Abstract
For decades, chemists have explored cluster compounds according to theoretical models that have proved too simplistic to accurately predict cluster properties, stabilities and functions. By incorporating molecular symmetry into existing cluster models, we can better study real polyatomic molecules and have new guidelines for their design. This symmetry-adapted cluster model allows us to discover substances that shatter the conventional notion of clusters. Theoretical predictors will point to the viability of new clusters, whose syntheses can be realized with parallel advances in experimental methods. This Perspective describes these modern experimental and theoretical strategies for cluster design and how they may give rise to new fields in cluster chemistry.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990).
Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).
Liu, S., Lu, Y.-J., Kappes, M. M. & Ibers, J. A. The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110K. Science 254, 408–410 (1991).
Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).
Luo, Z., Castleman, A. W. & Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 116, 14456–14492 (2016).
Benfield, R. E. Mean coordination numbers and the non-metal–metal transition in clusters. J. Chem. Soc. Faraday Trans. 88, 1107–1110 (1992).
Haruta, M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).
Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).
Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).
Reber, A. C., Khanna, S. N. & Castleman, A. W. in Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems Vol. 1 Ch. 9 (eds Jena, P. & Castleman, A. W. Jr) 365–381 (Elsevier, 2010).
Bergeron, D. E., Castleman, A. W., Morisato, T. & Khanna, S. N. Formation of Al13I−: evidence for the superhalogen character of Al13. Science 304, 84–87 (2004).
Bergeron, D. E., Roach, P. J., Castleman, A. W., Jones, N. O. & Khanna, S. N. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts. Science 307, 231–235 (2005).
Reveles, J. U., Khanna, S. N., Roach, P. J. & Castleman, A. W. Multiple valence superatoms. Proc. Natl Acad. Sci. USA 103, 18405–18410 (2006).
Luo, Z. & Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 47, 2931–2940 (2014).
Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).
Wang, Z. W. & Palmer, R. E. Direct atomic imaging and dynamical fluctuations of the tetrahedral Au20 cluster. Nanoscale 4, 4947–4949 (2012).
Cui, L.-F. et al. Sn122−: stannaspherene. J. Am. Chem. Soc. 128, 8390–8391 (2006).
Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).
Cui, L.-F., Huang, X., Wang, L.-M., Li, J. & Wang, L.-S. Endohedral stannaspherenes M@Sn12−: a rich class of stable molecular cage clusters. Angew. Chem. Int. Ed. 46, 742–745 (2007).
Koyasu, K., Akutsu, M., Mitsui, M. & Nakajima, A. Selective formation of MSi16 (M=Sc, Ti, and V). J. Am. Chem. Soc. 127, 4998–4999 (2005).
Mitsui, M., Nagaoka, S., Matsumoto, T. & Nakajima, A. Soft-landing isolation of vanadium–benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Am. Chem. Soc. 110, 2968–2971 (2006).
Guha, S. & Nakamoto, K. Electronic structures and spectral properties of endohedral fullerenes. Coord. Chem. Rev. 249, 1111–1132 (2005).
Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).
Nishigaki, J., Koyasu, K. & Tsukuda, T. Chemically modified gold superatoms and superatomic molecules. Chem. Rec. 14, 897–909 (2014).
Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).
Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).
Yao, Q., Chen, T., Yuan, X. & Xie, J. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 51, 1338–1348 (2018).
Sharma, S., Chakrahari, K. K., Saillard, J.-Y. & Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 51, 2475–2483 (2018).
Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1Å resolution. Science 318, 430–433 (2007).
Wilson, R. J., Lichtenberger, N., Weinert, B. & Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 119, 8506–8554 (2019).
Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew. Chem. Int. Ed. 50, 3630–3670 (2011).
Schnöckel, H. Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 110, 4125–4153 (2010).
Weßing, J. et al. The Mackay-type cluster [Cu43Al12](Cp*)12: open-shell 67-electron superatom with emerging metal-like electronic structure. Angew. Chem. Int. Ed. 57, 14630–14634 (2018).
Teramoto, M. et al. Three-dimensional sandwich nanocubes composed of 13-atom palladium core and hexakis-carbocycle shell. J. Am. Chem. Soc. 140, 12682–12686 (2018).
Sánchez, R. H., Willis, A. M., Zheng, S.-L. & Betley, T. A. Synthesis of well-defined bicapped octahedral iron clusters [(trenL)2Fe8(PMe2Ph)2]n (n=0, −1). Angew. Chem. Int. Ed. 54, 12009–12013 (2015).
Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).
Beinert, H., Holm, R. H. & Münck, E. Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).
Gary, D. C. et al. Crystal and electronic structure of a 1.3nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).
Ford, P. C. & Vogler, A. Photochemical and photophysical properties of tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic configurations. Acc. Chem. Res. 26, 220–226 (1993).
Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).
Schnepf, A. & Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem. Int. Ed. 41, 3532–3554 (2002).
Uhl, W. Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium. Naturwissenschaften 91, 305–319 (2004).
Schulz, C., Daniels, J., Bredow, T. & Beck, J. The electrochemical synthesis of polycationic clusters. Angew. Chem. Int. Ed. 55, 1173–1177 (2016).
Yang, H. et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).
Wang, Y. et al. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 139, 619–622 (2017).
Moses, M. J., Fettinger, J. C. & Eichhorn, B. W. Interpenetrating As20 fullerene and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion. Science 300, 778–780 (2003).
Jongen, L., Mudring, A.-V. & Meyer, G. The molecular solid Sc24C10I30: a truncated, hollow T4 supertetrahedron of iodine filled with a T3 supertetrahedron of scandium that encapsulates the adamantoid cluster Sc4C10. Angew. Chem. Int. Ed. 45, 1886–1889 (2006).
Kurotobi, K. & Murata, Y. A single molecule of water encapsulated in fullerene C60. Science 333, 613–616 (2011).
Reed, C. A. Carborane acids. New “strong yet gentle” acids for organic and inorganic chemistry. Chem. Commun. 13, 1669–1677 (2005).
Murugadoss, A., Kai, N. & Sakurai, H. Synthesis of bimetallic gold–silver alloy nanoclusters by simple mortar grinding. Nanoscale 4, 1280–1282 (2012).
Gabriel, J.-C., Boubekeur, K. & Batail, P. Molecular hexanuclear clusters in the system rhenium–sulfur–chlorine: solid state synthesis, solution chemistry, and redox properties. Inorg. Chem. 32, 2894–2900 (1993).
Tulsky, E. G. & Long, J. R. Dimensional reduction: a practical formalism for manipulating solid structures. Chem. Mater. 13, 1149–1166 (2001).
Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 668 (2017).
Sugimoto, Y., Yurtsever, A., Hirayama, N., Abe, M. & Morita, S. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy. Nat. Commun. 5, 4360 (2014).
Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).
Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).
Löffler, T. et al. Discovery of a multinary noble metal–free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).
Quintanilla, M. & Liz-Marzán, L. M. Caged clusters shine brighter. Science 361, 645 (2018).
Coutiño-Gonzalez, E. et al. Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc. Chem. Res. 50, 2353–2361 (2017).
Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).
Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12± x inside a metal–organic framework. J. Am. Chem. Soc. 191, 13962–13969 (2019).
Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).
Liu, L. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).
Matsuno, S. et al. Exact mass analysis of sulfur clusters upon encapsulation by a polyaromatic capsular matrix. Nat. Commun. 8, 749 (2017).
Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).
Maity, B., Abe, S. & Ueno, T. Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nat. Commun. 8, 14820 (2017).
Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).
Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).
Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).
Yamamoto, K. & Imaoka, T. Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc. Chem. Res. 47, 1127–1136 (2014).
Imaoka, T. et al. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 135, 13089–13095 (2013).
Huda, M., Minamisawa, K., Tsukamoto, T., Tanabe, M. & Yamamoto, K. Aerobic toluene oxidation catalyzed by subnano metal particles. Angew. Chem. Int. Ed. 58, 1002–1006 (2018).
Kambe, T., Haruta, N., Imaoka, T. & Yamamoto, K. Solution-phase synthesis of Al13− using a dendrimer template. Nat. Commun. 8, 2046 (2017).
Tsukamoto, T., Kuzume, A., Nagasaka, M., Kambe, T. & Yamamoto, K. Quantum materials exploration by sequential screening technique of heteroatomicity. J. Am. Chem. Soc. 142, 19078–19084 (2020).
Moriai, T., Tsukamoto, T., Tanabe, M., Kambe, T. & Yamamoto, K. Selective hydroperoxygenation of olefin realized by coinage multimetallic 1-nanometer catalyst. Angew. Chem. Int. Ed. 59, 23051–23055 (2020).
Tsukamoto, T., Kambe, T., Nakao, A., Imaoka, T. & Yamamoto, K. Atom-hybridization for synthesis of polymetallic clusters. Nat. Commun. 9, 3873 (2018).
Wade, K. Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem. 18, 1–66 (1976).
Mingos, D. M. P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 17, 311–319 (1984).
Jemmis, E. D. & Jayasree, E. G. Analogies between boron and carbon. Acc. Chem. Res. 36, 816–824 (2003).
Taylor, M. G. & Mpourmpakis, G. Thermodynamic stability of ligand-protected metal nanoclusters. Nat. Commun. 8, 15988 (2017).
Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 (1984).
de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993).
Häkkinen, H. Electronic shell structures in bare and protected metal nanoclusters. Adv. Phys. X 1, 467–491 (2016).
Khanna, S. N. & Jena, P. Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51, 13705–13716 (1995).
Altmann, S. L. & Herzig, P. Point-Group Theory Tables 2nd edn (Clarendon Press, 2011).
Ceulemans, A. J. Group Theory Applied to Chemistry. Theoretical Chemistry and Computational Modelling (Springer, 2013).
Thyssen, P. & Ceulemans, A. J. Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table (Oxford Univ. Press, 2017).
Medel, V. M. et al. Hund’s rule in superatoms with transition metal impurities. Proc. Natl Acad. Sci. USA 108, 10062–10066 (2011).
Bersuker, I. B. The Jahn–Teller Effect (Cambridge Univ. Press, 2006).
Tsukamoto, T., Haruta, N., Kambe, T., Kuzume, A. & Yamamoto, K. Periodicity of molecular clusters based on symmetry-adapted orbital model. Nat. Commun. 10, 3727 (2019).
Haruta, N., Tsukamoto, T., Kuzume, A., Kambe, T. & Yamamoto, K. Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry. Nat. Commun. 9, 3758 (2018).
Fradkin, D. M. Three-dimensional isotropic harmonic oscillator and SU3. Am. J. Phys. 33, 207–211 (1965).
Weinberg, S. Lectures on Quantum Mechanics (Cambridge Univ. Press, 2015).
Heidari, I., De, S., Ghazi, S. M., Goedecker, S. & Kanhere, D. G. Growth and structural properties of MgN (N = 10–56) clusters: density functional theory study. J. Phys. Chem. A 115, 12307–12314 (2011).
Johansson, M. P. & Pyykkö, P. The importance of being tetrahedral: the cadmium pyramids CdN; N = 4, 10, 20, 35 and 56. Phys. Chem. Chem. Phys. 6, 2907–2909 (2004).
Katakuse, I. et al. Correlation between mass distributions of zinc, cadmium clusters and electronic shell structure. Int. J. Mass. Spectrom. Ion Process. 69, 109–114 (1986).
Thomas, O. C., Zheng, W., Xu, S. & Bowen, K. H. Jr. Onset of metallic behavior in magnesium clusters. Phys. Rev. Lett. 89, 213403 (2002).
Acknowledgements
This study was supported by grants from the Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO; JPMJER1503 to K.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO; JPMJPR20AA to T.T.) programmes. We received KAKENHI Grants-in-Aid (JP15H05757 to K.Y., JP19K15583 to T.T.) from the Japan Society for the Promotion of Science (JSPS), a research grant from the Advanced Technology Institute (T.T.) and a research grant from the Yoshinori Ohsumi Fund for Fundamental Research (T.T.). We thank N. Haruta (Kyoto University) for theoretical treatments of clusters.
Author information
Authors and Affiliations
Contributions
T.T. wrote this manuscript, researched data for the article and contributed to discussion of content. This research project was promoted under the direction of K.Y. All the authors checked the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tsukamoto, T., Kambe, T., Imaoka, T. et al. Modern cluster design based on experiment and theory. Nat Rev Chem 5, 338–347 (2021). https://doi.org/10.1038/s41570-021-00267-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-021-00267-4