Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemically-powered swimming and diffusion in the microscopic world

Abstract

The past decade has seen intriguing reports and heated debates concerning the chemically-driven enhanced motion of objects ranging from small molecules to millimetre-size synthetic robots. These objects, in solutions in which chemical reactions were occurring, were observed to diffuse (spread non-directionally) or swim (move directionally) at rates exceeding those expected from Brownian motion alone. The debates have focused on whether observed enhancement is an experimental artefact or a real phenomenon. If the latter were true, then we would also need to explain how the chemical energy is converted into mechanical work. In this Perspective, we summarize and discuss recent observations and theories of active diffusion and swimming. Notably, the chemomechanical coupling and magnitude of diffusion enhancement are strongly size-dependent and should vanish as the size of the swimmers approaches the molecular scale. We evaluate the reliability of common techniques to measure diffusion coefficients and finish by considering the potential applications and chemical to mechanical energy conversion efficiencies of typical nanoswimmers and microswimmers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Passive and active motion of a particle.
Fig. 2: Self-propulsion mechanisms of enhanced diffusion.
Fig. 3: Enhanced diffusion of a particle under catalytic and non-catalytic conditions.
Fig. 4: Reported example of boosted molecular diffusion during azide–alkyne cycloaddition.
Fig. 5: Enhanced transport of tracers.
Fig. 6: Efficiencies of typical microscopic motors.

References

  1. 1.

    Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    CAS  Google Scholar 

  2. 2.

    Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wang, J. Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4–9 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Ozin, G. A., Manners, I., Fournier-Bidoz, S. & Arsenault, A. Dream nanomachines. Adv. Mater. 17, 3011–3018 (2005).

    CAS  Google Scholar 

  5. 5.

    Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    CAS  PubMed  Google Scholar 

  6. 6.

    García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    PubMed  Google Scholar 

  7. 7.

    Orozco, J. et al. Micromotor-based high-yielding fast oxidative detoxification of chemical threats. Angew. Chem. Int. Ed. 52, 13276–13279 (2013).

    CAS  Google Scholar 

  8. 8.

    de Ávila, B. E.-F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Saper, G. & Hess, H. Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020).

    CAS  PubMed  Google Scholar 

  10. 10.

    Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    CAS  PubMed  Google Scholar 

  13. 13.

    Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    CAS  PubMed  Google Scholar 

  14. 14.

    Dennis, J. R., Howard, J. & Vogel, V. Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology 10, 232 (1999).

    CAS  Google Scholar 

  15. 15.

    Hess, H. Toward devices powered by biomolecular motors. Science 312, 860–861 (2006).

    CAS  PubMed  Google Scholar 

  16. 16.

    Magdanz, V. et al. Spermatozoa as functional components of robotic microswimmers. Adv. Mater. 29, 1606301 (2017).

    Google Scholar 

  17. 17.

    Pavlick, R. A., Dey, K. K., Sirjoosingh, A., Benesi, A. & Sen, A. A catalytically driven organometallic molecular motor. Nanoscale 5, 1301–1304 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Wang, H. et al. Boosted molecular mobility during common chemical reactions. Science 369, 537–541 (2020).

    CAS  PubMed  Google Scholar 

  19. 19.

    Muddana, H. S., Sengupta, S., Mallouk, T. E., Sen, A. & Butler, P. J. Substrate catalysis enhances single-enzyme diffusion. J. Am. Chem. Soc. 132, 2110–2111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sengupta, S. et al. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135, 1406–1414 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Riedel, C. et al. The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 517, 227–230 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ma, X., Hortelão, A. C., Patiño, T. & Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 9111–9122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ma, X. et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15, 7043–7050 (2015).

    PubMed  Google Scholar 

  24. 24.

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Google Scholar 

  25. 25.

    Ishimoto, K. & Yamada, M. A rigorous proof of the scallop theorem and a finite mass effect of a microswimmer. Preprint at https://arxiv.org/abs/1107.5938 (2011).

  26. 26.

    Lauga, E. Enhanced diffusion by reciprocal swimming. Phys. Rev. Lett. 106, 178101 (2011).

    PubMed  Google Scholar 

  27. 27.

    Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    PubMed  Google Scholar 

  28. 28.

    Yamamoto, D. & Shioi, A. Self-propelled nano/micromotors with a chemical reaction: underlying physics and strategies of motion control. KONA Powder Part J. 32, 2–22 (2015).

    Google Scholar 

  29. 29.

    Paxton, W. F., Sen, A. & Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J. 11, 6462–6470 (2005).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lee, T. C. et al. Self-propelling nanomotors in the presence of strong Brownian forces. Nano Lett. 14, 2407–2412 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang, W., Duan, W., Sen, A. & Mallouk, T. E. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl Acad. Sci. USA 110, 17744–17749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bunea, A.-I., Pavel, I.-A., David, S. & Gáspár, S. Modification with hemeproteins increases the diffusive movement of nanorods in dilute hydrogen peroxide solutions. Chem. Commun. 49, 8803–8805 (2013).

    CAS  Google Scholar 

  33. 33.

    Jun, I.-K. & Hess, H. A biomimetic, self-pumping membrane. Adv. Mater. 22, 4823–4825 (2010).

    CAS  PubMed  Google Scholar 

  34. 34.

    Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. Boosting migration of large particles by solute contrasts. Nat. Mater. 7, 785–789 (2008).

    PubMed  Google Scholar 

  35. 35.

    Paustian, J. S. et al. Direct measurements of colloidal solvophoresis under imposed solvent and solute gradients. Langmuir 31, 4402–4410 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 12, 4686–4703 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005).

    PubMed  Google Scholar 

  38. 38.

    Arqué, X. et al. Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat. Commun. 10, 2826 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Patiño, T. et al. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 140, 7896–7903 (2018).

    PubMed  Google Scholar 

  40. 40.

    Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 41, 652–654 (2002).

    CAS  Google Scholar 

  41. 41.

    Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 4, 441–443 (2005).

    Google Scholar 

  42. 42.

    Sitt, A. et al. Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes. Small 12, 1432–1439 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gibbs, J. G. & Zhao, Y.-P. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94, 163104 (2009).

    Google Scholar 

  44. 44.

    Nourhani, A., Karshalev, E., Soto, F. & Wang, J. Multigear bubble propulsion of transient micromotors. Research 2020, 7823615 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang, H., Zhao, G. & Pumera, M. Beyond platinum: bubble-propelled micromotors based on Ag and MnO2 catalysts. J. Am. Chem. Soc. 136, 2719–2722 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Gao, W., Pei, A. & Wang, J. Water-driven micromotors. ACS Nano 6, 8432–8438 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhang, X., Chen, C., Wu, J. & Ju, H. Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces 11, 13581–13588 (2019).

    CAS  PubMed  Google Scholar 

  48. 48.

    Abdelmohsen, L. K. E. A. et al. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10, 2652–2660 (2016).

    CAS  PubMed  Google Scholar 

  49. 49.

    Nijemeisland, M., Abdelmohsen, L. K. E. A., Huck, W. T. S., Wilson, D. A. & van Hest, J. C. M. A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement. ACS Cent. Sci. 2, 843–849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    CAS  PubMed  Google Scholar 

  51. 51.

    Li, J. et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536–9542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang, T., Zheng, M., Wang, L., Ji, L. & Wang, S. Crucial role of an aerophobic substrate in bubble-propelled nanomotor aggregation. Nanotechnology 31, 355504 (2020).

    CAS  PubMed  Google Scholar 

  53. 53.

    Chi, Q., Wang, Z., Tian, F., You, J. & Xu, S. A review of fast bubble-driven micromotors powered by biocompatible fuel: low-concentration fuel, bioactive fluid and enzyme. Micromachines 9, 537 (2018).

    PubMed Central  Google Scholar 

  54. 54.

    Jee, A.-Y., Dutta, S., Cho, Y.-K., Tlusty, T. & Granick, S. Enzyme leaps fuel antichemotaxis. Proc. Natl Acad. Sci. USA 115, 14–18 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    Zhao, X. et al. Substrate-driven chemotactic assembly in an enzyme cascade. Nat. Chem. 10, 311–317 (2018).

    CAS  PubMed  Google Scholar 

  56. 56.

    Illien, P. et al. Exothermicity is not a necessary condition for enhanced diffusion of enzymes. Nano Lett. 17, 4415–4420 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Golestanian, R. Synthetic mechanochemical molecular swimmer. Phys. Rev. Lett. 105, 018103 (2010).

    PubMed  Google Scholar 

  58. 58.

    Golestanian, R. Enhanced diffusion of enzymes that catalyze exothermic reactions. Phys. Rev. Lett. 115, 108102 (2015).

    PubMed  Google Scholar 

  59. 59.

    Tsekouras, K., Gabizon, R. C., Marqusee, R., Pressé, S., Bustamante, C. Comment on “enhanced diffusion of enzymes that catalyze exothermic reactions” by R. Golestanian. Preprint at https://arxiv.org/abs/1608.05433 (2016).

  60. 60.

    Golestanian, R. Reply to comment on “enhanced diffusion of enzymes that catalyze exothermic reactions”. Preprint at https://arxiv.org/abs/1608.07469 (2016).

  61. 61.

    Illien, P., Adeleke-Larodo, T. & Golestanian, R. Diffusion of an enzyme: the role of fluctuation-induced hydrodynamic coupling. EPL 119, 40002 (2017).

    Google Scholar 

  62. 62.

    Adeleke-Larodo, T., Illien, P. & Golestanian, R. Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell. Eur. Phys. J. E 42, 1–10 (2019).

    CAS  Google Scholar 

  63. 63.

    Bai, X. & Wolynes, P. G. On the hydrodynamics of swimming enzymes. J. Chem. Phys. 143, 165101 (2015).

    PubMed  Google Scholar 

  64. 64.

    Feng, M. & Gilson, M. K. A thermodynamic limit on the role of self-propulsion in enhanced enzyme diffusion. Biophys. J. 116, 1898–1906 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhang, Y. & Hess, H. Enhanced diffusion of catalytically active enzymes. ACS Cent. Sci. 5, 939–948 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Zhang, Y., Armstrong, M. J., Bassir Kazeruni, N. M. & Hess, H. Aldolase does not show enhanced diffusion in dynamic light scattering experiments. Nano Lett. 18, 8025–8029 (2018).

    CAS  PubMed  Google Scholar 

  67. 67.

    Günther, J.-P., Majer, G. & Fischer, P. Absolute diffusion measurements of active enzyme solutions by NMR. J. Chem. Phys. 150, 124201 (2019).

    PubMed  Google Scholar 

  68. 68.

    Chen, Z. et al. Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments. Proc. Natl Acad. Sci. USA 117, 21328–21335 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Feng, M. & Gilson, M. K. Enhanced diffusion and chemotaxis of enzymes. Annu. Rev. Biophys. 49, 87–105 (2020).

    CAS  PubMed  Google Scholar 

  70. 70.

    Jee, A.-Y., Tsvi, T. & Granick, S. Master curve of boosted diffusion for 10 catalytic enzymes. Proc. Natl Acad. Sci. USA 117, 29435–29441 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    CAS  PubMed  Google Scholar 

  72. 72.

    Astumian, R. D. Thermodynamics and kinetics of molecular motors. Biophys. J. 98, 2401–2409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Günther, J.-P., Börsch, M. & Fischer, P. Diffusion measurements of swimming enzymes with fluorescence correlation spectroscopy. Acc. Chem. Res. 51, 1911–1920 (2018).

    PubMed  Google Scholar 

  75. 75.

    Jee, A.-Y., Chen, K., Tlusty, T., Zhao, J. & Granick, S. Enhanced diffusion and oligomeric enzyme dissociation. J. Am. Chem. Soc. 141, 20062–20068 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Xu, M., Ross, J. L., Valdez, L. & Sen, A. Direct single molecule imaging of enhanced enzyme diffusion. Phys. Rev. Lett. 123, 128101 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Novotný, F. & Pumera, M. Nanomotor tracking experiments at the edge of reproducibility. Sci. Rep. 9, 13222 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Seo, M., Park, S., Lee, D., Lee, H. & Kim, S. J. Continuous and spontaneous nanoparticle separation by diffusiophoresis. Lab Chip 20, 4118–4127 (2020).

    CAS  PubMed  Google Scholar 

  79. 79.

    Schurr, J. M., Fujimoto, B. S., Huynh, L. & Chiu, D. T. A theory of macromolecular chemotaxis. J. Phys. Chem. B 117, 7626–7652 (2013).

    CAS  PubMed  Google Scholar 

  80. 80.

    Agudo-Canalejo, J., Illien, P. & Golestanian, R. Phoresis and enhanced diffusion compete in enzyme chemotaxis. Nano Lett. 18, 2711–2717 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Mohajerani, F., Zhao, X., Somasundar, A., Velegol, D. & Sen, A. A theory of enzyme chemotaxis: from experiments to modeling. Biochemistry 57, 6256–6263 (2018).

    CAS  PubMed  Google Scholar 

  82. 82.

    Huang, R. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011).

    CAS  Google Scholar 

  83. 83.

    Rossi, C. & Bianchi, E. Diffusion of small molecules. Nature 189, 822–824 (1961).

    CAS  Google Scholar 

  84. 84.

    Dey, K. K. et al. Dynamic coupling at the Ångström scale. Angew. Chem. Int. Ed. 55, 1113–1117 (2016).

    CAS  Google Scholar 

  85. 85.

    Dey, K. K. Dynamic coupling at low Reynolds number. Angew. Chem. Int. Ed. 58, 2208–2228 (2019).

    CAS  Google Scholar 

  86. 86.

    Colberg, P. H. & Kapral, R. Ångström-scale chemically powered motors. EPL 106, 30004 (2014).

    Google Scholar 

  87. 87.

    Gruebele, M. & Wolynes, P. G. Vibrational energy flow and chemical reactions. Acc. Chem. Res. 37, 261–267 (2004).

    CAS  PubMed  Google Scholar 

  88. 88.

    Hess, H., Asmis, K. R., Leisner, T. & Wöste, L. Vibrational wave packet dynamics in the silver tetramer probed by NeNePo femtosecond pump–probe spectroscopy. Eur. Phys. J. D 16, 145–149 (2001).

    CAS  Google Scholar 

  89. 89.

    MacDonald, T. S. C., Price, W. S., Astumian, R. D. & Beves, J. E. Enhanced diffusion of molecular catalysts is due to convection. Angew. Chem. Int. Ed. 58, 18864–18867 (2019).

    CAS  Google Scholar 

  90. 90.

    Günther, J.-P. et al. Comment on “boosted molecular mobility during common chemical reactions”. Science 371, eabe8322 (2021).

    PubMed  Google Scholar 

  91. 91.

    Wang, H. et al. Response to comment on “boosted molecular mobility during common chemical reactions”. Science 371, eabe8678 (2021).

    CAS  PubMed  Google Scholar 

  92. 92.

    Pushkin, D. O., Shum, H. & Yeomans, J. M. Fluid transport by individual microswimmers. J. Fluid Mech. 726, 5–25 (2013).

    Google Scholar 

  93. 93.

    Mathijssen, A. J. T. M., Pushkin, D. O. & Yeomans, J. M. Tracer trajectories and displacement due to a micro-swimmer near a surface. J. Fluid Mech. 773, 498–519 (2015).

    CAS  Google Scholar 

  94. 94.

    Morozov, A. & Marenduzzo, D. Enhanced diffusion of tracer particles in dilute bacterial suspensions. Soft Matter 10, 2748–2758 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Miño, G. et al. Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106, 048102 (2011).

    PubMed  Google Scholar 

  96. 96.

    Wang, Y. et al. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006).

    CAS  PubMed  Google Scholar 

  97. 97.

    Zhao, X. et al. Enhanced diffusion of passive tracers in active enzyme solutions. Nano Lett. 17, 4807–4812 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Orozco, J. et al. Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir 30, 5082–5087 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    CAS  PubMed  Google Scholar 

  100. 100.

    Sengupta, S. et al. DNA polymerase as a molecular motor and pump. ACS Nano 8, 2410–2418 (2014).

    CAS  PubMed  Google Scholar 

  101. 101.

    Zhang, Y., Tsitkov, S. & Hess, H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat. Catal. 1, 276–281 (2018).

    Google Scholar 

  102. 102.

    Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Maroto, J. A., Pérez-Muñuzuri, V. & Romero-Cano, M. S. Introductory analysis of Benard–Marangoni convection. Eur. J. Phys. 28, 311–320 (2007).

    Google Scholar 

  104. 104.

    Cheang, U. K., Roy, D., Lee, J. H. & Kim, M. J. Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl. Phys. Lett. 97, 213704 (2010).

    Google Scholar 

  105. 105.

    Elson, E. L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Koppel, D. E. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10, 1938–1945 (1974).

    Google Scholar 

  107. 107.

    Wohland, T., Rigler, R. & Vogel, H. The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80, 2987–2999 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Saffarian, S. & Elson, E. L. Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys. J. 84, 2030–2042 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Enderlein, J., Gregor, I., Patra, D. & Fitter, J. Statistical analysis of diffusion coefficient determination by fluorescence correlation spectroscopy. J. Fluoresc. 15, 415–422 (2005).

    CAS  PubMed  Google Scholar 

  110. 110.

    Heinemann, F., Betaneli, V., Thomas, F. A. & Schwille, P. Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise. Langmuir 28, 13395–13404 (2012).

    CAS  PubMed  Google Scholar 

  111. 111.

    Enderlein, J. Fluorescence correlation spectroscopy (IUPAC Technical Report). Pure Appl. Chem. 85, 999–1016 (2013).

    CAS  Google Scholar 

  112. 112.

    Kandula, H. N., Jee, A.-Y. & Granick, S. Robustness of FCS (fluorescence correlation spectroscopy) with quenchers present. J. Phys. Chem. A 123, 10184–10189 (2019).

    CAS  PubMed  Google Scholar 

  113. 113.

    Barbotin, A., Galiani, S., Urbančič, I., Eggeling, C. & Booth, M. J. Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells. Opt. Express 27, 23378–23395 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Tsuboi, Y., Shoji, T. & Kitamura, N. Optical trapping of amino acids in aqueous solutions. J. Phys. Chem. C. 114, 5589–5593 (2010).

    CAS  Google Scholar 

  115. 115.

    Pagès, G., Gilard, V., Martino, R. & Malet-Martino, M. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping. Analyst 142, 3771–3796 (2017).

    PubMed  Google Scholar 

  116. 116.

    Antalek, B. Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn. Reson. 14, 225–258 (2002).

    CAS  Google Scholar 

  117. 117.

    Kiraly, P., Swan, I., Nilsson, M. & Morris, G. A. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients. J. Magn. Reson. 270, 24–30 (2016).

    CAS  PubMed  Google Scholar 

  118. 118.

    Connell, M. A. et al. Improving the accuracy of pulsed field gradient NMR diffusion experiments: correction for gradient non-uniformity. J. Magn. Reson. 198, 121–131 (2009).

    CAS  PubMed  Google Scholar 

  119. 119.

    Dey, K. K. et al. Chemotactic separation of enzymes. ACS Nano 8, 11941–11949 (2014).

    CAS  PubMed  Google Scholar 

  120. 120.

    Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Micromotors for “chemistry-on-the-fly”. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    CAS  PubMed  Google Scholar 

  121. 121.

    Singh, V. V., Kaufmann, K., Esteban-Fernández de Ávila, B., Uygun, M. & Wang, J. Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52, 3360–3363 (2016).

    CAS  Google Scholar 

  122. 122.

    Li, J. et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew. Chem. Int. Ed. 56, 2156–2161 (2017).

    CAS  Google Scholar 

  123. 123.

    Esteban-Fernández de Ávila, B. et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 3, eaat0485 (2018).

    PubMed  Google Scholar 

  124. 124.

    Esteban-Fernández de Ávila, B. et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016).

    PubMed  Google Scholar 

  125. 125.

    Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood–brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Jurado-Sánchez, B. & Wang, J. Micromotors for environmental applications: a review. Environ. Sci. Nano. 5, 1530–1544 (2018).

    Google Scholar 

  127. 127.

    Wang, J., Dong, R., Wu, H., Cai, Y. & Ren, B. A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano Micro Lett. 12, 11 (2019).

    Google Scholar 

  128. 128.

    Ou, J. et al. Micro/nanomotors toward biomedical applications: the recent progress in biocompatibility. Small 16, 1906184 (2020).

    CAS  Google Scholar 

  129. 129.

    Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    CAS  PubMed  Google Scholar 

  130. 130.

    Katuri, J., Ma, X., Stanton, M. M. & Sánchez, S. Designing micro- and nanoswimmers for specific applications. Acc. Chem. Res. 50, 2–11 (2017).

    CAS  PubMed  Google Scholar 

  131. 131.

    Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Gao, C. Y. et al. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33, 2000512 (2021).

    CAS  Google Scholar 

  133. 133.

    Ramaiya, A., Roy, B., Bugiel, M. & Schäffer, E. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Proc. Natl Acad. Sci. USA 114, 10894–10899 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Kinosita, K., Yasuda, R., Noji, H. & Adachi, K. A rotary molecular motor that can work at near 100% efficiency. Phil. Trans. R. Soc. B 355, 473–489 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Sumi, T. & Klumpp, S. Is F1-ATPase a rotary motor with nearly 100% efficiency? Quantitative analysis of chemomechanical coupling and mechanical slip. Nano Lett. 19, 3370–3378 (2019).

    CAS  PubMed  Google Scholar 

  136. 136.

    Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Wang, W., Chiang, T.-Y., Velegol, D. & Mallouk, T. E. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 135, 10557–10565 (2013).

    CAS  PubMed  Google Scholar 

  138. 138.

    Shah, Z. H. et al. Highly efficient chemically-driven micromotors with controlled snowman-like morphology. Chem. Commun. 56, 15301–15304 (2020).

    CAS  Google Scholar 

  139. 139.

    Zhang, L. et al. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9, 3663–3667 (2009).

    CAS  PubMed  Google Scholar 

  140. 140.

    Armstrong, M. J. & Hess, H. The ecology of technology and nanomotors. ACS Nano 8, 4070–4073 (2014).

    CAS  PubMed  Google Scholar 

  141. 141.

    Laskar, A., Shklyaev, O. E. & Balazs, A. C. Self-morphing, chemically driven gears and machines. Matter 4, 600–617 (2021).

    Google Scholar 

  142. 142.

    Dey, K. K. et al. Micromotors powered by enzyme catalysis. Nano Lett. 15, 8311–8315 (2015).

    CAS  PubMed  Google Scholar 

  143. 143.

    Pavel, I.-A., Bunea, A.-I., David, S. & Gáspár, S. Nanorods with biocatalytically induced self-electrophoresis. ChemCatChem 6, 866–872 (2014).

    CAS  Google Scholar 

  144. 144.

    Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    CAS  PubMed  Google Scholar 

  145. 145.

    Paxton, W. F. et al. Catalytic nanomotors:  autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    CAS  PubMed  Google Scholar 

  146. 146.

    Ma, X., Wang, X., Hahn, K. & Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    CAS  PubMed  Google Scholar 

  147. 147.

    Kim, D., Liu, A., Diller, E. & Sitti, M. Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14, 1009–1017 (2012).

    CAS  PubMed  Google Scholar 

  148. 148.

    Sattayasamitsathit, S., Kaufmann, K., Galarnyk, M., Vazquez-Duhalt, R. & Wang, J. Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv. 4, 27565–27570 (2014).

    CAS  Google Scholar 

  149. 149.

    Mano, N. & Heller, A. Bioelectrochemical propulsion. J. Am. Chem. Soc. 127, 11574–11575 (2005).

    CAS  PubMed  Google Scholar 

  150. 150.

    Cnossen, A., Kistemaker, J. C. M., Kojima, T. & Feringa, B. L. Structural dynamics of overcrowded alkene-based molecular motors during thermal isomerization. J. Org. Chem. 79, 927–935 (2014).

    CAS  PubMed  Google Scholar 

  151. 151.

    Solovev, A. A., Mei, Y., Bermúdez Ureña, E., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges start-up funds from Beijing Advanced Innovation Center for Soft Matter Science and Engineering at Beijing University of Chemical Technology (BAIC202103). H.H. acknowledges financial support from National Science Foundation Division of Materials Research (NSF-DMR) grant 1807514.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Yifei Zhang or Henry Hess.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hess, H. Chemically-powered swimming and diffusion in the microscopic world. Nat Rev Chem 5, 500–510 (2021). https://doi.org/10.1038/s41570-021-00281-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing