Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible catalysis

Abstract

We describe as ‘reversible’ a bidirectional catalyst that allows a reaction to proceed at a significant rate in response to even a small departure from equilibrium, resulting in fast and energy-efficient chemical transformation. Examining the relation between reaction rate and thermodynamic driving force is the basis of electrochemical investigations of redox reactions, which can be catalysed by metallic surfaces and biological or synthetic molecular catalysts. This relation has also been discussed in the context of biological energy transduction, regarding the function of biological molecular machines that harness chemical reactions to do mechanical work. This Perspective describes mean-field kinetic modelling of these three types of systems — surface catalysts, molecular catalysts of redox reactions and molecular machines — with the goal of unifying concepts in these different fields. We emphasize that reversibility should be distinguished from other figures of merit, such as rate or directionality, before its design principles can be identified and used to engineer synthetic catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Differences between ordered and branched catalytic mechanisms.
Fig. 2: Reversibility in catalysis.
Fig. 3: Rate versus driving force responses of different catalysts.
Fig. 4: The power output of motors and fuel cells.

References

  1. 1.

    Nicholls, D. G. & Ferguson, S. J. Bioenergetics (Academic Press, 2013).

  2. 2.

    De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Fourmond, V., Wiedner, E. S., Shaw, W. J. & Léger, C. Understanding and design of bidirectional and reversible catalysts of multielectron, multistep reactions. J. Am. Chem. Soc. 141, 11269–11285 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Dutta, A., Appel, A. M. & Shaw, W. J. Designing electrochemically reversible H2 oxidation and production catalysts. Nat. Rev. Chem. 2, 244–252 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Hardt, S. et al. Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat. Catal. 4, 251–258 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman, 1999).

  8. 8.

    Domnik, L. et al. CODH-IV: A high-efficiency CO-scavenging CO dehydrogenase with resistance to O2. Angew. Chem. Int. Ed. 56, 15466–15469 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Alberty, R. A. & Hammes, G. G. Application of the theory of diffusion-controlled reactions to enzyme kinetics. J. Phys. Chem. 62, 154–159 (1958).

    CAS  Article  Google Scholar 

  10. 10.

    Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Jencks, W. P. Catalysis in Chemistry and Enzymology (Courier Corporation, 1987).

  13. 13.

    Lampret, O. et al. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proc. Natl Acad. Sci. USA 117, 20520–20529 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Dutta, A. et al. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. J. Am. Chem. Soc. 135, 18490–18496 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Abou Hamdan, A. et al. Understanding and tuning the catalytic bias of hydrogenase. J. Am. Chem. Soc. 134, 8368–8371 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Caserta, G. et al. Engineering an [FeFe]-hydrogenase: do accessory clusters influence O2 resistance and catalytic bias? J. Am. Chem. Soc. 140, 5516–5526 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    McIntosh, C. L., Germer, F., Schulz, R., Appel, J. & Jones, A. K. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J. Am. Chem. Soc. 133, 11308–11319 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Lampret, O. et al. Interplay between CN ligands and the secondary coordination sphere of the H-cluster in [FeFe]-hydrogenases. J. Am. Chem. Soc. 139, 18222–18230 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Adamson, H. et al. Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase via a single amino acid exchange at the electron entry/exit site. J. Am. Chem. Soc. 139, 10677–10686 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Rodríguez-Maciá, P. et al. His-ligation to the [4Fe–4S] sub-cluster tunes the catalytic bias of [FeFe] hydrogenase. J. Am. Chem. Soc. 141, 472–481 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. 22.

    Therien, J. B. et al. The physiological functions and structural determinants of catalytic bias in the [FeFe]-hydrogenases CpI and CpII of Clostridium pasteurianum strain W5. Front. Microbiol. 8, 1305 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kertess, L. et al. Influence of the [4Fe–4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem. Sci. 8, 8127–8137 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Mulder, D. W., Peters, J. W. & Raugei, S. Catalytic bias in oxidation–reduction catalysis. Chem. Commun. 57, 713–720 (2021).

    CAS  Article  Google Scholar 

  25. 25.

    Cornish-Bowden, A. Fundamentals of Enzyme Kinetics (English Edition) (Wiley-Blackwell, 2013).

  26. 26.

    Jencks, W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. Relat. Area. Mol. Biol. 43, 219–410 (1975).

    CAS  Google Scholar 

  27. 27.

    Frydendal, R. et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1, 2075–2081 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Clancy, B. E., Behnke-Parks, W. M., Andreasson, J. O. L., Rosenfeld, S. S. & Block, S. M. A universal pathway for kinesin stepping. Nat. Struct. Mol. Biol. 18, 1020–1027 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Tsygankov, D. & Fisher, M. E. Mechanoenzymes under superstall and large assisting loads reveal structural features. Proc. Natl Acad. Sci. USA 104, 19321–19326 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  CAS  Google Scholar 

  33. 33.

    Damjanovic, A., Dey, A. & Bockris, J. O. Kinetics of oxygen evolution and dissolution on platinum electrodes. Electrochim. Acta 11, 791–814 (1966).

    CAS  Article  Google Scholar 

  34. 34.

    del Barrio, M. & Fourmond, V. Redox (in)activations of metalloenzymes: a protein film voltammetry approach. ChemElectroChem 6, 4949–4962 (2019).

    Article  CAS  Google Scholar 

  35. 35.

    Abou Hamdan, A. et al. O2-independent formation of the inactive states of NiFe hydrogenase. Nat. Chem. Biol. 9, 15–17 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  36. 36.

    Winkler, M. et al. A safety cap protects hydrogenase from oxygen attack. Nat. Commun. 12, 756 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Artz, J. H. et al. Tuning catalytic bias of hydrogen gas producing hydrogenases. J. Am. Chem. Soc. 142, 1227–1235 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Jacq-Bailly, A. et al. Electrochemical characterization of a complex FeFe hydrogenase, the electron-bifurcating Hnd from Desulfovibrio fructosovorans. Front. Chem. 8, 573305 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley, 1975).

  40. 40.

    Alberty, R. A. The relationship between Michaelis constants, maximum velocities and the equilibrium constant for an enzyme-catalyzed reaction. J. Am. Chem. Soc. 75, 1928–1932 (1953).

    CAS  Article  Google Scholar 

  41. 41.

    Smith, S. E., Yang, J. Y., DuBois, D. L. & Bullock, R. M. Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic. Angew. Chem. Int. Ed. 51, 3152–3155 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Dutta, A., DuBois, D. L., Roberts, J. A. S. & Shaw, W. J. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proc. Natl Acad. Sci. USA 111, 16286–16291 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Dutta, A., Lense, S., Roberts, J. A. S., Helm, M. L. & Shaw, W. J. The role of solvent and the outer coordination sphere on H2 oxidation using [Ni(PCy2NPyz2)2]2+. Eur. J. Inorg. Chem. 2015, 5218–5225 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Priyadarshani, N. et al. Achieving reversible H2/H+ interconversion at room temperature with enzyme-inspired molecular complexes: a mechanistic study. ACS Catal. 6, 6037–6049 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Raugei, S. et al. Experimental and computational mechanistic studies guiding the rational design of molecular electrocatalysts for production and oxidation of hydrogen. Inorg. Chem. 55, 445–460 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Yang, J. Y. et al. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines. Chem. Commun. 46, 8618–8620 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    Blackmond, D. G. ‘If pigs could fly’ chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Hyeon, C., Klumpp, S. & Onuchic, J. N. Kinesin’s backsteps under mechanical load. Phys. Chem. Chem. Phys. 11, 4899–4910 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Ariga, T., Tomishige, M. & Mizuno, D. Nonequilibrium energetics of molecular motor kinesin. Phys. Rev. Lett. 121, 218101 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Carter, N. J. & Cross, R. A. Kinesin’s moonwalk. Curr. Opin. Cell Biol. 18, 61–67 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Wagoner, J. A. & Dill, K. A. Opposing pressures of speed and efficiency guide the evolution of molecular machines. Mol. Biol. Evol. 36, 2813–2822 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Clark, E. L. & Bell, A. T. in Carbon Dioxide Electrochemistry (eds Robert, M., Costentin, C. & Daasbjerg, K.) 98–150 (RSC Publishing, 2020).

  54. 54.

    Piontek, S. et al. Bio-inspired design: bulk iron–nickel sulfide allows for efficient solvent-dependent CO2 reduction. Chem. Sci. 10, 1075–1081 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    van Dijk, C. & Veeger, C. The effects of pH and redox potential on the hydrogen production activity of the hydrogenase from Megasphaera elsdenii. Eur. J. Biochem. 114, 209–219 (1981).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Toyabe, S., Watanabe-Nakayama, T., Okamoto, T., Kudo, S. & Muneyuki, E. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc. Natl Acad. Sci. USA 108, 17951–17956 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Wagoner, J. A. & Dill, K. A. Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc. Natl Acad. Sci. USA 116, 5902–5907 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Bianco, P. & Haladjian, J. Electrocatalytic hydrogen-evolution at the pyrolytic graphite electrode in the presence of hydrogenase. J. Electrochem. Soc. 139, 2428 (1992).

    CAS  Article  Google Scholar 

  60. 60.

    Butt, J. N., Filipiak, M. & Hagen, W. R. Direct electrochemistry of Megasphaera elsdenii iron hydrogenase. Eur. J. Biochem. 245, 116–122 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Pershad, H. R. et al. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38, 8992–8999 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Léger, C. et al. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry 40, 11234–11245 (2001).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  63. 63.

    Sucheta, A., Ackrell, B. A., Cochran, B. & Armstrong, F. A. Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature 356, 361–362 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Parkin, A., Seravalli, J., Vincent, K. A., Ragsdale, S. W. & Armstrong, F. A. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 129, 10328–10329 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Bassegoda, A., Madden, C., Wakerley, D. W., Reisner, E. & Hirst, J. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J. Am. Chem. Soc. 136, 15473–15476 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Zu, Y., Shannon, R. J. & Hirst, J. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Iλ) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Am. Chem. Soc. 125, 6020–6021 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Kurth, J. M., Dahl, C. & Butt, J. N. Catalytic protein film electrochemistry provides a direct measure of the tetrathionate/thiosulfate reduction potential. J. Am. Chem. Soc. 137, 13232–13235 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Lee, K. J., McCarthy, B. D. & Dempsey, J. L. On decomposition, degradation, and voltammetric deviation: the electrochemist’s field guide to identifying precatalyst transformation. Chem. Soc. Rev. 48, 2927–2945 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Savéant, J.-M. & Costentin, C. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (Wiley, 2019).

  70. 70.

    Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Fourmond, V. & Léger, C. Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr. Opin. Electrochem. 1, 110–120 (2017).

    CAS  Article  Google Scholar 

  72. 72.

    Land, H. et al. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chem. Sci. 11, 12789–12801 (2020).

    CAS  Article  Google Scholar 

  73. 73.

    Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Abidi, N., Lim, K. R. G., Seh, Z. W. & Steinmann, S. N. Atomistic modeling of electrocatalysis: Are we there yet? Wiley Interdiscip. Rev. Comput. Mol. Sci. 372, e1499 (2020).

    Google Scholar 

  75. 75.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

  76. 76.

    Appel, A. M. & Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 4, 630–633 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Article  Google Scholar 

  79. 79.

    Amatore, C. & Jutand, A. Mechanistic and kinetic studies of palladium catalytic systems. J. Organomet. Chem. 576, 254–278 (1999).

    CAS  Article  Google Scholar 

  80. 80.

    Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  82. 82.

    Ding, Z.-B. & Maestri, M. Development and assessment of a criterion for the application of Brønsted–Evans–Polanyi relations for dissociation catalytic reactions at surfaces. Ind. Eng. Chem. Res. 58, 9864–9874 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Plessow, P. N. & Abild-Pedersen, F. Examining the linearity of transition state scaling relations. J. Phys. Chem. C 119, 10448–10453 (2015).

    CAS  Article  Google Scholar 

  84. 84.

    Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Article  CAS  Google Scholar 

  85. 85.

    Dementin, S. et al. Rates of intra- and intermolecular electron transfers in hydrogenase deduced from steady-state activity measurements. J. Am. Chem. Soc. 133, 10211–10221 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402, 47–52 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Cunningham, D. W., Barlow, J. M., Velasquez, R. S. & Yang, J. Reversible and selective CO2 to HCO2 electrocatalysis near the thermodynamic potential. Angew. Chem. Int. Ed. 59, 4443–4447 (2020).

    CAS  Article  Google Scholar 

  88. 88.

    Ooka, H. & Nakamura, R. Shift of the optimum binding energy at higher rates of catalysis. J. Phys. Chem. Lett. 10, 6706–6713 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Zeradjanin, A. R., Grote, J.-P., Polymeros, G. & Mayrhofer, K. J. J. A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28, 2256–2269 (2016).

    CAS  Article  Google Scholar 

  90. 90.

    Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    CAS  Article  Google Scholar 

  91. 91.

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Article  Google Scholar 

  92. 92.

    Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    CAS  Article  Google Scholar 

  93. 93.

    Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    CAS  Article  Google Scholar 

  94. 94.

    Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Costentin, C. & Savéant, J.-M. Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017).

    CAS  Article  Google Scholar 

  96. 96.

    Sakai, K. et al. Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis. Sens. Bio-Sensing Res. 5, 90–96 (2015).

    Article  Google Scholar 

  97. 97.

    Hexter, S. V., Grey, F., Happe, T., Climent, V. & Armstrong, F. A. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc. Natl Acad. Sci. USA 109, 11516–11521 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Savéant, J.-M. Molecular catalysis of electrochemical reactions. Cyclic voltammetry of systems approaching reversibility. ACS Catal. 8, 7608–7611 (2018).

    Article  CAS  Google Scholar 

  99. 99.

    Fourmond, V. et al. Steady-state catalytic wave-shapes for 2-electron reversible electrocatalysts and enzymes. J. Am. Chem. Soc. 135, 3926–3938 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Costentin, C. & Savéant, J.-M. Multielectron, multistep molecular catalysis of electrochemical reactions: benchmarking of homogeneous catalysts. ChemElectroChem 1, 1226–1236 (2014).

    CAS  Article  Google Scholar 

  101. 101.

    Zeng, T., Leimkühler, S., Wollenberger, U. & Fourmond, V. Transient catalytic voltammetry of sulfite oxidase reveals rate limiting conformational changes. J. Am. Chem. Soc. 139, 11559–11567 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Nicholson, R. S. & Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36, 706–723 (1964).

    CAS  Article  Google Scholar 

  103. 103.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Wang, V. C.-C. & Johnson, B. A. Interpreting the electrocatalytic voltammetry of homogeneous catalysts by the foot of the wave analysis and its wider implications. ACS Catal. 9, 7109–7123 (2019).

    CAS  Article  Google Scholar 

  105. 105.

    Qian, H. A simple theory of motor protein kinetics and energetics. Biophys. Chem. 67, 263–267 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Fisher, M. E. & Kolomeisky, A. B. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl Acad. Sci. USA 98, 7748–7753 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Brown, A. I. & Sivak, D. A. Allocating and splitting free energy to maximize molecular machine flux. J. Phys. Chem. B 122, 1387–1393 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Brown, A. I. & Sivak, D. A. Allocating dissipation across a molecular machine cycle to maximize flux. Proc. Natl Acad. Sci. USA 114, 11057–11062 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Fisher, M. E. & Kolomeisky, A. B. The force exerted by a molecular motor. Proc. Natl Acad. Sci. USA 96, 6597–6602 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Wagoner, J. A. & Dill, K. A. Molecular motors: Power strokes outperform Brownian ratchets. J. Phys. Chem. B 120, 6327–6336 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Sabatier, P. La Catalyse en Chimie Organique (University of Michigan Library, 1913).

  114. 114.

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  115. 115.

    Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis — uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Costentin, C. & Savéant, J.-M. Homogeneous molecular catalysis of electrochemical reactions: manipulating intrinsic and operational factors for catalyst improvement. J. Am. Chem. Soc. 140, 16669–16675 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Costentin, C. & Savéant, J.-M. Homogeneous molecular catalysis of electrochemical reactions: catalyst benchmarking and optimization strategies. J. Am. Chem. Soc. 139, 8245–8250 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Cunningham, D. W. & Yang, J. Y. Kinetic and mechanistic analysis of a synthetic reversible CO2/HCO2 electrocatalyst. Chem. Commun. 56, 12965–12968 (2020).

    CAS  Article  Google Scholar 

  119. 119.

    Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Yang, J. Y., Kerr, T. A., Wang, X. S. & Barlow, J. M. Reducing CO2 to HCO2 at mild potentials: lessons from formate dehydrogenase. J. Am. Chem. Soc. 142, 19438–19445 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Curtis, C. J., Miedaner, A., Ellis, W. W. & DuBois, D. L. Measurement of the hydride donor abilities of [HM(diphosphine)2]+ complexes (M = Ni, Pt) by heterolytic activation of hydrogen. J. Am. Chem. Soc. 124, 1918–1925 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Doherty, M. K. et al. Identification of the active site acid/base catalyst in a bacterial fumarate reductase: a kinetic and crystallographic study. Biochemistry 39, 10695–10701 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Turner, K. L. et al. Redox properties of flavocytochrome c3 from Shewanella frigidimarina NCIMB400. Biochemistry 38, 3302–3309 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Wilson, A. D. et al. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358–366 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  127. 127.

    Raugei, S. et al. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes. Chem. Eur. J. 18, 6493–6506 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Rountree, E. S. & Dempsey, J. L. Potential-dependent electrocatalytic pathways: controlling reactivity with pKa for mechanistic investigation of a nickel-based hydrogen evolution catalyst. J. Am. Chem. Soc. 137, 13371–13380 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Appel, A. M. et al. [Ni(PPh2NBn2)2(CH3CN)]2+ as an electrocatalyst for H2 production: dependence on acid strength and isomer distribution. ACS Catal. 1, 777–785 (2011).

    CAS  Article  Google Scholar 

  130. 130.

    Horvath, S., Fernandez, L. E., Appel, A. M. & Hammes-Schiffer, S. pH-Dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts. Inorg. Chem. 52, 3643–3652 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Lense, S., Dutta, A., Roberts, J. A. S. & Shaw, W. J. A proton channel allows a hydrogen oxidation catalyst to operate at a moderate overpotential with water acting as a base. Chem. Commun. 50, 792–795 (2014).

    CAS  Article  Google Scholar 

  132. 132.

    Das, P. et al. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(ii) complex containing proton relays in the second and outer coordination spheres. Dalton Trans. 43, 2744–2754 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Yang, J. Y. et al. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. J. Am. Chem. Soc. 135, 9700–9712 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Canaguier, S. et al. Catalytic hydrogen production by a Ni–Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Chem. Commun. 49, 5004–5006 (2013).

    CAS  Article  Google Scholar 

  135. 135.

    Baffert, C., Artero, V. & Fontecave, M. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(ii) complexes in organic media. Inorg. Chem. 46, 1817–1824 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Frangioni, B. et al. In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. J. Am. Chem. Soc. 126, 1328–1329 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Bertrand, P. et al. Effects of slow substrate binding and release in redox enzymes: theory and application to periplasmic nitrate reductase. J. Phys. Chem. B 111, 10300–10311 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Wiedner, E. S., Brown, H. J. S. & Helm, M. L. Kinetic analysis of competitive electrocatalytic pathways: new insights into hydrogen production with nickel electrocatalysts. J. Am. Chem. Soc. 138, 604–616 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Ho, M.-H. et al. Ab initio-based kinetic modeling for the design of molecular catalysts: the case of H2 production electrocatalysts. ACS Catal. 5, 5436–5452 (2015).

    CAS  Article  Google Scholar 

  140. 140.

    Kitazumi, Y. & Kano, K. in Electron-Based Bioscience and Biotechnology (eds Ishii, M. & Wakai, S.) 81–99 (Springer Singapore, 2020).

  141. 141.

    Chen, H. et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020).

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Gallaway, J. W. & Calabrese Barton, S. A. Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 130, 8527–8536 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Cai, R. & Minteer, S. D. Nitrogenase bioelectrocatalysis: from understanding electron-transfer mechanisms to energy applications. ACS Energy Lett. 3, 2736–2742 (2018).

    CAS  Article  Google Scholar 

  144. 144.

    Oughli, A. A. et al. A redox hydrogel protects the O2-sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew. Chem. Int. Ed. 54, 12329–12333 (2015).

    CAS  Article  Google Scholar 

  145. 145.

    Plumeré, N. et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822–827 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  146. 146.

    Shiraiwa, S. et al. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 123, 156–161 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Yuan, M. et al. Creating a low-potential redox polymer for efficient electroenzymatic CO2 reduction. Angew. Chem. Int. Ed. 57, 6582–6586 (2018).

    CAS  Article  Google Scholar 

  148. 148.

    Sakai, K., Kitazumi, Y., Shirai, O., Takagi, K. & Kano, K. High-power formate/dioxygen biofuel cell based on mediated electron transfer type bioelectrocatalysis. ACS Catal. 7, 5668–5673 (2017).

    CAS  Article  Google Scholar 

  149. 149.

    Ruth, J. C., Milton, R. D., Gu, W. & Spormann, A. M. Enhanced electrosynthetic hydrogen evolution by hydrogenases embedded in a redox-active hydrogel. Chem. Eur. J. 26, 7323–7329 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Tatsumi, H., Takagi, K., Fujita, M., Kano, K. & Ikeda, T. Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Anal. Chem. 71, 1753–1759 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Tsujimura, S., Fujita, M., Tatsumi, H., Kano, K. & Ikeda, T. Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys. 3, 1331–1335 (2001).

    CAS  Article  Google Scholar 

  152. 152.

    Bonitatibus, P. J. et al. Reversible catalytic dehydrogenation of alcohols for energy storage. Proc. Natl Acad. Sci. 112, 1687–1692 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Fujita, K.-I., Wada, T. & Shiraishi, T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage. Angew. Chem. Int. Ed. 56, 10886–10889 (2017).

    CAS  Article  Google Scholar 

  154. 154.

    Zou, Y.-Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Xie, Y., Hu, P., Ben-David, Y. & Milstein, D. A reversible liquid organic hydrogen carrier system based on methanol-ethylenediamine and ethylene urea. Angew. Chem. Int. Ed. 58, 5105–5109 (2019).

    CAS  Article  Google Scholar 

  156. 156.

    Shao, Z. et al. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nat. Commun. 11, 591 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Li, H. et al. Complete protection of O2-sensitive catalysts in thin films. J. Am. Chem. Soc. 141, 16734–16742 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Goodsell, D. Kinesin. RCSB PDB-101 Molecule of the Month. https://doi.org/10.2210/rcsb_pdb/mom_2005_4 (2005).

    Article  Google Scholar 

  159. 159.

    Boyd, R. K. Some common oversimplifications in teaching chemical kinetics. J. Chem. Educ. 55, 84–89 (1978).

    CAS  Article  Google Scholar 

  160. 160.

    Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 66, 1077–1184 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Wendy J. Shaw, Eric S. Wiedner, Hideshi Ooka and Patrick Bertrand for fruitful discussions. They acknowledge financial support from CNRS, Aix-Marseille Université, Agence Nationale de la Recherche (ANR-15-CE05-0020) and the Excellence Initiative of Aix-Marseille University - A*MIDEX, a French ‘Investissements d’Avenir’ programme (ANR-11-IDEX-0001-02), the ERC starting grant 715900 and the ANR-DFG project SHIELDS (PL 746/2-1). The Marseille group is part of FrenchBIC (www.frenchbic.cnrs.fr).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Christophe Léger.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fourmond, V., Plumeré, N. & Léger, C. Reversible catalysis. Nat Rev Chem 5, 348–360 (2021). https://doi.org/10.1038/s41570-021-00268-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing