Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge frustration in ligand design and functional group transfer

Abstract

Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including ‘click chemistry’, photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity — or, rather, ‘charge frustration’ — as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor–acceptor ligand systems for reversible 1e chemistry or switching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Applications of zwitterionic compounds in coordination chemistry.
Fig. 2: Electronic structure of zwitterionic ligands.
Fig. 3: Organic zwitterions for organocatalysis, photochemistry and sensing.
Fig. 4: Nucleophilic and electrophilic bond activation by ambiphilic compounds.
Fig. 5: Fragmentation of heteroallenes results in single-atom transfer.
Fig. 6: Heterocyclic carbene complexes or zwitterions.
Fig. 7: Zwitterionic ancillary ligand design.
Fig. 8: Geminal dianions are stabilized by cationic substituents.
Fig. 9: Remote zwitterionic ligands.

References

  1. 1.

    Soleilhavoup, M. & Bertrand, G. Borylenes: an emerging class of compounds. Angew. Chem. Int. Ed. 56, 10282–10292 (2017).

    CAS  Google Scholar 

  2. 2.

    Hahn, F. E. Introduction: carbene chemistry. Chem. Rev. 118, 9455–9456 (2018). The introduction to an updated comprehensive special issue on carbenes.

    CAS  PubMed  Google Scholar 

  3. 3.

    Arduengo, A. J. & Bertrand, G. Carbenes introduction. Chem. Rev. 109, 3209–3210 (2009). The introduction to a comprehensive special issue on carbenes.

    CAS  PubMed  Google Scholar 

  4. 4.

    Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000). An outstanding review on free and ligated carbenes.

    CAS  PubMed  Google Scholar 

  5. 5.

    Nolan, S. P. (ed.) N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis (Wiley, 2014).

  6. 6.

    Diez-Gonzalez, S. (ed.) N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools (Royal Society of Chemistry, 2016).

  7. 7.

    Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014). A concise review on N-heterocyclic carbenes.

    CAS  PubMed  Google Scholar 

  8. 8.

    Munz, D. Pushing electrons — which carbene ligand for which application? Organometallics 37, 275–289 (2018). A concise review on carbene ligands.

    CAS  Google Scholar 

  9. 9.

    Igau, A., Grützmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988). The first report of an isolable carbene.

    CAS  Google Scholar 

  10. 10.

    Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991). The first report of a crystalline carbene.

    CAS  Google Scholar 

  11. 11.

    Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    CAS  Google Scholar 

  12. 12.

    Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom-transfer agent. Science 337, 1526–1528 (2012). The first report of an isolable nitrene.

    CAS  PubMed  Google Scholar 

  13. 13.

    Mizuhata, Y., Sasamori, T. & Tokitoh, N. Stable heavier carbene analogues. Chem. Rev. 109, 3479–3511 (2009).

    CAS  PubMed  Google Scholar 

  14. 14.

    Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

    CAS  PubMed  Google Scholar 

  15. 15.

    Liu, L., Ruiz, D. A., Munz, D. & Bertrand, G. A singlet phosphinidene stable at room temperature. Chem. 1, 147–153 (2016). The first report of an isolable phosphinidene.

    CAS  Google Scholar 

  16. 16.

    Segawa, Y., Yamashita, M. & Nozaki, K. Boryllithium: isolation, characterization, and reactivity as a boryl anion. Science 314, 113–115 (2006). The first report of an anionic boryl compound isoelectronic with carbenes.

    CAS  Google Scholar 

  17. 17.

    Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    CAS  Google Scholar 

  18. 18.

    Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018). The first report of an anionic aluminium compound isoelectronic with carbenes.

    CAS  PubMed  Google Scholar 

  19. 19.

    Cui, C. et al. Synthesis and structure of a monomeric aluminum(i) compound [{HC(CMeNAr)2}Al] (Ar=2,6-iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

    CAS  Google Scholar 

  20. 20.

    Schmidt, E. S., Jockisch, A. & Schmidbaur, H. A carbene analogue with low-valent gallium as a heteroatom in a quasi-aromatic imidazolate anion. J. Am. Chem. Soc. 121, 9758–9759 (1999).

    CAS  Google Scholar 

  21. 21.

    Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kirmse, W. Carbene Chemistry (Academic Press, 1964).

  23. 23.

    Sarbajna, A., Swamy, V. S. V. S. N. & Gessner, V. H. Phosphorus-ylides: powerful substituents for the stabilization of reactive main group compounds. Chem. Sci. 12, 2016–2024 (2021).

    CAS  Google Scholar 

  24. 24.

    Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Ed. 54, 6400–6441 (2015).

    CAS  Google Scholar 

  26. 26.

    Fontaine, F.-G. & Rochette, É. Ambiphilic molecules: from organometallic curiosity to metal-free catalysts. Acc. Chem. Res. 51, 454–464 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Burmeister, J. Ambidentate ligands, the schizophrenics of coordination chemistry. Coord. Chem. Rev. 105, 77–133 (1990).

    CAS  Google Scholar 

  28. 28.

    Himmel, D., Krossing, I. & Schnepf, A. Dative bonds in main-group compounds: a case for fewer arrows! Angew. Chem. Int. Ed. 53, 370–374 (2014). A critical essay on dative bonding in main-group compounds.

    CAS  Google Scholar 

  29. 29.

    Frenking, G. Dative bonds in main-group compounds: a case for more arrows! Angew. Chem. Int. Ed. 53, 6040–6046 (2014). An essay on dative bonding in main-group compounds.

    CAS  Google Scholar 

  30. 30.

    Lavallo, V., Dyker, C. A., Donnadieu, B. & Bertrand, G. Are allenes with zwitterionic character still allenes? Of course! Angew. Chem. Int. Ed. 48, 1540–1542 (2009).

    CAS  Google Scholar 

  31. 31.

    Christl, M. & Engels, B. Stable five-membered-ring allenes with second-row elements only: not allenes, but zwitterions. Angew. Chem. Int. Ed. 48, 1538–1539 (2009).

    CAS  Google Scholar 

  32. 32.

    Kleinpeter, E. & Koch, A. Bent allenes or di-1,3-betaines — an answer given on the magnetic criterion. J. Phys. Chem. A 124, 3180–3190 (2020).

    CAS  PubMed  Google Scholar 

  33. 33.

    Shao, Q. & Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 27, 15–26 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lowe, A. B. & McCormick, C. L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev. 102, 4177–4190 (2002).

    CAS  PubMed  Google Scholar 

  35. 35.

    Bouhadir, G. & Bourissou, D. Complexes of ambiphilic ligands: reactivity and catalytic applications. Chem. Soc. Rev. 45, 1065–1079 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Stradiotto, M., Hesp, K. D. & Lundgren, R. J. Zwitterionic relatives of cationic platinum group metal complexes: applications in stoichiometric and catalytic σ-bond activation. Angew. Chem. Int. Ed. 49, 494–512 (2010).

    CAS  Google Scholar 

  37. 37.

    Piers, W. E. Zwitterionic metallocenes. Chem. Eur. J. 4, 13–18 (1998).

    CAS  Google Scholar 

  38. 38.

    Ollis, W. D., Stanforth, S. P. & Ramsden, C. A. Heterocyclic mesomeric betaines. Tetrahedron 41, 2239–2329 (1985).

    CAS  Google Scholar 

  39. 39.

    Khusnutdinova, J. R. & Milstein, D. Metal–ligand cooperation. Angew. Chem. Int. Ed. 54, 12236–12273 (2015). An influential review of metal–ligand cooperativity.

    CAS  Google Scholar 

  40. 40.

    Chatterjee, B., Chang, W.-C., Jena, S. & Werlé, C. Implementation of cooperative designs in polarized transition metal systems — significance for bond activation and catalysis. ACS Catal. 10, 14024–14055 (2020).

    CAS  Google Scholar 

  41. 41.

    Elsby, M. R. & Baker, T. R. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020).

    CAS  PubMed  Google Scholar 

  42. 42.

    Greb, L., Ebner, F., Ginzburg, Y. & Sigmund, L. M. Element–ligand cooperativity with p-block elements. Eur. J. Inorg. Chem. 2020, 3030–3047 (2020).

    CAS  Google Scholar 

  43. 43.

    Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).

    Google Scholar 

  44. 44.

    Salem, L. & Roland, C. The electronic properties of diradicals. Angew. Chem. Int. Ed. 11, 92–111 (1972).

    CAS  Google Scholar 

  45. 45.

    Bender, C. F. & Schaefer III, H. F. New theoretical evidence for the nonlinearity of the triplet ground state of methylene. J. Am. Chem. Soc. 92, 4984–4985 (1970). The bent geometry of triplet CH2 was a controversial topic in the 1960s and 1970s.

    CAS  Google Scholar 

  46. 46.

    Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994).

    CAS  Google Scholar 

  47. 47.

    Machadeo, V. G., Stock, R. I. & Reichardt, C. Pyridinium N-phenolate betaine dyes. Chem. Rev. 114, 10429–10475 (2014).

    Google Scholar 

  48. 48.

    Bonačić-Koutecký, V., Koutecký, J. & Michl, J. Neutral and charged biradicals, zwitterions, funnels in S1, and proton translocation: their role in photochemistry, photophysics, and vision. Angew. Chem. Int. Ed. 26, 170–189 (1987).

    Google Scholar 

  49. 49.

    Stuyver, T. et al. Do diradicals behave like radicals? Chem. Rev. 119, 11291–11351 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Hu, X., Castro-Rodriguez, I., Olsen, K. & Meyer, K. Group 11 metal complexes of N-heterocyclic carbene ligands: nature of the metal–carbene bond. Organometallics 23, 755–764 (2004).

    Google Scholar 

  51. 51.

    Hu, X., Tang, Y., Gantzel, P. & Meyer, K. Silver complexes of a novel tripodal N-heterocyclic carbene ligand: evidence for significant metal–carbene π-interaction. Organometallics 22, 612–614 (2003).

    CAS  Google Scholar 

  52. 52.

    Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    CAS  Google Scholar 

  53. 53.

    Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. Angew. Chem. Int. Ed. 44, 5705–5709 (2005). The first report of a cyclic (alkyl)(amino)carbene (CAAC).

    CAS  Google Scholar 

  54. 54.

    Boehme, C. & Frenking, G. Electronic structure of stable carbenes, silylenes, and germylenes. J. Am. Chem. Soc. 118, 2039–2046 (1996).

    CAS  Google Scholar 

  55. 55.

    Braida, B., Walter, C., Engels, B. & Hiberty, P. C. A clear correlation between the diradical character of 1,3-dipoles and their reactivity toward ethylene or acetylene. J. Am. Chem. Soc. 132, 7631–7637 (2010). The first unambiguous report on the radicaloid character of some [4+2] cycloadditions.

    CAS  PubMed  Google Scholar 

  56. 56.

    Byrne, P. A. & Gilheany, D. G. The modern interpretation of the Wittig reaction mechanism. Chem. Soc. Rev. 42, 6670–6696 (2013).

    CAS  PubMed  Google Scholar 

  57. 57.

    Liu, L. L. & Stephan, D. W. Radicals derived from Lewis acid/base pairs. Chem. Soc. Rev. 48, 3454–3463 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Olah, G. A. & Krishnamurthy, V. V. Unusual solvent effects in the Wittig reaction of some ketones indicating initial one-electron transfer. J. Am. Chem. Soc. 104, 3987–3990 (1982).

    CAS  Google Scholar 

  59. 59.

    Goicoechea, J. M. & Grützmacher, H. The chemistry of the 2-phosphaethynolate anion. Angew. Chem. Int. Ed. 57, 16968–16994 (2018).

    CAS  Google Scholar 

  60. 60.

    Yuan, Q. et al. Photoelectron spectroscopy and theoretical studies of PCSe, AsCS, AsCSe, and NCSe: insights into the electronic structures of the whole family of ECX anions (E=N, P, As; X=O, S, Se). Angew. Chem. Int. Ed. 58, 15062–15068 (2019).

    CAS  Google Scholar 

  61. 61.

    Grant, L. N. & Mindiola, D. J. The rise of phosphaethynolate chemistry in early transition metals, actinides, and rare-earth complexes. Chem. Eur. J. 25, 16171–16178 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Kapp, J., Remko, M. & Schleyer, P. v. R. H2XO and (CH3)2XO compounds (X=C, Si, Ge, Sn, Pb): double bonds vs carbene-like structures — can the metal compounds exist at all? J. Am. Chem. Soc. 118, 5745–5751 (1996).

    CAS  Google Scholar 

  63. 63.

    Schröder, D. & Schwarz, H. CH and CC bond activation by bare transition-metal oxide cations in the gas phase. Angew. Chem. Int. Ed. 34, 1973–1995 (1995).

    Google Scholar 

  64. 64.

    Roithová, J. & Schröder, D. Selective activation of alkanes by gas-phase metal ions. Chem. Rev. 110, 1170–1211 (2010).

    PubMed  Google Scholar 

  65. 65.

    Dietl, N., Schlangen, M. & Schwarz, H. Thermal hydrogen-atom transfer from methane: the role of radicals and spin states in oxo-cluster chemistry. Angew. Chem. Int. Ed. 51, 5544–5555 (2012).

    CAS  Google Scholar 

  66. 66.

    Gong, Y., Zhou, M. & Andrews, L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 109, 6765–6808 (2009).

    CAS  PubMed  Google Scholar 

  67. 67.

    Li, L. et al. Oxygen radical character in group 11 oxygen fluorides. Nat. Commun. 9, 1267 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Copéret, C. C–H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chem. Rev. 110, 656–680 (2010).

    PubMed  Google Scholar 

  69. 69.

    Weaver, J. F. Surface chemistry of late transition metal oxides. Chem. Rev. 113, 4164–4215 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Filippou, A. C., Baars, B., Chernov, O., Lebedev, Y. N. & Schnakenburg, G. Silicon–oxygen double bonds: a stable silanone with a trigonal-planar coordinated silicon center. Angew. Chem. Int. Ed. 53, 565–570 (2014). The first report of a silanone.

    CAS  Google Scholar 

  71. 71.

    Xiong, Y., Yao, S. & Driess, M. Chemical tricks to stabilize silanones and their heavier homologues with E–O bonds (E=Si–Pb): from elusive species to isolable building blocks. Angew. Chem. Int. Ed. 52, 4302–4311 (2013).

    CAS  Google Scholar 

  72. 72.

    Loh, Y. K. & Aldridge, S. Acid–base free main group carbonyl analogues. Angew. Chem. Int. Ed. 60, 8626–8648 (2020).

    Google Scholar 

  73. 73.

    Li, L. et al. Molecular oxofluorides OMFn of nickel, palladium and platinum: oxyl radicals with moderate ligand field inversion. Inorg. Chem. Front. 8, 1215–1228 (2021).

    Google Scholar 

  74. 74.

    Munz, D. How to tame a palladium terminal oxo. Chem. Sci. 9, 1155–1167 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).

    CAS  PubMed  Google Scholar 

  76. 76.

    Andrews, L. et al. Spectroscopic observation of a Group 12 oxyfluoride: a matrix-isolation and quantum-chemical investigation of mercury oxyfluorides. Angew. Chem. Int. Ed. 51, 8235–8238 (2012).

    CAS  Google Scholar 

  77. 77.

    Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Mathieu, S. & Trinquier, G. Oxidative addition of carbon dioxide into mesoionics. Phys. Chem. Chem. Phys. 21, 5531–5565 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Delaude, L. The chemistry of azolium-carboxylate zwitterions and related compounds: a survey of the years 2009–2020. Adv. Synth. Catal. 44, 3259–3310 (2020).

    Google Scholar 

  81. 81.

    Wang, Z., Wang, F., Xue, X.-S. & Ji, P. Acidity scale of N-heterocyclic carbene precursors: can we predict the stability of NHC–CO2 adducts? Org. Lett. 20, 6041–6045 (2018).

    CAS  PubMed  Google Scholar 

  82. 82.

    Wang, N., Xu, Y. & Lee, J. K. The importance of N-heterocyclic carbene basicity in organocatalysis. Org. Biomol. Chem. 16, 8230–8244 (2018).

    PubMed  Google Scholar 

  83. 83.

    Arnold, P. L. et al. Selective and catalytic carbon dioxide and heteroallene activation mediated by cerium N-heterocyclic carbene complexes. Chem. Sci. 9, 8035–8045 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Simler, T. et al. Access to divalent lanthanide NHC complexes by redox-transmetallation from silver and CO2 insertion reactions. Chem. Commun. 55, 222–225 (2019).

    CAS  Google Scholar 

  85. 85.

    Voutchkova, A. M., Feliz, M., Clot, E., Eisenstein, O. & Crabtree, R. H. Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J. Am. Chem. Soc. 129, 12834–12846 (2007).

    CAS  PubMed  Google Scholar 

  86. 86.

    Yang, L. & Wang, H. Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes. ChemSusChem 7, 962–998 (2014).

    CAS  PubMed  Google Scholar 

  87. 87.

    Tskhovrebov, A. G., Vuichoud, B., Solari, E., Scopelliti, R. & Severin, K. Adducts of nitrous oxide and N-heterocyclic carbenes: syntheses, structures, and reactivity. J. Am. Chem. Soc. 135, 9486–9492 (2013).

    CAS  PubMed  Google Scholar 

  88. 88.

    Tskhovrebov, A. G., Solari, E., Wodrich, M. D., Scopelliti, R. & Severin, K. Covalent capture of nitrous oxide by N-heterocyclic carbenes. Angew. Chem. Int. Ed. 51, 232–234 (2012).

    CAS  Google Scholar 

  89. 89.

    Fabian, J., Nakazumi, H. & Matsuoka, M. Near-infrared absorbing dyes. Chem. Rev. 92, 1197–1226 (1992).

    CAS  Google Scholar 

  90. 90.

    Qian, G. & Wang, Z. Y. Near-infrared organic compounds and emerging applications. Chem. Asian J. 5, 1006–1029 (2010).

    CAS  PubMed  Google Scholar 

  91. 91.

    Shimizu, A. et al. HOMO–LUMO energy-gap tuning of π-conjugated zwitterions composed of electron-donating anion and electron-accepting cation. J. Org. Chem. 86, 770–781 (2021).

    CAS  PubMed  Google Scholar 

  92. 92.

    Mishra, A. et al. Cyanines during the 1990s: a review. Chem. Rev. 100, 1973–2012 (2000).

    CAS  PubMed  Google Scholar 

  93. 93.

    Beverina, L. & Pagani, G. A. π-Conjugated zwitterions as paradigm of donor–acceptor building blocks in organic-based materials. Acc. Chem. Res. 47, 319–329 (2014).

    CAS  PubMed  Google Scholar 

  94. 94.

    Guasch, J. et al. Induced self-assembly of a tetrathiafulvalene-based open-shell dyad through intramolecular electron transfer. Angew. Chem. Int. Ed. 51, 11024–11028 (2012).

    CAS  Google Scholar 

  95. 95.

    Souto, M., Rovira, C., Ratera, I. & Veciana, J. TTF–PTM dyads: from switched molecular self assembly in solution to radical conductors in solid state. CrystEngComm 19, 197–206 (2017).

    CAS  Google Scholar 

  96. 96.

    Ajayaghosh, A., Chenthamarakshan, C. R., Das, S. & George, M. V. Zwitterionic dye-based conducting polymers. Synthesis and optical properties of pyrrole-derived polysquaraines. Chem. Mater. 9, 644–646 (1997).

    CAS  Google Scholar 

  97. 97.

    Ajayaghosh, A. Donor–acceptor type low band gap polymers: polysquaraines and related systems. Chem. Soc. Rev. 32, 181–191 (2003).

    CAS  PubMed  Google Scholar 

  98. 98.

    He, J. et al. Squaraine dyes for photovoltaic and biomedical applications. Adv. Funct. Mater. 31, 2008201 (2021).

    CAS  Google Scholar 

  99. 99.

    Ullrich, T. et al. Singlet fission in carbene derived diradicaloids. Angew. Chem. Int. Ed. 59, 7906–7914 (2020).

    CAS  Google Scholar 

  100. 100.

    Messelberger, J., Grünwald, A., Pinter, P., Hansmann, M. & Munz, D. Carbene derived biradicaloids — building blocks for singlet fission? Chem. Sci. 9, 6107–6117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Pinter, P. & Munz, D. Controlling Möbius-type helicity and the excited state properties of cumulenes with carbenes. J. Phys. Chem. A 124, 10100–10110 (2020).

    CAS  PubMed  Google Scholar 

  102. 102.

    Munz, D., Chu, J., Jazzar, R., Melaimi, M. & Bertrand, G. NHC–CAAC heterodimers with three stable oxidation states. Angew. Chem. Int. Ed. 55, 12886–12890 (2016). Evidence that triaminoolefins have similar redox and photophysical properties to tetrathiafulvalene.

    CAS  Google Scholar 

  103. 103.

    Antoni, P. W. & Hansmann, M. M. Pyrylenes: a new class of tunable, redox-switchable, photoexcitable pyrylium–carbene hybrids with three stable redox-states. J. Am. Chem. Soc. 140, 14823–14835 (2018).

    PubMed  Google Scholar 

  104. 104.

    Messelberger, J. et al. Aromaticity and sterics control whether a cationic olefin radical is resistant to disproportionation. Chem. Sci. 11, 4138–4149 (2020).

    CAS  Google Scholar 

  105. 105.

    Wittig, G. & Schöllkopf, U. Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien. Chem. Ber. 87, 1318–1330 (1954).

    Google Scholar 

  106. 106.

    Corey, E. J. & Chaykovsky, M. Dimethylsulfonium methylide, a reagent for selective oxirane synthesis from aldehydes and ketones. J. Am. Chem. Soc. 84, 3782–3783 (1962).

    CAS  Google Scholar 

  107. 107.

    Oost, R., Neuhaus, J. D., Merad, J. & Maulide, N. in Modern Ylide Chemistry: Applications in Ligand Design, Organic and Catalytic Transformations (ed. Gessner, V. H.) 73–115 (Springer, 2018).

  108. 108.

    Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

    CAS  PubMed  Google Scholar 

  109. 109.

    Feichtner, K.-S. & Gessner, V. H. Cooperative bond activation reactions with carbene complexes. Chem. Commun. 54, 6540–6553 (2018).

    CAS  Google Scholar 

  110. 110.

    Webb, J. R., Burgess, S. A., Cundari, T. R. & Gunnoe, T. B. Activation of carbon–hydrogen bonds and dihydrogen by 1,2-CH-addition across metal–heteroatom bonds. Dalton Trans. 42, 16646–16665 (2013).

    CAS  PubMed  Google Scholar 

  111. 111.

    Tebbe, F. N., Parshall, G. W. & Reddy, G. S. Olefin homologation with titanium methylene compounds. J. Am. Chem. Soc. 100, 3611–3613 (1978).

    CAS  Google Scholar 

  112. 112.

    Petasis, N. A. & Bzowej, E. I. Titanium-mediated carbonyl olefinations. 1. Methylenations of carbonyl compounds with dimethyltitanocene. J. Am. Chem. Soc. 112, 6392–6394 (1990).

    CAS  Google Scholar 

  113. 113.

    Thompson, R., Nakamaru-Ogiso, E., Chen, C.-H., Pink, M. & Mindiola, D. J. Structural elucidation of the illustrious Tebbe reagent. Organometallics 33, 429–432 (2014).

    CAS  Google Scholar 

  114. 114.

    Bailey, B. C. et al. An alkylidyne analogue of Tebbe’s reagent: trapping reactions of a titanium neopentylidyne by incomplete and complete 1,2-additions. Angew. Chem. Int. Ed. 46, 8246–8249 (2007).

    CAS  Google Scholar 

  115. 115.

    Bailey, B. C. et al. Intermolecular C–H bond activation promoted by a titanium alkylidyne. J. Am. Chem. Soc. 127, 16016–16017 (2005).

    CAS  PubMed  Google Scholar 

  116. 116.

    Empsall, H. D. et al. Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. J. Chem. Soc. Chem. Commun. 589–590 (1977).

  117. 117.

    Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    CAS  Google Scholar 

  118. 118.

    Gusev, D. G. & Lough, A. J. Double C–H activation on osmium and ruthenium centers: carbene vs olefin products. Organometallics 21, 2601–2603 (2002).

    CAS  Google Scholar 

  119. 119.

    Crocker, C. et al. Large-ring and cyclometalated rhodium complexes from some medium-chain α,ω-diphosphines. J. Am. Chem. Soc. 102, 4373–4379 (1980).

    CAS  Google Scholar 

  120. 120.

    Gutsulyak, D. V., Piers, W. E., Borau-Garcia, J. & Parvez, M. Activation of water, ammonia, and other small molecules by PCcarbeneP nickel pincer complexes. J. Am. Chem. Soc. 135, 11776–11779 (2013). An impactful report on the activation of strong bonds by a formal Ni=C double bond with PCP pincer-type ligands.

    CAS  PubMed  Google Scholar 

  121. 121.

    Comanescu, C. C. & Iluc, V. M. Synthesis and reactivity of a nucleophilic palladium(ii) carbene. Organometallics 33, 6059–6064 (2014).

    CAS  Google Scholar 

  122. 122.

    Burford, R. J., Piers, W. E. & Parvez, M. β-Elimination-immune PCcarbeneP iridium complexes via double C–H activation: ligand–metal cooperation in hydrogen activation. Organometallics 31, 2949–2952 (2012).

    CAS  Google Scholar 

  123. 123.

    Gessner, V. H., Becker, J. & Feichtner, K.-S. Carbene complexes based on dilithium methandiides. Eur. J. Inorg. Chem. 2015, 1841–1859 (2015).

    CAS  Google Scholar 

  124. 124.

    Cantat, T., Mezailles, N., Auffrant, A. & Le Floch, P. Bis-phosphorus stabilised carbene complexes. Dalton Trans. 1957–1972 (2008).

  125. 125.

    Liddle, S. T., Mills, D. P. & Wooles, A. J. Early metal bis(phosphorus-stabilised)carbene chemistry. Chem. Soc. Rev. 40, 2164–2176 (2011).

    CAS  PubMed  Google Scholar 

  126. 126.

    Wolf, B. M. & Anwander, R. Chasing multiple bonding interactions between alkaline-earth metals and main-group fragments. Chem. Eur. J. 25, 8190–8202 (2019).

    CAS  PubMed  Google Scholar 

  127. 127.

    Fustier-Boutignon, M., Nebra, N. & Mézailles, N. Geminal dianions stabilized by main group elements. Chem. Rev. 119, 8555–8700 (2019). A leading review on the chemistry of geminal dianions.

    CAS  PubMed  Google Scholar 

  128. 128.

    Kamalesh Babu, R. P., McDonald, R. & Cavell, R. G. Nucleophilic reactivity of the multiply bonded carbon center in group 4–pincer bis(iminophosphorano)methanediide complexes. Organometallics 19, 3462–3465 (2000).

    Google Scholar 

  129. 129.

    Cavell, R. G., Kamalesh Babu, R. P., Kasani, A. & McDonald, R. Novel metal–carbon multiply bonded twelve-electron complexes of Ti and Zr supported by a bis(phosphoranimine) chelate. J. Am. Chem. Soc. 121, 5805–5806 (1999).

    CAS  Google Scholar 

  130. 130.

    Walsh, P. J., Hollander, F. J. & Bergman, R. G. Generation, alkyne cycloaddition, arene carbon–hydrogen activation, nitrogen–hydrogen activation and dative ligand trapping reactions of the first monomeric imidozirconocene (Cp2Zr=NR) complexes. J. Am. Chem. Soc. 110, 8729–8731 (1988).

    CAS  Google Scholar 

  131. 131.

    Cummins, C. C., Baxter, S. M. & Wolczanski, P. T. Methane and benzene activation via transient (t-Bu3SiNH)2Zr=NSi-t-Bu3. J. Am. Chem. Soc. 110, 8731–8733 (1988). The two papers above are seminal reports on 1,2-addition chemistry.

    CAS  Google Scholar 

  132. 132.

    Wolczanski, P. T. Activation of carbon–hydrogen bonds via 1,2-RH-addition/-elimination to early transition metal imides. Organometallics 37, 505–516 (2018).

    CAS  Google Scholar 

  133. 133.

    Lu, E., Chu, J. & Chen, Y. Scandium terminal imido chemistry. Acc. Chem. Res. 51, 557–566 (2018).

    CAS  PubMed  Google Scholar 

  134. 134.

    Schädle, D. & Anwander, R. Rare-earth metal and actinide organoimide chemistry. Chem. Soc. Rev. 48, 5752–5805 (2019).

    PubMed  Google Scholar 

  135. 135.

    Bell, N. L., Maron, L. & Arnold, P. L. Thorium mono- and bis(imido) complexes made by reprotonation of cyclo-metalated amides. J. Am. Chem. Soc. 137, 10492–10495 (2015).

    CAS  PubMed  Google Scholar 

  136. 136.

    Arnold, P. L., McMullon, M. W., Rieb, J. & Kühn, F. E. C–H bond activation by f-block complexes. Angew. Chem. Int. Ed. 54, 82–100 (2015).

    CAS  Google Scholar 

  137. 137.

    Cheisson, T. et al. Multiple bonding in lanthanides and actinides: direct comparison of covalency in thorium(iv)- and cerium(iv)-imido complexes. J. Am. Chem. Soc. 141, 9185–9190 (2019).

    PubMed  Google Scholar 

  138. 138.

    Huang, W. & Diaconescu, P. L. in Advances in Organometallic Chemistry Vol. 64 (ed. Pérez, P. J.) 41–75 (Academic Press, 2015).

  139. 139.

    Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride. Nat. Chem. 2, 723–729 (2010).

    CAS  PubMed  Google Scholar 

  140. 140.

    Castro-Rodriguez, I., Olsen, K., Gantzel, P. & Meyer, K. Uranium tris-aryloxide derivatives supported by triazacyclononane: engendering a reactive uranium(iii) center with a single pocket for reactivity. J. Am. Chem. Soc. 125, 4565–4571 (2003).

    CAS  PubMed  Google Scholar 

  141. 141.

    Brennan, J. G. & Andersen, R. A. Electron-transfer reactions of trivalent uranium. Preparation and structure of the uranium metallocene compounds (MeC5H4)3U=NPh and [(MeC5H4)3U]2[μ-η1,η2-PhNCO]. J. Am. Chem. Soc. 107, 514–516 (1985).

    CAS  Google Scholar 

  142. 142.

    Cramer, R. E., Panchanatheswaran, K. & Gilje, J. W. Uranium carbon multiple-bond chemistry. 3. Insertion of acetonitrile and the formation of a uranium nitrogen multiple bond. J. Am. Chem. Soc. 106, 1853–1854 (1984).

    CAS  Google Scholar 

  143. 143.

    Castro-Rodríguez, I., Nakai, H. & Meyer, K. Multiple-bond metathesis mediated by sterically pressured uranium complexes. Angew. Chem. Int. Ed. 45, 2389–2392 (2006).

    Google Scholar 

  144. 144.

    Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    CAS  PubMed  Google Scholar 

  145. 145.

    Bart, S. C. et al. Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. J. Am. Chem. Soc. 130, 12536–12546 (2008).

    CAS  PubMed  Google Scholar 

  146. 146.

    Mindiola, D. J., Waterman, R., Iluc, V. M., Cundari, T. R. & Hillhouse, G. L. Carbon–hydrogen bond activation, C–N bond coupling, and cycloaddition reactivity of a three-coordinate nickel complex featuring a terminal imido ligand. Inorg. Chem. 53, 13227–13238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Mindiola, D. J. & Hillhouse, G. L. Terminal amido and imido complexes of three-coordinate nickel. J. Am. Chem. Soc. 123, 4623–4624 (2001). Seminal report of a d8-configured terminal Ni imido.

    CAS  PubMed  Google Scholar 

  148. 148.

    Grünwald, A. et al. An isolable terminal imido complex of palladium and catalytic implications. Angew. Chem. Int. Ed. 57, 16228–16232 (2018).

    Google Scholar 

  149. 149.

    Aktaş, H., Slootweg, J. C. & Lammertsma, K. Nucleophilic phosphinidene complexes: access and applicability. Angew. Chem. Int. Ed. 49, 2102–2113 (2010).

    Google Scholar 

  150. 150.

    Waterman, R. & Hillhouse, G. L. Group transfer from nickel imido, phosphinidene, and carbene complexes to ethylene with formation of aziridine, phosphirane, and cyclopropane products. J. Am. Chem. Soc. 125, 13350–13351 (2003).

    CAS  PubMed  Google Scholar 

  151. 151.

    Hartmann, N. J., Wu, G. & Hayton, T. W. Synthesis of a “masked” terminal nickel(ii) sulfide by reductive deprotection and its reaction with nitrous oxide. Angew. Chem. Int. Ed. 54, 14956–14959 (2015).

    CAS  Google Scholar 

  152. 152.

    Poverenov, E. et al. Evidence for a terminal Pt(iv)–oxo complex exhibiting diverse reactivity. Nature 455, 1093–1096 (2008). The seminal report on a terminal Ptiv–oxo complex.

    CAS  Google Scholar 

  153. 153.

    Schöffel, J., Rogachev, A. Y., DeBeer George, S. & Burger, P. Isolation and hydrogenation of a complex with a terminal iridium–nitrido bond. Angew. Chem. Int. Ed. 48, 4734–4738 (2009).

    Google Scholar 

  154. 154.

    Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nat. Chem. 4, 552–558 (2012).

    CAS  PubMed  Google Scholar 

  155. 155.

    Sun, J. et al. A platinum(ii) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).

    CAS  PubMed  Google Scholar 

  156. 156.

    Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Chauvin, R. Zwitterionic organometallates. Eur. J. Inorg. Chem. 2000, 577–591 (2000).

    Google Scholar 

  158. 158.

    Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

    CAS  PubMed  Google Scholar 

  159. 159.

    Peloso, R. & Carmona, E. Non-heteroatom-substituted alkylidene complexes of groups 10 and 11. Coord. Chem. Rev. 355, 116–132 (2018).

    CAS  Google Scholar 

  160. 160.

    Hussong, M. W., Hoffmeister, W. T., Rominger, F. & Straub, B. F. Copper and silver carbene complexes without heteroatom-stabilization: structure, spectroscopy, and relativistic effects. Angew. Chem. Int. Ed. 54, 10331–10335 (2015).

    CAS  Google Scholar 

  161. 161.

    Olmos, A. et al. Measuring the relative reactivity of the carbon–hydrogen bonds of alkanes as nucleophiles. Angew. Chem. Int. Ed. 57, 13848–13852 (2018).

    CAS  Google Scholar 

  162. 162.

    Werlé, C., Goddard, R., Philipps, P., Farès, C. & Fürstner, A. Structures of reactive donor/acceptor and donor/donor rhodium carbenes in the solid state and their implications for catalysis. J. Am. Chem. Soc. 138, 3797–3805 (2016).

    PubMed  Google Scholar 

  163. 163.

    Kornecki, K. P. et al. Direct spectroscopic characterization of a transitory dirhodium donor–acceptor carbene complex. Science 342, 351–354 (2013).

    CAS  PubMed  Google Scholar 

  164. 164.

    Lavoie, K. D., Frauhiger, B. E., White, P. S. & Templeton, J. L. Cationic Pt(iv) Tp′ carbenes. J. Organomet. Chem. 793, 182–191 (2015).

    CAS  Google Scholar 

  165. 165.

    Olah, G. A. & Donovan, D. J. Stable carbocations. 208. Carbon-13 nuclear magnetic resonance spectroscopic study of alkyl cations. The constancy of carbon-13 nuclear magnetic resonance methyl substituent effects and their application in the study of equilibrating carbocations and the mechanism of some rearrangements. J. Am. Chem. Soc. 99, 5026–5039 (1977).

    CAS  Google Scholar 

  166. 166.

    Cui, P. & Iluc, V. M. Redox-induced umpolung of transition metal carbenes. Chem. Sci. 6, 7343–7354 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    LaPierre, E. A., Piers, W. E. & Gendy, C. Redox-state dependent activation of silanes and ammonia with reverse polarity (PCcarbeneP)Ni complexes: electrophilic vs. nucleophilic carbenes. Dalton Trans. 47, 16789–16797 (2018).

    CAS  PubMed  Google Scholar 

  168. 168.

    Sung, S., Wang, Q., Krämer, T. & Young, R. D. Synthesis and reactivity of a PCcarbeneP cobalt(i) complex: the missing link in the cobalt PXP pincer series (X=B, C, N). Chem. Sci. 9, 8234–8241 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Hadlington, T. J., Szilvási, T. & Driess, M. Versatile tautomerization of EH2-substituted silylenes (E=N, P, As) in the coordination sphere of nickel. J. Am. Chem. Soc. 141, 3304–3314 (2019).

    CAS  PubMed  Google Scholar 

  170. 170.

    Hadlington, T. J., Kostenko, A. & Driess, M. Cycloaddition chemistry of a silylene–nickel complex toward organic π-systems: from reversibility to C–H activation. Chem. Eur. J. 26, 1958–1962 (2020).

    CAS  PubMed  Google Scholar 

  171. 171.

    Grünwald, A., Heinemann, F. W. & Munz, D. Oxidative addition of water, alcohols and amines in palladium catalysis. Angew. Chem. Int. Ed. 59, 21088–21095 (2020).

    Google Scholar 

  172. 172.

    Brown, R. M. et al. Ammonia activation by a nickel NCN-pincer complex featuring a non-innocent N-heterocyclic carbene: ammine and amido complexes in equilibrium. Angew. Chem. Int. Ed. 54, 6274–6277 (2015).

    CAS  Google Scholar 

  173. 173.

    Braunschweig, H., Dewhurst, R. D. & Gessner, V. H. Transition metal borylene complexes. Chem. Soc. Rev. 42, 3197–3208 (2013).

    CAS  PubMed  Google Scholar 

  174. 174.

    Goettel, J. T. & Braunschweig, H. Recent advances in boron-centered ligands and their transition metal complexes. Coord. Chem. Rev. 380, 184–200 (2019).

    CAS  Google Scholar 

  175. 175.

    Braunschweig, H. & Shang, R. Reactivity of transition-metal borylene complexes: recent advances in B–C and B–B bond formation via borylene ligand coupling. Inorg. Chem. 54, 3099–3106 (2015).

    CAS  PubMed  Google Scholar 

  176. 176.

    Power, P. P. π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3504 (1999). A review on multiple bonding between main-group elements.

    CAS  PubMed  Google Scholar 

  177. 177.

    Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010). A more recent comprehensive review on multiple bonding between main-group elements.

    CAS  PubMed  Google Scholar 

  178. 178.

    Weetman, C. Main group multiple bonds for bond activations and catalysis. Chem. Eur. J. 27, 1941–1954 (2021).

    CAS  PubMed  Google Scholar 

  179. 179.

    Kobayashi, R., Ishida, S. & Iwamoto, T. An isolable silicon analogue of a ketone that contains an unperturbed Si=O double bond. Angew. Chem. Int. Ed. 58, 9425–9428 (2019).

    CAS  Google Scholar 

  180. 180.

    Wendel, D. et al. Silicon and oxygen’s bond of affection: an acyclic three-coordinate silanone and its transformation to an iminosiloxysilylene. J. Am. Chem. Soc. 139, 17193–17198 (2017).

    CAS  PubMed  Google Scholar 

  181. 181.

    Alvarado-Beltran, I. et al. A fairly stable crystalline silanone. Angew. Chem. Int. Ed. 56, 10481–10485 (2017).

    CAS  Google Scholar 

  182. 182.

    Rosas-Sánchez, A. et al. Cyclic (amino)(phosphonium bora-ylide)silanone: a remarkable room-temperature-persistent silanone. Angew. Chem. Int. Ed. 56, 15916–15920 (2017).

    Google Scholar 

  183. 183.

    Reiter, D., Frisch, P., Szilvási, T. & Inoue, S. Heavier carbonyl olefination: the sila-Wittig reaction. J. Am. Chem. Soc. 141, 16991–16996 (2019).

    CAS  PubMed  Google Scholar 

  184. 184.

    Zhu, H. et al. Two types of intramolecular addition of an Al–N multiple-bonded monomer LAlNAr′ arising from the reaction of LAl with N3Ar′ (L=HC[(CMe)(NAr)]2, Ar′=2,6-Ar2C6H3, Ar=2,6-iPr2C6H3). J. Am. Chem. Soc. 126, 9472–9473 (2004).

    CAS  PubMed  Google Scholar 

  185. 185.

    Heilmann, A., Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Carbon monoxide activation by a molecular aluminium imide: C–O bond cleavage and C–C bond formation. Angew. Chem. Int. Ed. 59, 4897–4901 (2020).

    CAS  Google Scholar 

  186. 186.

    Hardman, N. J., Cui, C., Roesky, H. W., Fink, W. H. & Power, P. P. Stable, monomeric imides of aluminum and gallium: synthesis and characterization of [{HC(MeCDippN)2}MN-2,6-Trip2C6H3] (M=Al or Ga; Dipp=2,6-iPr2C6H3; Trip=2,4,6-iPr3C6H2). Angew. Chem. Int. Ed. 40, 2172–2174 (2001).

    CAS  Google Scholar 

  187. 187.

    Bag, P., Weetman, C. & Inoue, S. Experimental realisation of elusive multiple-bonded aluminium compounds: a new horizon in aluminium chemistry. Angew. Chem. Int. Ed. 57, 14394–14413 (2018).

    CAS  Google Scholar 

  188. 188.

    Ivanov, A. S., Popov, I. A., Boldyrev, A. I. & Zhdankin, V. V. The IX (X=O,N,C) double bond in hypervalent iodine compounds: is it real? Angew. Chem. Int. Ed. 53, 9617–9621 (2014).

    CAS  Google Scholar 

  189. 189.

    Boucher, M., Macikenas, D., Ren, T. & Protasiewicz, J. D. Secondary bonding as a force dictating structure and solid-state aggregation of the primary nitrene sources (arylsulfonylimino)iodoarenes (ArINSO2Ar′). J. Am. Chem. Soc. 119, 9366–9376 (1997).

    CAS  Google Scholar 

  190. 190.

    Macikenas, D., Skrzypczak-Jankun, E. & Protasiewicz, J. D. A new class of iodonium ylides engineered as soluble primary oxo and nitrene sources. J. Am. Chem. Soc. 121, 7164–7165 (1999).

    CAS  Google Scholar 

  191. 191.

    Ossig, G., Meller, A., Freitag, S., Herbst-Irmer, R. & Sheldrick, G. M. Reaktionen eines freien Stannaimins und von Basen-stabilisierten Stannylenen. Chem. Ber. 126, 2247–2253 (1993).

    CAS  Google Scholar 

  192. 192.

    Ikegami, T. & Suzuki, H. A stabilized triarylbismuthane imide: synthesis and first X-ray structure analysis. Organometallics 17, 1013–1017 (1998).

    CAS  Google Scholar 

  193. 193.

    Suzuki, H., Nakaya, C., Matano, Y. & Ogawa, T. N-tosyltriarylbismuthimines. Synthesis and reactions with some electrophiles. Chem. Lett. 105–108 (1991).

  194. 194.

    Wright, R. J., Phillips, A. D., Allen, T. L., Fink, W. H. & Power, P. P. Synthesis and characterization of the monomeric imides Ar′MNAr″ (M=Ga or In; Ar′ or Ar″=terphenyl ligands) with two-coordinate gallium and indium. J. Am. Chem. Soc. 125, 1694–1695 (2003).

    CAS  PubMed  Google Scholar 

  195. 195.

    Liu, H.-J., Ziegler, M. S. & Tilley, T. D. The ruthenostannylene complex [Cp*(IXy)H2Ru-Sn-Trip]: providing access to unusual Ru-Sn bonded stanna-imine, stannene, and ketenylstannyl complexes. Angew. Chem. Int. Ed. 54, 6622–6626 (2015).

    CAS  Google Scholar 

  196. 196.

    Hohenberger, J., Ray, K. & Meyer, K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nat. Commun. 3, 720 (2012).

    PubMed  Google Scholar 

  197. 197.

    Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).

    CAS  Google Scholar 

  198. 198.

    Mehn, M. P. & Peters, J. C. Mid- to high-valent imido and nitrido complexes of iron. J. Inorg. Biochem. 100, 634–643 (2006).

    CAS  PubMed  Google Scholar 

  199. 199.

    Eikey, A. R. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

    CAS  Google Scholar 

  200. 200.

    Groves, J. T. & Takahashi, T. Activation and transfer of nitrogen from a nitridomanganese(v) porphyrin complex. Aza analog of epoxidation. J. Am. Chem. Soc. 105, 2073–2074 (1983).

    CAS  Google Scholar 

  201. 201.

    Haiges, R. Recent developments in the chemistry of metal oxopolyazides. Dalton Trans. 48, 806–813 (2019).

    CAS  PubMed  Google Scholar 

  202. 202.

    Fehlhammer, W. P. & Beck, W. Azide chemistry – an inorganic perspective, part I. Metal azides: overview, general trends and recent developments. ZAAC 639, 1053–1082 (2013).

    CAS  Google Scholar 

  203. 203.

    Šima, J. Photochemistry of azide-moiety containing inorganic compounds. Coord. Chem. Rev. 250, 2325–2334 (2006).

    Google Scholar 

  204. 204.

    Meyer, K., Bendix, J., Metzler-Nolte, N., Weyhermüller, T. & Wieghardt, K. Nitridomanganese(v) and -(vi) complexes containing macrocyclic amine ligands. J. Am. Chem. Soc. 120, 7260–7270 (1998).

    CAS  Google Scholar 

  205. 205.

    Meyer, K., Bill, E., Mienert, B., Weyhermüller, T. & Wieghardt, K. Photolysis of cis- and trans-[Feiii(cyclam)(N3)2]+ complexes: spectroscopic characterization of a nitridoiron(v) species. J. Am. Chem. Soc. 121, 4859–4876 (1999).

    CAS  Google Scholar 

  206. 206.

    Vreeken, V. et al. CH activation of benzene by a photoactivated Niii(azide): formation of a transient nickel nitrido complex. Angew. Chem. Int. Ed. 54, 7055–7059 (2015).

    CAS  Google Scholar 

  207. 207.

    Cozzolino, A. F., Silvia, J. S., Lopez, N. & Cummins, C. C. Experimental and computational studies on the formation of cyanate from early metal terminal nitrido ligands and carbon monoxide. Dalton Trans. 43, 4639–4652 (2014).

    CAS  PubMed  Google Scholar 

  208. 208.

    Hinz, A. & Goicoechea, J. M. The 2-arsaethynolate anion: synthesis and reactivity towards heteroallenes. Angew. Chem. Int. Ed. 55, 8536–8541 (2016).

    CAS  Google Scholar 

  209. 209.

    Tambornino, F., Hinz, A., Köppe, R. & Goicoechea, J. M. A general synthesis of phosphorus- and arsenic-containing analogues of the thio- and seleno-cyanate anions. Angew. Chem. Int. Ed. 57, 8230–8234 (2019).

    Google Scholar 

  210. 210.

    Tambornino, F. et al. Electrochemical oxidation of the phospha- and arsaethynolate anions, PCO and AsCO. Eur. J. Inorg. Chem. 2019, 1644–1649 (2019).

    CAS  Google Scholar 

  211. 211.

    Abbenseth, J. et al. Oxidative coupling of terminal rhenium pnictide complexes. Angew. Chem. Int. Ed. 58, 10966–10970 (2019).

    CAS  Google Scholar 

  212. 212.

    Ghosh, M. et al. A μ-phosphido diiron dumbbell in multiple oxidation states. Angew. Chem. Int. Ed. 58, 14349–14356 (2019).

    CAS  Google Scholar 

  213. 213.

    Hoerger, C. J. et al. Formation of a uranium-bound η1-cyaphide (CP) ligand via activation and C–O bond cleavage of phosphaethynolate (OCP). Organometallics 36, 4351–4354 (2017).

    CAS  Google Scholar 

  214. 214.

    Hoerger, C. J. et al. Cyaarside (CAs) and 1,3-diarsaallendiide (AsCAs2−) ligands coordinated to uranium and generated via activation of the arsaethynolate ligand (OCAs). Angew. Chem. Int. Ed. 58, 1679–1683 (2019).

    CAS  Google Scholar 

  215. 215.

    Kaplan, A. W., Polse, J. L., Ball, G. E., Andersen, R. A. & Bergman, R. G. Synthesis, structure, and reactivity of η2-N2-aryldiazoalkane titanium complexes: cleavage of the N–N bond. J. Am. Chem. Soc. 120, 11649–11662 (1998).

    CAS  Google Scholar 

  216. 216.

    Bonomo, L., Solari, E., Scopelliti, R. & Floriani, C. Ruthenium nitrides: redox chemistry and photolability of the Ru–nitrido group. Angew. Chem. Int. Ed. 40, 2529–2531 (2001).

    CAS  Google Scholar 

  217. 217.

    Aghazada, S. et al. A terminal iron nitrilimine complex: accessing the terminal nitride through diazo N–N bond cleavage. Angew. Chem. Int. Ed. 58, 18547–18551 (2019).

    CAS  Google Scholar 

  218. 218.

    Aghazada, S. et al. Cobalt diazo-compounds: from nitrilimide to isocyanoamide via a diazomethanediide fleeting intermediate. Angew. Chem. Int. Ed. 60, 11138–11142 (2021).

    CAS  Google Scholar 

  219. 219.

    Zhang, Z., Zhang, Y. & Wang, J. Carbonylation of metal carbene with carbon monoxide: generation of ketene. ACS Catal. 1, 1621–1630 (2011).

    CAS  Google Scholar 

  220. 220.

    Grotjahn, D. B. et al. Controlled, reversible conversion of a ketene ligand to carbene and CO ligands on a single metal center. J. Am. Chem. Soc. 122, 5222–5223 (2000).

    CAS  Google Scholar 

  221. 221.

    Buss, J. A. et al. CO coupling chemistry of a terminal Mo carbide: sequential addition of proton, hydride, and CO releases ethenone. J. Am. Chem. Soc. 141, 15664–15674 (2019).

    CAS  PubMed  Google Scholar 

  222. 222.

    Fermin, M. C. & Bruno, J. W. Oxygen atom transfer reactions in the interconversion of niobocene ketene and vinylidene compounds. J. Am. Chem. Soc. 115, 7511–7512 (1993).

    CAS  Google Scholar 

  223. 223.

    Lam, O. P. & Meyer, K. Uranium-mediated carbon dioxide activation and functionalization. Polyhedron 32, 1–9 (2012).

    CAS  Google Scholar 

  224. 224.

    Fachinetti, G., Floriani, C., Chiesi-Villa, A. & Guastini, C. Carbon dioxide activation. Deoxygenation and disproportionation of carbon dioxide promoted by bis(cyclopentadienyl)titanium and -zirconium derivatives. A novel bonding mode of the carbonato and a trimer of the zirconyl unit. J. Am. Chem. Soc. 101, 1767–1775 (1979).

    CAS  Google Scholar 

  225. 225.

    Krogman, J. P., Foxman, B. M. & Thomas, C. M. Activation of CO2 by a heterobimetallic Zr/Co complex. J. Am. Chem. Soc. 133, 14582–14585 (2011).

    CAS  PubMed  Google Scholar 

  226. 226.

    Schmidt, A.-C., Heinemann, F. W., Lukens, W. W. & Meyer, K. Molecular and electronic structure of dinuclear uranium bis-μ-oxo complexes with diamond core structural motifs. J. Am. Chem. Soc. 136, 11980–11993 (2014).

    CAS  PubMed  Google Scholar 

  227. 227.

    Castro-Rodriguez, I. & Meyer, K. Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(iii) complex. J. Am. Chem. Soc. 127, 11242–11243 (2005).

    CAS  PubMed  Google Scholar 

  228. 228.

    Laitar, D. S., Müller, P. & Sadighi, J. P. Efficient homogeneous catalysis in the reduction of CO2 to CO. J. Am. Chem. Soc. 127, 17196–17197 (2005).

    CAS  PubMed  Google Scholar 

  229. 229.

    Leitl, J. et al. Facile C=O bond splitting of carbon dioxide induced by metal–ligand cooperativity in a phosphinine iron(0) complex. Angew. Chem. Int. Ed. 58, 15407–15411 (2019).

    CAS  Google Scholar 

  230. 230.

    Lu, C. C., Saouma, C. T., Day, M. W. & Peters, J. C. Fe(i)-mediated reductive cleavage and coupling of CO2: an Feii(μ-O,μ-CO)Feii core. J. Am. Chem. Soc. 129, 4–5 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Sadique, A. R., Brennessel, W. W. & Holland, P. L. Reduction of CO2 to CO using low-coordinate iron: formation of a four-coordinate iron dicarbonyl complex and a bridging carbonate complex. Inorg. Chem. 47, 784–786 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010).

    CAS  Google Scholar 

  233. 233.

    Severin, K. Synthetic chemistry with nitrous oxide. Chem. Soc. Rev. 44, 6375–6386 (2015).

    CAS  PubMed  Google Scholar 

  234. 234.

    Mokhtarzadeh, C. C., Chan, C., Moore, C. E., Rheingold, A. L. & Figueroa, J. S. Side-on coordination of nitrous oxide to a mononuclear cobalt center. J. Am. Chem. Soc. 141, 15003–15007 (2019).

    CAS  PubMed  Google Scholar 

  235. 235.

    Piro, N. A., Lichterman, M. F., Harman, W. H. & Chang, C. J. A structurally characterized nitrous oxide complex of vanadium. J. Am. Chem. Soc. 133, 2108–2111 (2011).

    CAS  PubMed  Google Scholar 

  236. 236.

    Smith, M. R., Matsunaga, P. T. & Andersen, R. A. Preparation of monomeric (Me5C5)2VO and (Me5C5)2Ti(O)(L) and their decomposition to (Me5C5)4M4(μ-O)6. J. Am. Chem. Soc. 115, 7049–7050 (1993).

    CAS  Google Scholar 

  237. 237.

    Howard, W. A. & Parkin, G. Terminal oxo, sulfido, selenido, and tellurido complexes of zirconium, (η5-C5Me4R)2Zr(E)(NC5H5): comparison of terminal Zr–E single and Zr=E double-bond lengths. J. Am. Chem. Soc. 116, 606–615 (1994).

    CAS  Google Scholar 

  238. 238.

    McNeill, K. & Bergman, R. G. Rapid reduction of nitric oxide to dinitrogen by zirconium(ii): kinetic studies on a reaction controlled by gas–liquid transport. J. Am. Chem. Soc. 121, 8260–8269 (1999).

    CAS  Google Scholar 

  239. 239.

    Yonke, B. L., Reeds, J. P., Zavalij, P. Y. & Sita, L. R. Catalytic degenerate and nondegenerate oxygen atom transfers employing N2O and CO2 and a Mii/Miv cycle mediated by group 6 Miv terminal oxo complexes. Angew. Chem. Int. Ed. 50, 12342–12346 (2011).

    CAS  Google Scholar 

  240. 240.

    Hörger, C. J. et al. Reductive disproportionation of nitric oxide mediated by low-valent uranium. Chem. Commun. 52, 10854–10857 (2016).

    Google Scholar 

  241. 241.

    Franke, S. M. et al. Uranium(iii) complexes with bulky aryloxide ligands featuring metal–arene interactions and their reactivity toward nitrous oxide. Inorg. Chem. 52, 10552–10558 (2013).

    CAS  PubMed  Google Scholar 

  242. 242.

    Matsunaga, P. T., Hillhouse, G. L. & Rheingold, A. L. Oxygen-atom transfer from nitrous oxide to a nickel metallacycle. Synthesis, structure, and reactions of (2,2′-bipyridine)Ni(OCH2CH2CH2CH2). J. Am. Chem. Soc. 115, 2075–2077 (1993).

    CAS  Google Scholar 

  243. 243.

    Harman, W. H. & Chang, C. J. N2O activation and oxidation reactivity from a non-heme iron pyrrole platform. J. Am. Chem. Soc. 129, 15128–15129 (2007).

    CAS  PubMed  Google Scholar 

  244. 244.

    Laplaza, C. E., Odom, A. L., Davis, W. M., Cummins, C. C. & Protasiewicz, J. D. Cleavage of the nitrous oxide NN bond by a tris(amido)molybdenum(iii) complex. J. Am. Chem. Soc. 117, 4999–5000 (1995).

    CAS  Google Scholar 

  245. 245.

    Cherry, J.-P. F. et al. On the origin of selective nitrous oxide N–N bond cleavage by three-coordinate molybdenum(iii) complexes. J. Am. Chem. Soc. 123, 7271–7286 (2001).

    CAS  PubMed  Google Scholar 

  246. 246.

    Stolzenberg, H., Weinberger, B., Fehlhammer, W. P., Pühlhofer, F. G. & Weiss, R. Free and metal-coordinated (N-isocyanimino)triphenylphosphorane: X-ray structures and selected reactions. Eur. J. Inorg. Chem. 2005, 4263–4271 (2005).

    Google Scholar 

  247. 247.

    Kent, G. T., Staun, S. L., Wu, G. & Hayton, T. W. Reactivity of [Ce(NR2)3] (R=SiMe3) with prospective carbon atom transfer reagents. Organometallics 39, 2375–2382 (2020).

    CAS  Google Scholar 

  248. 248.

    Joost, M., Nava, M., Transue, W. J. & Cummins, C. C. An exploding N-isocyanide reagent formally composed of anthracene, dinitrogen and a carbon atom. Chem. Commun. 53, 11500–11503 (2017).

    CAS  Google Scholar 

  249. 249.

    Sleiman, H. F. & McElwee-White, L. Photochemical azo metathesis by tungsten carbene (OC)5W:C(OCH3)CH3. Isolation of a of a zwitterionic intermediate. J. Am. Chem. Soc. 110, 8700–8701 (1988).

    CAS  Google Scholar 

  250. 250.

    Santiago, A., Gómez-Gallego, M., Ramírez de Arellano, C. & Sierra, M. A. Structure and photoreactivity of stable zwitterionic group 6 metal allenyls. Chem. Commun. 49, 1112–1114 (2013).

    CAS  Google Scholar 

  251. 251.

    Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723–6753 (2013).

    CAS  PubMed  Google Scholar 

  252. 252.

    Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 118, 9457–9492 (2018).

    CAS  PubMed  Google Scholar 

  253. 253.

    Vivancos, Á., Segarra, C. & Albrecht, M. Mesoionic and related less heteroatom-stabilized N-heterocyclic carbene complexes: synthesis, catalysis, and other applications. Chem. Rev. 118, 9493–9586 (2018).

    CAS  PubMed  Google Scholar 

  254. 254.

    Schuster, O., Yang, L. R., Raubenheimer, H. G. & Albrecht, M. Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev. 109, 3445–3478 (2009).

    CAS  PubMed  Google Scholar 

  255. 255.

    Sau, S. C., Hota, P. K., Mandal, S. K., Soleilhavoup, M. & Bertrand, G. Stable abnormal N-heterocyclic carbenes and their applications. Chem. Soc. Rev. 49, 1233–1252 (2020).

    CAS  PubMed  Google Scholar 

  256. 256.

    Han, Y. & Huynh, H. Pyrazolin-4-ylidenes: a new class of intriguing ligands. Dalton Trans. 40, 2141–2147 (2011).

    CAS  PubMed  Google Scholar 

  257. 257.

    Grundemann, S., Kovacevic, A., Albrecht, M., Faller, J. W. & Crabtree, H. Abnormal binding in a carbene complex formed from an imidazolium salt and a metal hydride complex. Chem. Commun. 2274–2275 (2001). The first report of a mesoionic carbene ligand.

  258. 258.

    Roy, M. M. D. & Rivard, E. Pushing chemical boundaries with N-heterocyclic olefins (NHOs): from catalysis to main group element chemistry. Acc. Chem. Res. 50, 2017–2025 (2017).

    CAS  PubMed  Google Scholar 

  259. 259.

    Owen, J. S., Labinger, J. A. & Bercaw, J. E. Pyridinium-derived N-heterocyclic carbene complexes of platinum: synthesis, structure and ligand substitution kinetics. J. Am. Chem. Soc. 126, 8247–8255 (2004). The first detailed discussion of the electronic structure of pyridineylidene ligands.

    CAS  PubMed  Google Scholar 

  260. 260.

    Newman, C. P., Clarkson, G. J., Alcock, N. W. & Rourke, J. P. Carbene or zwitterion? Competition in organoplatinum complexes. Dalton Trans. 27, 3321–3325 (2006).

    Google Scholar 

  261. 261.

    Ashkenazi, N. et al. Discovery of the first metallaquinone. J. Am. Chem. Soc. 122, 8797–8798 (2000).

    CAS  Google Scholar 

  262. 262.

    Nasr, A., Winkler, A. & Tamm, M. Anionic N-heterocyclic carbenes: synthesis, coordination chemistry and applications in homogeneous catalysis. Coord. Chem. Rev. 316, 68–124 (2016).

    CAS  Google Scholar 

  263. 263.

    Doddi, A., Peters, M. & Tamm, M. N-heterocyclic carbene adducts of main group elements and their use as ligands in transition metal chemistry. Chem. Rev. 119, 6994–7112 (2019).

    CAS  PubMed  Google Scholar 

  264. 264.

    Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    CAS  PubMed  Google Scholar 

  265. 265.

    Majhi, P. K. et al. Synthesis of an imidazolium phosphanide zwitterion and its conversion into anionic imidazol-2-ylidene derivatives. Angew. Chem. Int. Ed. 52, 10080–10083 (2013).

    CAS  Google Scholar 

  266. 266.

    Färber, C., Leibold, M., Bruhn, C., Maurer, M. & Siemeling, U. Nitron: a stable N-heterocyclic carbene that has been commercially available for more than a century. Chem. Commun. 48, 227–229 (2012).

    Google Scholar 

  267. 267.

    César, V., Lugan, N. & Lavigne, G. A stable anionic N-heterocyclic carbene and its zwitterionic complexes. J. Am. Chem. Soc. 130, 11286–11287 (2008). The first report of a π-conjugated anionic NHC.

    PubMed  Google Scholar 

  268. 268.

    Moerdyk, J. P., Schilter, D. & Bielawski, C. W. N,N′-diamidocarbenes: isolable divalent carbons with bona fide carbene reactivity. Acc. Chem. Res. 49, 1458–1468 (2016).

    CAS  PubMed  Google Scholar 

  269. 269.

    Navarro, M., Li, M., Bernhard, S. & Albrecht, M. A mesoionic nitrogen-donor ligand: structure, iridium coordination, and catalytic effects. Dalton Trans. 47, 659–662 (2018).

    CAS  PubMed  Google Scholar 

  270. 270.

    Leigh, V. et al. Solvent-dependent switch of ligand donor ability and catalytic activity of ruthenium(ii) complexes containing pyridinylidene amide (PYA) N-heterocyclic carbene hybrid ligands. Inorg. Chem. 53, 8054–8060 (2014).

    CAS  PubMed  Google Scholar 

  271. 271.

    Hamze, R. et al. Eliminating nonradiative decay in Cu(i) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).

    CAS  PubMed  Google Scholar 

  272. 272.

    Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017). Seminal report on the application of carbene–metal–amido complexes in organic light-emitting diodes.

    CAS  PubMed  Google Scholar 

  273. 273.

    Hamze, R. et al. “Quick-silver” from a systematic study of highly luminescent, two-coordinate, d10 coinage metal complexes. J. Am. Chem. Soc. 141, 8616–8626 (2019).

    CAS  PubMed  Google Scholar 

  274. 274.

    Gernert, M. et al. Cyclic (amino)(aryl)carbenes enter the field of chromophore ligands: expanded π system leads to unusually deep red emitting Cui compounds. J. Am. Chem. Soc. 142, 8897–8909 (2020).

    CAS  PubMed  Google Scholar 

  275. 275.

    Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

    CAS  PubMed  Google Scholar 

  276. 276.

    O’Reilly, M. E., Ghiviriga, I., Abboud, K. A. & Veige, A. S. A new ONO3− trianionic pincer-type ligand for generating highly nucleophilic metal–carbon multiple bonds. J. Am. Chem. Soc. 134, 11185–11195 (2012).

    PubMed  Google Scholar 

  277. 277.

    Ramirez, F., Desai, N. B., Hansen, B. & McKelvie, N. Hexaphenylcarbodiphosphorane, (C6H5)3PCP(C6H5)3. J. Am. Chem. Soc. 83, 3539–3540 (1961). Seminal report of a carbodiphosphorane.

    CAS  Google Scholar 

  278. 278.

    Schmidbaur, H. Réplique: a new concept for bonding in carbodiphosphoranes? Angew. Chem. Int. Ed. 46, 2984–2985 (2007).

    CAS  Google Scholar 

  279. 279.

    Quinlivan, P. J. & Parkin, G. Flexibility of the carbodiphosphorane, (Ph3P)2C: structural characterization of a linear form. Inorg. Chem. 56, 5493–5497 (2017).

    CAS  PubMed  Google Scholar 

  280. 280.

    Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    CAS  Google Scholar 

  281. 281.

    Lavallo, V., Dyker, C. A., Donnadieu, B. & Bertrand, G. Synthesis and ligand properties of stable five-membered-ring allenes containing only second-row elements. Angew. Chem. Int. Ed. 47, 5411–5414 (2008).

    CAS  Google Scholar 

  282. 282.

    Ruiz, D. A., Melaimi, M. & Bertrand, G. Carbodicarbenes, carbon(0) derivatives, can dimerize. Chem. Asian J. 8, 2940–2942 (2013).

    CAS  PubMed  Google Scholar 

  283. 283.

    Fürstner, A., Alcarazo, M., Goddard, R. & Lehmann, C. W. Coordination chemistry of ene-1,1-diamines and a prototype “carbodicarbene”. Angew. Chem. Int. Ed. 47, 3210–3214 (2008).

    Google Scholar 

  284. 284.

    Bestmann, H. J., Saalfrank, R. & Snyder, J. P. O-alkylation of alkoxycarbonylalkylidenetriphenylphosphoranes. Angew. Chem. Int. Ed. 8, 216–217 (1969).

    CAS  Google Scholar 

  285. 285.

    Alcarazo, M., Lehmann, C. W., Anoop, A., Thiel, W. & Fürstner, A. Coordination chemistry at carbon. Nat. Chem. 1, 295–301 (2009).

    CAS  PubMed  Google Scholar 

  286. 286.

    Pyykkö, P. & Runeberg, N. Ab initio studies of bonding trends: Part 9. The dicyanamide-carbon suboxide-dicyanoether-cyanogen azide isoelectronic series A=B=C=D=E. J. Mol. Struct. 234, 279–290 (1991).

    Google Scholar 

  287. 287.

    Morosaki, T., Suzuki, T., Wang, W.-W., Nagase, S. & Fujii, T. Syntheses, structures, and reactivities of two chalcogen-stabilized carbones. Angew. Chem. Int. Ed. 53, 9569–9571 (2014).

    CAS  Google Scholar 

  288. 288.

    Marrot, S., Kato, T., Cossío, F. P., Gornitzka, H. & Baceiredo, A. Cyclic carbodiphosphorane–diphosphinocarbene thermal interconversion. Angew. Chem. Int. Ed. 45, 7447–7450 (2006).

    CAS  Google Scholar 

  289. 289.

    Fujii, T., Ikeda, T., Mikami, T., Suzuki, T. & Yoshimura, T. Synthesis and structure of (MeN)Ph2SCSPh2(NMe). Angew. Chem. Int. Ed. 41, 2576–2578 (2002).

    CAS  Google Scholar 

  290. 290.

    Tonner, R., Öxler, F., Neumüller, B., Petz, W. & Frenking, G. Carbodiphosphoranes: the chemistry of divalent carbon(0). Angew. Chem. Int. Ed. 45, 8038–8042 (2006). Reinterpretation of the electronic structure of carbodiphosphoranes.

    CAS  Google Scholar 

  291. 291.

    Patel, D. S. & Bharatam, P. V. Novel +N(←L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem. Commun. 1064–1066 (2009).

  292. 292.

    Kunetskiy, R. A., Císařová, I., Šaman, D. & Lyapkalo, I. M. New lipophilic 2-amino-N,N′-dialkyl-4,5-dimethylimidazolium cations: synthesis, structure, properties, and outstanding thermal stability in alkaline media. Chem. Eur. J. 15, 9477–9485 (2009).

    CAS  PubMed  Google Scholar 

  293. 293.

    Bharatam, P. V. et al. Design, synthesis, and structural analysis of divalent Ni compounds and identification of a new electron-donating ligand. Chem. Eur. J. 22, 1088–1096 (2016).

    CAS  PubMed  Google Scholar 

  294. 294.

    Bernhardi, I., Drews, T. & Seppelt, K. Isolation and structure of the OCNCO+ ion. Angew. Chem. Int. Ed. 38, 2232–2233 (1999).

    CAS  Google Scholar 

  295. 295.

    Bruns, H. et al. Synthesis and coordination properties of nitrogen(i)-based ligands. Angew. Chem. Int. Ed. 49, 3680–3683 (2010).

    CAS  Google Scholar 

  296. 296.

    Driess, M. et al. Bis(silylene)-stabilized monovalent nitrogen complexes. Angew. Chem. Int. Ed. 59, 22043–22047 (2020).

    Google Scholar 

  297. 297.

    Frenking, G. et al. New bonding modes of carbon and heavier group 14 atoms Si–Pb. Chem. Soc. Rev. 43, 5106–5139 (2014).

    CAS  PubMed  Google Scholar 

  298. 298.

    Yao, S., Xiong, Y. & Driess, M. A new area in main-group chemistry: zerovalent monoatomic silicon compounds and their analogues. Acc. Chem. Res. 50, 2026–2037 (2017).

    CAS  PubMed  Google Scholar 

  299. 299.

    Takagi, N., Shimizu, T. & Frenking, G. Divalent silicon(0) compounds. Chem. Eur. J. 15, 3448–3456 (2009).

    CAS  PubMed  Google Scholar 

  300. 300.

    Ishida, S., Iwamoto, T., Kabuto, C. & Kira, M. A stable silicon-based allene analogue with a formally sp-hybridized silicon atom. Nature 421, 725–727 (2003).

    CAS  PubMed  Google Scholar 

  301. 301.

    Chen, W.-C. et al. Carbodicarbenes: unexpected π-accepting ability during reactivity with small molecules. J. Am. Chem. Soc. 139, 12830–12836 (2017).

    CAS  PubMed  Google Scholar 

  302. 302.

    Chan, S.-C. et al. Observation of carbodicarbene ligand redox noninnocence in highly oxidized iron complexes. Angew. Chem. Int. Ed. 57, 15717–15722 (2018).

    CAS  Google Scholar 

  303. 303.

    Chan, S.-C. et al. Carbodicarbene ligand redox noninnocence in highly oxidized chromium and cobalt complexes. Inorg. Chem. 59, 4118–4128 (2020).

    CAS  PubMed  Google Scholar 

  304. 304.

    Gravogl, L., Heinemann, F. W., Munz, D. & Meyer, K. An iron pincer complex in four oxidation states. Inorg. Chem. 59, 5632–5645 (2020).

    CAS  PubMed  Google Scholar 

  305. 305.

    Marcum, J. S., Cervarich, T. N., Manan, R. S., Roberts, C. C. & Meek, S. J. (CDC)–rhodium-catalyzed hydroallylation of vinylarenes and 1,3-dienes with allyltrifluoroborates. ACS Catal. 9, 5881–5889 (2019).

    CAS  Google Scholar 

  306. 306.

    Marcum, J. S., Roberts, C. C., Manan, R. S., Cervarich, T. N. & Meek, S. J. Chiral pincer carbodicarbene ligands for enantioselective rhodium-catalyzed hydroarylation of terminal and internal 1,3-dienes with indoles. J. Am. Chem. Soc. 139, 15580–15583 (2017).

    CAS  PubMed  Google Scholar 

  307. 307.

    Goldfogel, M. J., Roberts, C. C. & Meek, S. J. Intermolecular hydroamination of 1,3-dienes catalyzed by bis(phosphine)carbodicarbene–rhodium complexes. J. Am. Chem. Soc. 136, 6227–6230 (2014). The first report on competitive catalysis with carbodicarbene ligands.

    CAS  PubMed  Google Scholar 

  308. 308.

    Roberts, C. C., Matías, D. M., Goldfogel, M. J. & Meek, S. J. Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. J. Am. Chem. Soc. 137, 6488–6491 (2015).

    CAS  PubMed  Google Scholar 

  309. 309.

    Hsu, Y.-C. et al. One-pot tandem photoredox and cross-coupling catalysis with a single palladium carbodicarbene complex. Angew. Chem. Int. Ed. 57, 4622–4626 (2018).

    CAS  Google Scholar 

  310. 310.

    Chirik, P. J. & Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2010).

    CAS  PubMed  Google Scholar 

  311. 311.

    Pötter, B. & Seppelt, K. Trifluoroethylidynesulfur trifluoride, F3CCSF3. Angew. Chem. Int. Ed. Engl. 23, 150 (1984).

    Google Scholar 

  312. 312.

    Buron, C., Gornitzka, H., Romanenko, V. & Bertrand, G. Stable versions of transient push–pull carbenes: extending lifetimes from nanoseconds to weeks. Science 288, 834–836 (2000).

    CAS  PubMed  Google Scholar 

  313. 313.

    Tomás-Mendivil, E., Devillard, M., Regnier, V., Pecaut, J. & Martin, D. Air-stable oxyallyl patterns and a switchable N-heterocyclic carbene. Angew. Chem. Int. Ed. 59, 11516–11520 (2020).

    Google Scholar 

  314. 314.

    Koivisto, B. D. & Hicks, R. G. The magnetochemistry of verdazyl radical-based materials. Coord. Chem. Rev. 249, 2612–2630 (2005).

    CAS  Google Scholar 

  315. 315.

    McKinnon, S. D. J., Patrick, B. O., Lever, A. B. P. & Hicks, R. G. Verdazyl radicals as redox-active, non-innocent, ligands: contrasting electronic structures as a function of electron-poor and electron-rich ruthenium bis(β-diketonate) co-ligands. Chem. Commun. 46, 773–775 (2010).

    CAS  Google Scholar 

  316. 316.

    McKinnon, S. D. J., Patrick, B. O., Lever, A. B. P. & Hicks, R. G. Binuclear ruthenium complexes of a neutral radical bridging ligand. A new “spin” on mixed valency. Inorg. Chem. 52, 8053–8066 (2013).

    CAS  PubMed  Google Scholar 

  317. 317.

    Gilroy, J. B., McKinnon, S. D. J., Koivisto, B. D. & Hicks, R. G. Electrochemical studies of verdazyl radicals. Org. Lett. 9, 4837–4840 (2007).

    CAS  PubMed  Google Scholar 

  318. 318.

    Anderson, K. J. et al. Redox properties of zinc complexes of verdazyl radicals and diradicals. Inorg. Chim. Acta 374, 480–488 (2011).

    CAS  Google Scholar 

  319. 319.

    Demir, S., Jeon, I.-R., Long, J. R. & Harris, T. D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 289–290, 149–176 (2015).

    Google Scholar 

  320. 320.

    Siri, O. & Braunstein, P. Unprecedented zwitterion in quinonoid chemistry. Chem. Commun. 208–209 (2002).

  321. 321.

    Braunstein, P. et al. A 6π+6π potentially antiaromatic zwitterion preferred to a quinoidal structure: its reactivity toward organic and inorganic reagents. J. Am. Chem. Soc. 125, 12246–12256 (2003).

    CAS  PubMed  Google Scholar 

  322. 322.

    Sarkar, B., Schweinfurth, D., Deibel, N. & Weisser, F. Functional metal complexes based on bridging “imino”-quinonoid ligands. Coord. Chem. Rev. 293–294, 250–262 (2015).

    Google Scholar 

  323. 323.

    Gaudette, A. I. et al. Electron hopping through double-exchange coupling in a mixed-valence diiminobenzoquinone-bridged Fe2 complex. J. Am. Chem. Soc. 137, 12617–12626 (2015).

    CAS  PubMed  Google Scholar 

  324. 324.

    Ghisolfi, A., Waldvogel, A., Routaboul, L. & Braunstein, P. Reversible switching of the coordination modes of a pyridine-functionalized quinonoid zwitterion; its di- and tetranuclear palladium complexes. Inorg. Chem. 53, 5515–5526 (2014).

    CAS  PubMed  Google Scholar 

  325. 325.

    Xiao, J. et al. The interface bonding and orientation of a quinonoid zwitterion. Phys. Chem. Chem. Phys. 12, 10329–10340 (2010).

    CAS  PubMed  Google Scholar 

  326. 326.

    Routabul, L. Altering the static dipole on surfaces through chemistry: molecular films of zwitterionic quinonoids. J. Am. Chem. Soc. 134, 8494–8506 (2012).

    Google Scholar 

  327. 327.

    Zhang, X. et al. Locking and unlocking the molecular spin crossover transition. Adv. Mater. 29, 1702257 (2017).

    Google Scholar 

  328. 328.

    Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. Stable free radicals. X. Nitronyl nitroxide monoradicals and biradicals as possible small molecule spin labels. J. Am. Chem. Soc. 94, 7049–7059 (1972). A seminal report on nitronyl nitroxides.

    CAS  Google Scholar 

  329. 329.

    Weiss, R. & Kraut, N. Dinitroxide carbenes, a new class of carbenes with autoumpolung character: Preparation in solution and stabilization in transition metal complexes. Angew. Chem. Int. Ed. 41, 311–314 (2002).

    CAS  Google Scholar 

  330. 330.

    Zhang, X., Suzuki, S., Kozaki, M. & Okada, K. NCN pincer–Pt complexes coordinated by (nitronyl nitroxide)-2-ide radical anion. J. Am. Chem. Soc. 134, 17866–17868 (2012).

    CAS  PubMed  Google Scholar 

  331. 331.

    Tanimoto, R., Yamada, K., Suzuki, S., Kozaki, M. & Okada, K. Group 11 metal complexes coordinated by the (nitronyl nitroxide)-2-ide radical anion: facile oxidation of stable radicals controlled by metal–carbon bonds in radical-metalloids. Eur. J. Inorg. Chem. 2018, 1198–1203 (2018).

    CAS  Google Scholar 

  332. 332.

    Suzuki, S. et al. Synthesis and properties of a bis[(nitronyl nitroxide)-2-ide radical anion]–palladium complex. Eur. J. Inorg. Chem. 2014, 4740–4744 (2014).

    CAS  Google Scholar 

  333. 333.

    Bantreil, X., Pétry, N. & Lamaty, F. Coordination complexes involving sydnones as ligands. Dalton Trans. 48, 15753–15761 (2019).

    CAS  PubMed  Google Scholar 

  334. 334.

    Gudat, D. in New Aspects in Phosphorus Chemistry IV (ed. Majoral, J.-P.) 175–212 (Springer, 2004).

Download references

Acknowledgements

We thank Sadig Aghazada for insightful discussions. We acknowledge the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) for generous financial support. D.M. acknowledges financial support by the Fonds der Chemischen Industrie im Verband der Chemischen Industrie e.V. (Liebig Fellowship), as well as Research Corporation for Science Advancement (RCSA) and Fulbright Germany for a Fulbright-Cottrell Award.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Dominik Munz or Karsten Meyer.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Munz, D., Meyer, K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 5, 422–439 (2021). https://doi.org/10.1038/s41570-021-00276-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing