Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modern cluster design based on experiment and theory

Abstract

For decades, chemists have explored cluster compounds according to theoretical models that have proved too simplistic to accurately predict cluster properties, stabilities and functions. By incorporating molecular symmetry into existing cluster models, we can better study real polyatomic molecules and have new guidelines for their design. This symmetry-adapted cluster model allows us to discover substances that shatter the conventional notion of clusters. Theoretical predictors will point to the viability of new clusters, whose syntheses can be realized with parallel advances in experimental methods. This Perspective describes these modern experimental and theoretical strategies for cluster design and how they may give rise to new fields in cluster chemistry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diverse synthetic methods afford diverse clusters.
Fig. 2: Cluster synthesis using macromolecular templates.
Fig. 3: Jellium and symmetry-adapted orbital models of clusters.
Fig. 4: A higher-order periodic table for symmetric molecular clusters.
Fig. 5: Designing new clusters with dynamical symmetry92.

References

  1. 1.

    Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Article  Google Scholar 

  4. 4.

    Liu, S., Lu, Y.-J., Kappes, M. M. & Ibers, J. A. The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110K. Science 254, 408–410 (1991).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Luo, Z., Castleman, A. W. & Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 116, 14456–14492 (2016).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Benfield, R. E. Mean coordination numbers and the non-metal–metal transition in clusters. J. Chem. Soc. Faraday Trans. 88, 1107–1110 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    Haruta, M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Reber, A. C., Khanna, S. N. & Castleman, A. W. in Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems Vol. 1 Ch. 9 (eds Jena, P. & Castleman, A. W. Jr) 365–381 (Elsevier, 2010).

  12. 12.

    Bergeron, D. E., Castleman, A. W., Morisato, T. & Khanna, S. N. Formation of Al13I: evidence for the superhalogen character of Al13. Science 304, 84–87 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Bergeron, D. E., Roach, P. J., Castleman, A. W., Jones, N. O. & Khanna, S. N. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts. Science 307, 231–235 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Reveles, J. U., Khanna, S. N., Roach, P. J. & Castleman, A. W. Multiple valence superatoms. Proc. Natl Acad. Sci. USA 103, 18405–18410 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Luo, Z. & Castleman, A. W. Special and general superatoms. Acc. Chem. Res. 47, 2931–2940 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Wang, Z. W. & Palmer, R. E. Direct atomic imaging and dynamical fluctuations of the tetrahedral Au20 cluster. Nanoscale 4, 4947–4949 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Cui, L.-F. et al. Sn122−: stannaspherene. J. Am. Chem. Soc. 128, 8390–8391 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Cui, L.-F., Huang, X., Wang, L.-M., Li, J. & Wang, L.-S. Endohedral stannaspherenes M@Sn12: a rich class of stable molecular cage clusters. Angew. Chem. Int. Ed. 46, 742–745 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Koyasu, K., Akutsu, M., Mitsui, M. & Nakajima, A. Selective formation of MSi16 (M=Sc, Ti, and V). J. Am. Chem. Soc. 127, 4998–4999 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Mitsui, M., Nagaoka, S., Matsumoto, T. & Nakajima, A. Soft-landing isolation of vanadium–benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Am. Chem. Soc. 110, 2968–2971 (2006).

    CAS  Google Scholar 

  23. 23.

    Guha, S. & Nakamoto, K. Electronic structures and spectral properties of endohedral fullerenes. Coord. Chem. Rev. 249, 1111–1132 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Nishigaki, J., Koyasu, K. & Tsukuda, T. Chemically modified gold superatoms and superatomic molecules. Chem. Rec. 14, 897–909 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Yao, Q., Chen, T., Yuan, X. & Xie, J. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 51, 1338–1348 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Sharma, S., Chakrahari, K. K., Saillard, J.-Y. & Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 51, 2475–2483 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1Å resolution. Science 318, 430–433 (2007).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wilson, R. J., Lichtenberger, N., Weinert, B. & Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 119, 8506–8554 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew. Chem. Int. Ed. 50, 3630–3670 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Schnöckel, H. Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 110, 4125–4153 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  34. 34.

    Weßing, J. et al. The Mackay-type cluster [Cu43Al12](Cp*)12: open-shell 67-electron superatom with emerging metal-like electronic structure. Angew. Chem. Int. Ed. 57, 14630–14634 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Teramoto, M. et al. Three-dimensional sandwich nanocubes composed of 13-atom palladium core and hexakis-carbocycle shell. J. Am. Chem. Soc. 140, 12682–12686 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Sánchez, R. H., Willis, A. M., Zheng, S.-L. & Betley, T. A. Synthesis of well-defined bicapped octahedral iron clusters [(trenL)2Fe8(PMe2Ph)2]n (n=0, −1). Angew. Chem. Int. Ed. 54, 12009–12013 (2015).

    Article  CAS  Google Scholar 

  37. 37.

    Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Beinert, H., Holm, R. H. & Münck, E. Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659 (1997).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Gary, D. C. et al. Crystal and electronic structure of a 1.3nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Ford, P. C. & Vogler, A. Photochemical and photophysical properties of tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic configurations. Acc. Chem. Res. 26, 220–226 (1993).

    CAS  Article  Google Scholar 

  41. 41.

    Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Schnepf, A. & Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem. Int. Ed. 41, 3532–3554 (2002).

    CAS  Article  Google Scholar 

  43. 43.

    Uhl, W. Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium. Naturwissenschaften 91, 305–319 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Schulz, C., Daniels, J., Bredow, T. & Beck, J. The electrochemical synthesis of polycationic clusters. Angew. Chem. Int. Ed. 55, 1173–1177 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Yang, H. et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).

    PubMed  Article  Google Scholar 

  46. 46.

    Wang, Y. et al. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 139, 619–622 (2017).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Moses, M. J., Fettinger, J. C. & Eichhorn, B. W. Interpenetrating As20 fullerene and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion. Science 300, 778–780 (2003).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Jongen, L., Mudring, A.-V. & Meyer, G. The molecular solid Sc24C10I30: a truncated, hollow T4 supertetrahedron of iodine filled with a T3 supertetrahedron of scandium that encapsulates the adamantoid cluster Sc4C10. Angew. Chem. Int. Ed. 45, 1886–1889 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Kurotobi, K. & Murata, Y. A single molecule of water encapsulated in fullerene C60. Science 333, 613–616 (2011).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Reed, C. A. Carborane acids. New “strong yet gentle” acids for organic and inorganic chemistry. Chem. Commun. 13, 1669–1677 (2005).

    Article  Google Scholar 

  51. 51.

    Murugadoss, A., Kai, N. & Sakurai, H. Synthesis of bimetallic gold–silver alloy nanoclusters by simple mortar grinding. Nanoscale 4, 1280–1282 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Gabriel, J.-C., Boubekeur, K. & Batail, P. Molecular hexanuclear clusters in the system rhenium–sulfur–chlorine: solid state synthesis, solution chemistry, and redox properties. Inorg. Chem. 32, 2894–2900 (1993).

    CAS  Article  Google Scholar 

  53. 53.

    Tulsky, E. G. & Long, J. R. Dimensional reduction: a practical formalism for manipulating solid structures. Chem. Mater. 13, 1149–1166 (2001).

    CAS  Article  Google Scholar 

  54. 54.

    Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 668 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Sugimoto, Y., Yurtsever, A., Hirayama, N., Abe, M. & Morita, S. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy. Nat. Commun. 5, 4360 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Löffler, T. et al. Discovery of a multinary noble metal–free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  CAS  Google Scholar 

  59. 59.

    Quintanilla, M. & Liz-Marzán, L. M. Caged clusters shine brighter. Science 361, 645 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Coutiño-Gonzalez, E. et al. Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc. Chem. Res. 50, 2353–2361 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  61. 61.

    Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12± x inside a metal–organic framework. J. Am. Chem. Soc. 191, 13962–13969 (2019).

    Article  CAS  Google Scholar 

  63. 63.

    Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Liu, L. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Matsuno, S. et al. Exact mass analysis of sulfur clusters upon encapsulation by a polyaromatic capsular matrix. Nat. Commun. 8, 749 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Maity, B., Abe, S. & Ueno, T. Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nat. Commun. 8, 14820 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).

    CAS  Article  Google Scholar 

  69. 69.

    Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Yamamoto, K. & Imaoka, T. Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc. Chem. Res. 47, 1127–1136 (2014).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Imaoka, T. et al. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J. Am. Chem. Soc. 135, 13089–13095 (2013).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Huda, M., Minamisawa, K., Tsukamoto, T., Tanabe, M. & Yamamoto, K. Aerobic toluene oxidation catalyzed by subnano metal particles. Angew. Chem. Int. Ed. 58, 1002–1006 (2018).

    Article  CAS  Google Scholar 

  74. 74.

    Kambe, T., Haruta, N., Imaoka, T. & Yamamoto, K. Solution-phase synthesis of Al13 using a dendrimer template. Nat. Commun. 8, 2046 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Tsukamoto, T., Kuzume, A., Nagasaka, M., Kambe, T. & Yamamoto, K. Quantum materials exploration by sequential screening technique of heteroatomicity. J. Am. Chem. Soc. 142, 19078–19084 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Moriai, T., Tsukamoto, T., Tanabe, M., Kambe, T. & Yamamoto, K. Selective hydroperoxygenation of olefin realized by coinage multimetallic 1-nanometer catalyst. Angew. Chem. Int. Ed. 59, 23051–23055 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    Tsukamoto, T., Kambe, T., Nakao, A., Imaoka, T. & Yamamoto, K. Atom-hybridization for synthesis of polymetallic clusters. Nat. Commun. 9, 3873 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Wade, K. Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem. 18, 1–66 (1976).

    CAS  Article  Google Scholar 

  79. 79.

    Mingos, D. M. P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 17, 311–319 (1984).

    CAS  Article  Google Scholar 

  80. 80.

    Jemmis, E. D. & Jayasree, E. G. Analogies between boron and carbon. Acc. Chem. Res. 36, 816–824 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Taylor, M. G. & Mpourmpakis, G. Thermodynamic stability of ligand-protected metal nanoclusters. Nat. Commun. 8, 15988 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 (1984).

    CAS  Article  Google Scholar 

  83. 83.

    de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993).

    Article  Google Scholar 

  84. 84.

    Häkkinen, H. Electronic shell structures in bare and protected metal nanoclusters. Adv. Phys. X 1, 467–491 (2016).

    Google Scholar 

  85. 85.

    Khanna, S. N. & Jena, P. Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51, 13705–13716 (1995).

    CAS  Article  Google Scholar 

  86. 86.

    Altmann, S. L. & Herzig, P. Point-Group Theory Tables 2nd edn (Clarendon Press, 2011).

  87. 87.

    Ceulemans, A. J. Group Theory Applied to Chemistry. Theoretical Chemistry and Computational Modelling (Springer, 2013).

  88. 88.

    Thyssen, P. & Ceulemans, A. J. Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table (Oxford Univ. Press, 2017).

  89. 89.

    Medel, V. M. et al. Hund’s rule in superatoms with transition metal impurities. Proc. Natl Acad. Sci. USA 108, 10062–10066 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Bersuker, I. B. The Jahn–Teller Effect (Cambridge Univ. Press, 2006).

  91. 91.

    Tsukamoto, T., Haruta, N., Kambe, T., Kuzume, A. & Yamamoto, K. Periodicity of molecular clusters based on symmetry-adapted orbital model. Nat. Commun. 10, 3727 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Haruta, N., Tsukamoto, T., Kuzume, A., Kambe, T. & Yamamoto, K. Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry. Nat. Commun. 9, 3758 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Fradkin, D. M. Three-dimensional isotropic harmonic oscillator and SU3. Am. J. Phys. 33, 207–211 (1965).

    Article  Google Scholar 

  94. 94.

    Weinberg, S. Lectures on Quantum Mechanics (Cambridge Univ. Press, 2015).

  95. 95.

    Heidari, I., De, S., Ghazi, S. M., Goedecker, S. & Kanhere, D. G. Growth and structural properties of MgN (N = 10–56) clusters: density functional theory study. J. Phys. Chem. A 115, 12307–12314 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Johansson, M. P. & Pyykkö, P. The importance of being tetrahedral: the cadmium pyramids CdN; N = 4, 10, 20, 35 and 56. Phys. Chem. Chem. Phys. 6, 2907–2909 (2004).

    CAS  Article  Google Scholar 

  97. 97.

    Katakuse, I. et al. Correlation between mass distributions of zinc, cadmium clusters and electronic shell structure. Int. J. Mass. Spectrom. Ion Process. 69, 109–114 (1986).

    CAS  Article  Google Scholar 

  98. 98.

    Thomas, O. C., Zheng, W., Xu, S. & Bowen, K. H. Jr. Onset of metallic behavior in magnesium clusters. Phys. Rev. Lett. 89, 213403 (2002).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO; JPMJER1503 to K.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO; JPMJPR20AA to T.T.) programmes. We received KAKENHI Grants-in-Aid (JP15H05757 to K.Y., JP19K15583 to T.T.) from the Japan Society for the Promotion of Science (JSPS), a research grant from the Advanced Technology Institute (T.T.) and a research grant from the Yoshinori Ohsumi Fund for Fundamental Research (T.T.). We thank N. Haruta (Kyoto University) for theoretical treatments of clusters.

Author information

Affiliations

Authors

Contributions

T.T. wrote this manuscript, researched data for the article and contributed to discussion of content. This research project was promoted under the direction of K.Y. All the authors checked the manuscript before submission.

Corresponding author

Correspondence to Kimihisa Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, T., Kambe, T., Imaoka, T. et al. Modern cluster design based on experiment and theory. Nat Rev Chem 5, 338–347 (2021). https://doi.org/10.1038/s41570-021-00267-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing