors. J. Am. Chem. Soc. 123, 4041–4048 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Pal, S. K. et al. Synthesis, structure and physical properties of the first one-dimensional phenalenyl-based neutral radical molecular conductor. J. Am. Chem. Soc. 126, 1478–1484 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Pal, S. K. et al. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Leitch, A. A. et al. An alternating π-stacked bisdithiazolyl radical conductor. J. Am. Chem. Soc. 129, 7903–7914 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Moon, K., Grindstaff, J., Sobransingh, D. & Kaifer, A. E. Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. Angew. Chem. Int. Ed. 43, 5496–5499 (2004).

    Article  CAS  Google Scholar 

  107. Zhang, Q., Qu, D.-H., Wang, Q.-C. & Tian, H. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction. Angew. Chem. Int. Ed. 54, 15789–15793 (2015).

    Article  CAS  Google Scholar 

  108. Zhang, L. et al. A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 5, 4715–4721 (2014).

    Article  CAS  Google Scholar 

  109. Tian, J., Chen, L., Zhang, D.-W., Liu, Y. & Li, Z.-T. Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chem. Commun. 52, 6351–6362 (2016).

    Article  CAS  Google Scholar 

  110. Zhou, C. et al. A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym. Chem. 5, 341–345 (2014).

    Article  CAS  Google Scholar 

  111. Madasamy, K., Shanmugam, V. M., Velayutham, D. & Kathiresan, M. Reversible 2D supramolecular organic frameworks encompassing viologen cation radicals and CB[8]. Sci. Rep. 8, 1354–1312 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  113. Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kern, J. M. Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984).

    Article  CAS  Google Scholar 

  114. Dietrich-Buchecker, C. O. & Sauvage, J.-P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795–810 (1987).

    Article  CAS  Google Scholar 

  115. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    Article  CAS  Google Scholar 

  116. Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  117. Crowley, J. D., Goldup, S. M., Lee, A.-L., Leigh, D. A. & McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38, 1530–1541 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Stoddart, J. F. The master of chemical topology. Chem. Soc. Rev. 38, 1521–1529 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Ashton, P. R. et al. A [2] catenane made to order. Angew. Chem. Int. Ed. Engl. 28, 1396–1399 (1989).

    Article  Google Scholar 

  123. Amabilino, D. B., Ashton, P. R., Reder, A. S., Spencer, N. & Stoddart, J. F. Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290 (1994).

    Article  Google Scholar 

  124. Kirsten, E. G. & Stoddart, J. F. Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes. Pure Appl. Chem. 80, 485–506 (2008).

    Article  Google Scholar 

  125. Stoddart, J. F. & Colquhoun, H. M. Big and little Meccano. Tetrahedron 64, 8231–8263 (2008).

    Article  CAS  Google Scholar 

  126. Sluysmans, D. et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13, 209–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Hunter, C. A. Synthesis and structure elucidation of a new [2]-catenane. J. Am. Chem. Soc. 114, 5303–5311 (1992).

    Article  CAS  Google Scholar 

  128. Vögtle, F., Meier, S. & Hoss, R. One-step synthesis of a fourfold functionalized catenane. Angew. Chem. Int. Ed. Engl. 31, 1619–1622 (1992).

    Article  Google Scholar 

  129. Johnston, A. G., Leigh, D. A., Pritchard, R. J. & Deegan, M. D. Facile synthesis and solid-state structure of a benzylic amide [2]catenane. Angew. Chem. Int. Ed. Engl. 34, 1209–1212 (1995).

    Article  CAS  Google Scholar 

  130. Ashton, P. R. et al. Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995).

    Article  CAS  Google Scholar 

  131. Kolchinski, A. G., Busch, D. H. & Alcock, N. W. Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis. J. Chem. Soc. Chem. Commun. 12, 1289–1291 (1995).

    Article  Google Scholar 

  132. Vögtle, F., Dünnwald, T. & Schmidt, T. Catenanes and rotaxanes of the amide type. Acc. Chem. Res. 29, 451–460 (1996).

    Article  Google Scholar 

  133. Glink, P. T., Schiavo, C., Stoddart, J. F. & Williams, D. J. The genesis of a new range of interlocked molecules. Chem. Commun. 13, 1483–1490 (1996).

    Article  Google Scholar 

  134. Ashton, P. R. et al. Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 709–728 (1996).

    Article  CAS  Google Scholar 

  135. Martínez-Díaz, M. V., Spencer, N. & Stoddart, J. F. The self-assembly of a switchable [2]rotaxane. Angew. Chem. Int. Ed. Engl. 36, 1904–1907 (1997).

    Article  Google Scholar 

  136. Kolchinski, A. G., Roesner, R. A., Busch, D. H. & Alcock, N. W. Molecular riveting: high yield preparation of a [3]-rotaxane. Chem. Commun. 13, 1437–1438 (1998).

    Article  Google Scholar 

  137. Kidd, T. J., Leigh, D. A. & Wilson, A. J. Organic “magic rings”: the hydrogen bond-directed assembly of catenanes under thermodynamic control. J. Am. Chem. Soc. 121, 1599–1600 (1999).

    Article  CAS  Google Scholar 

  138. Schalley, C. A., Weilandt, T., Brüggemann, J. & Vögtle, F. in Templates in Chemistry I (eds Schalley, C. A., Vögtle, F. & Dötz, K. H.) 141–200 (Springer, 2004).

  139. Belowich, M. E. et al. Positive cooperativity in the template-directed synthesis of monodisperse macromolecules. J. Am. Chem. Soc. 134, 5243–5261 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Zheng, Z., Knobler, C. B. & Hawthorne, M. F. Stereoselective anion template effects: syntheses and molecular structures of tetraphenyl [12]mercuracarborand-4 complexes of halide ions. J. Am. Chem. Soc. 117, 5105–5113 (1995).

    Article  CAS  Google Scholar 

  141. Hasenknopf, B., Lehn, J.-M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840 (1996).

    Article  CAS  Google Scholar 

  142. Hübner, G. M., Gläser, J., Seel, C. & Vögtle, F. High-yielding rotaxane synthesis with an anion template. Angew. Chem. Int. Ed. 38, 383–386 (1999).

    Article  Google Scholar 

  143. Wisner, J. A., Beer, P. D., Drew, M. G. B. & Sambrook, M. R. Anion-templated rotaxane formation. J. Am. Chem. Soc. 124, 12469–12476 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Sambrook, M. R., Beer, P. D., Wisner, J. A., Paul, R. L. & Cowley, A. R. Anion-templated assembly of a [2]catenane. J. Am. Chem. Soc. 126, 15364–15365 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Vickers, M. S. & Beer, P. D. Anion templated assembly of mechanically interlocked structures. Chem. Soc. Rev. 36, 211–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C–H hydrogen-bonding cage. Science 365, 159–161 (2019).

    CAS  PubMed  Google Scholar 

  148. Zhao, W., Flood, A. H. & White, N. G. Recognition and applications of anion–anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chem. Soc. Rev. 49, 7893–7906 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Metrangolo, P. & Resnati, G. Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Serpell, C. J., Kilah, N. L., Costa, P. J., Felix, V. & Beer, P. D. Halogen bond anion templated assembly of an imidazolium pseudorotaxane. Angew. Chem. Int. Ed. 49, 5322–5326 (2010).

    Article  CAS  Google Scholar 

  151. Kilah, N. L. et al. Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. J. Am. Chem. Soc. 132, 11893–11895 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Beale, T. M., Chudzinski, M. G., Sarwar, M. G. & Taylor, M. S. Halogen bonding in solution: thermodynamics and applications. Chem. Soc. Rev. 42, 1667–1680 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Tepper, R. & Schubert, U. S. Halogen bonding in solution: anion recognition, templated self-assembly, and organocatalysis. Angew. Chem. Int. Ed. 57, 6004–6016 (2018).

    Article  CAS  Google Scholar 

  154. Qu, D.-H. & Tian, H. Novel and efficient templates for assembly of rotaxanes and catenanes. Chem. Sci. 2, 1011–1015 (2011).

    Article  CAS  Google Scholar 

  155. Li, H. et al. Mechanical bond formation by radical templation. Angew. Chem. Int. Ed. 49, 8260–8265 (2010).

    Article  CAS  Google Scholar 

  156. Wang, Y. et al. Oligorotaxane radicals under orders. ACS Cent. Sci. 2, 89–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, Y. et al. Symbiotic control in mechanical bond formation. Angew. Chem. Int. Ed. 55, 12387–12392 (2016).

    Article  CAS  Google Scholar 

  158. Nguyen, M. T., Ferris, D. P., Pezzato, C., Wang, Y. & Stoddart, J. F. Densely charged dodecacationic [3]- and tetracosacationic radial [5]catenanes. Chem 4, 2329–2344 (2018).

    Article  CAS  Google Scholar 

  159. Barnes, J. C. et al. A radically configurable six-state compound. Science 339, 429–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Li, H. et al. Mechanical bond-induced radical stabilization. J. Am. Chem. Soc. 135, 456–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Sun, J. et al. Mechanical-bond-protected, air-stable radicals. J. Am. Chem. Soc. 139, 12704–12709 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Cai, K. et al. Highly stable organic bisradicals protected by mechanical bonds. J. Am. Chem. Soc. 142, 7190–7197 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Cai, K. et al. Radical cyclic [3]daisy chains. Chem 7, 174–189 (2020).

    Article  Google Scholar 

  164. Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015).

    Article  CAS  Google Scholar 

  166. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Article  CAS  Google Scholar 

  168. Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  170. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  171. Tian, H. & Wang, Q.-C. Recent progress on switchable rotaxanes. Chem. Soc. Rev. 35, 361–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Silvi, S., Venturi, M. & Credi, A. Artificial molecular shuttles: from concepts to devices. J. Mater. Chem. 19, 2279–2294 (2009).

    Article  CAS  Google Scholar 

  173. Goujon, A., Moulin, E., Fuks, G. & Giuseppone, N. [c2]Daisy chain rotaxanes as molecular muscles. CCS Chem. 1, 83–96 (2019).

    CAS  Google Scholar 

  174. Asakawa, M. et al. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 37, 333–337 (1998).

    Article  CAS  Google Scholar 

  175. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  PubMed  Google Scholar 

  178. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Article  Google Scholar 

  180. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  181. Krause, S. & Feringa, B. L. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    Article  CAS  Google Scholar 

  182. Iordache, A. et al. Redox control of rotary motions in ferrocene-based elemental ball bearings. J. Am. Chem. Soc. 134, 2653–2671 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Takai, A., Yasuda, T., Ishizuka, T., Kojima, T. & Takeuchi, M. A directly linked ferrocene–naphthalenediimide conjugate: precise control of stacking structures of π-systems by redox stimuli. Angew. Chem. Int. Ed. 52, 9167–9171 (2013).

    Article  CAS  Google Scholar 

  184. Buck, A. T., Paletta, J. T., Khindurangala, S. A., Beck, C. L. & Winter, A. H. A noncovalently reversible paramagnetic switch in water. J. Am. Chem. Soc. 135, 10594–10597 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Geraskina, M. R., Buck, A. T. & Winter, A. H. An organic spin crossover material in water from a covalently linked radical dyad. J. Org. Chem. 79, 7723–7727 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Wang, Y. et al. Folding of oligoviologens induced by radical–radical interactions. J. Am. Chem. Soc. 137, 876–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Chen, L., Wang, H., Zhang, D.-W., Zhou, Y. & Li, Z.-T. Quadruple switching of pleated foldamers of tetrathiafulvalene–bipyridinium alternating dynamic covalent polymers. Angew. Chem. Int. Ed. 54, 4028–4031 (2015).

    Article  CAS  Google Scholar 

  188. Juetten, M. J., Buck, A. T. & Winter, A. H. A radical spin on viologen polymers: organic spin crossover materials in water. Chem. Commun. 51, 5516–5519 (2015).

    Article  CAS  Google Scholar 

  189. Faour, L. et al. Redox-controlled hybridization of helical foldamers. Chem. Commun. 55, 5743–5746 (2019).

    Article  CAS  Google Scholar 

  190. Greene, A. F. et al. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem. Mater. 29, 9498–9508 (2017).

    Article  CAS  Google Scholar 

  191. Liles, K. P. et al. Photoredox-based actuation of an artificial molecular muscle. Macromol. Rapid Commun. 39, 1700781 (2018).

    Article  Google Scholar 

  192. Amir, F. et al. Reversible hydrogel photopatterning: spatial and temporal control over gel mechanical properties using visible light photoredox catalysis. ACS Appl. Mater. Inter. 11, 24627–24638 (2019).

    Article  CAS  Google Scholar 

  193. Li, H. et al. A light-stimulated molecular switch driven by radical–radical interactions in water. Angew. Chem. Int. Ed. 50, 6782–6788 (2011).

    Article  CAS  Google Scholar 

  194. Sun, J. et al. Visible light-driven artificial molecular switch actuated by radical–radical and donor–acceptor interactions. J. Phys. Chem. A 119, 6317–6325 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Ashton, P. R. et al. Acid–base controllable molecular shuttles. J. Am. Chem. Soc. 120, 11932–11942 (1998).

    Article  CAS  Google Scholar 

  196. Grunder, S. et al. A water-soluble pH-triggered molecular switch. J. Am. Chem. Soc. 135, 17691–17694 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Kumar, S. et al. Chemical locking in molecular tunneling junctions enables nonvolatile memory with large on–off ratios. Adv. Mater. 31, 1807831 (2019).

    Article  Google Scholar 

  198. Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  PubMed  Google Scholar 

  199. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Cho, B., Song, S., Ji, Y., Kim, T. W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    Article  CAS  Google Scholar 

  201. Nijhuis, C. A., Reus, W. F., Siegel, A. C. & Whitesides, G. M. A molecular half-wave rectifier. J. Am. Chem. Soc. 133, 15397–15411 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Fahrenbach, A. C. et al. Radically enhanced molecular switches. J. Am. Chem. Soc. 134, 16275–16288 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Sun, J. et al. An electrochromic tristable molecular switch. J. Am. Chem. Soc. 137, 13484–13487 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Fahrenbach, A. C. et al. Ground-state kinetics of bistable redox-active donor–acceptor mechanically interlocked molecules. Acc. Chem. Res. 47, 482–493 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Deng, W.-Q., Flood, A. H., Stoddart, J. F. & Goddard, W. A., III. An electrochemical color-switchable RGB dye: tristable [2]catenane. J. Am. Chem. Soc. 127, 15994–15995 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Astumian, R. D., Chock, P. B., Tsong, T. Y. & Westerhoff, H. V. Effects of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phy. Rev. A 39, 6416–6435 (1989).

    Article  CAS  Google Scholar 

  208. Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    Article  CAS  Google Scholar 

  209. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Astumian, R. D. Chemical peristalsis. Proc. Natl Acad. Sci. USA 102, 1843–1847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Durola, F. et al. Cyclic [4]rotaxanes containing two parallel porphyrinic plates: toward switchable molecular receptors and compressors. Acc. Chem. Res. 47, 633–645 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Chang, J.-C. et al. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017).

    Article  CAS  Google Scholar 

  213. Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  216. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Leigh, D. A. Genesis of the nanomachines: the 2016 Nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016).

    Article  CAS  Google Scholar 

  219. Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. Front. 4, 1304–1314 (2020).

    Article  CAS  Google Scholar 

  220. Balzani, V., Credi, A. & Venturi, M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, Y., Frasconi, M. & Stoddart, J. F. Introducing stable radicals into molecular machines. ACS Cent. Sci. 3, 927–935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Garcia-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

    Article  PubMed  Google Scholar 

  225. Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Cheng, C. et al. Energetically demanding transport in a supramolecular assembly. J. Am. Chem. Soc. 136, 14702–14705 (2014).

    Article  CAS  PubMed  Google Scholar 

  228. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Pezzato, C. et al. An efficient artificial molecular pump. Tetrahedron 73, 4849–4857 (2017).

    Article  CAS  Google Scholar 

  230. Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    Article  CAS  Google Scholar 

  231. Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Cai, K. et al. Molecular-pump-enabled synthesis of a daisy chain polymer. J. Am. Chem. Soc. 142, 10308–10313 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Guo, Q.-H. et al. Artificial molecular pump operating in response to electricity and light. J. Am. Chem. Soc. 142, 14443–14449 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Astumian, R. D. & Derenyi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  236. Astumian, R. D. & Bier, M. Fluctuation driven ratchets: molecular motors. Phys. Rev. Lett. 72, 1766–1769 (1994).

    Article  CAS  PubMed  Google Scholar 

  237. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Mena-Hernando, S. & Perez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  240. Arunachalam, M. & Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 39, 1043–1073 (2014).

    Article  CAS  Google Scholar 

  241. Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    Article  CAS  PubMed  Google Scholar 

  242. Ito, K. Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym. J. 44, 38–41 (2012).

    Article  CAS  Google Scholar 

  243. Ito, K. Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci. 14, 28–34 (2010).

    Article  CAS  Google Scholar 

  244. Yu, G. et al. Polyrotaxane-based supramolecular theranostics. Nat. Commun. 9, 766 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  246. Castro, R., Nixon, K. R., Evanseck, J. D. & Kaifer, A. E. Effects of side arm length and structure of para-substituted phenyl derivatives on their binding to the host cyclobis(paraquat-p-phenylene). J. Org. Chem. 61, 7298–7303 (1996).

    Article  CAS  PubMed  Google Scholar 

  247. Ashton, P. R. et al. A three-pole supramolecular switch. J. Am. Chem. Soc. 121, 3951–3957 (1999).

    Article  CAS  Google Scholar 

  248. Tsong, T. Y. & Astumian, R. D. 863 — absorption and conversion of electric field energy by membrane bound ATPases. Bioelectrochem. Bioenerg. 15, 457–476 (1986).

    Article  CAS  Google Scholar 

  249. Robertson, B. & Astumian, R. D. Michaelis-Menten equation for an enzyme in an oscillating electric field. Biophys. J. 58, 969–974 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    Article  CAS  PubMed  Google Scholar 

  251. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  252. Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Astumian, R. D. Stochastically pumped adaptation and directional motion of molecular machines. Proc. Natl Acad. Sci. USA 115, 9405–9413 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Northwestern University for its continuing financial support.

Author information

Authors and Affiliations

Authors

Contributions

K.C. and L.Z. contributed equally to this manuscript. All authors contributed to every aspect of the manuscript.

Corresponding authors

Correspondence to Kang Cai, R. Dean Astumian or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Zhang, L., Astumian, R.D. et al. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 5, 447–465 (2021). https://doi.org/10.1038/s41570-021-00283-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00283-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing