Abstract
Thanks to the development of experimental high-pressure techniques and methods for crystal-structure prediction based on quantum mechanics, in the past decade, numerous new compounds, mostly binary, with atypical compositions have been predicted, and some have been synthesized. Differing from conventional solid-state materials, many of these new compounds are comprised of various homonuclear chemical species, such as dimers, trimers, pentagonal and heptagonal rings, polymeric chains, atomic layers and 3D networks. Strikingly, it has been shown that pressure can alter the chemistry of an element by activating its (semi)core electrons, unoccupied orbitals and even the non-atom-centred quantum orbitals located on the interstitial sites, leading to many new surprising phenomena. This Review provides a summary of atypical compounds that result from the effects of high pressure on either the chemical bonds or the local orbitals. We describe various unusual chemical species and motifs, show how the chemical properties of the elements are altered under pressure and illustrate how compound formation is favoured even in situations in which chemical bonds are not formed. An extraordinary new picture of chemistry emerges as we piece together these unexpected high-pressure phenomena. In marked contrast to the previously held beliefs regarding the behaviour of solids under pressure, we are learning that the quantum-mechanical features of electrons, such as those that lead to the formation of directional bonds, inhomogeneous distributions of electrons and atoms, as well as variations in symmetry, might be magnified under pressure. We discuss the influence of these phenomena on future studies that will probe chemistry at higher pressures and explore more complex chemical compositions than those that have been studied to date.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
McMillan, P. F. Pressing on: the legacy of Percy W. Bridgman. Nat. Mater. 4, 715–718 (2005).
Hemley, R. J. Percy W. Bridgman’s second century. High Press. Res. 30, 581–619 (2010).
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).
Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).
Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).
Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017).
Brazhkin, V. V. High-pressure synthesized materials: Treasures and hints. High Press. Res. 27, 333–351 (2007).
Shen, G. & Mao, H. K. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 80, 016101 (2017).
Badding, J. V. High-pressure synthesis, characterization, and tuning of solid state materials. Annu. Rev. Mater. Sci. 28, 631–658 (1998).
Mao, H. K., Chen, X. J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).
Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).
Pickard, C. J. & Needs, R. J. Structures at high pressure from random searching. Phys. Status Solidi B 246, 536–540 (2009).
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).
Needs, R. J. & Pickard, C. J. Perspective: role of structure prediction in materials discovery and design. APL. Mater. 4, 053210 (2016).
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006).
Glass, C. W., Oganov, A. R. & Hansen, N. USPEX - Evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).
Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works and why. Acc. Chem. Res. 44, 227–237 (2011).
Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).
Zhu, Q., Oganov, A. R. & Zhou, X. F. Crystal structure prediction and its application in earth and materials sciences. Top. Curr. Chem. 345, 223–256 (2014).
Zurek, E. & Grochala, W. Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on. Phys. Chem. Chem. Phys. 17, 2917–2934 (2015).
Zurek, E. Discovering new materials via a priori crystal structure prediction. Rev. Comp. Chem. 29, 274–326 (2016).
Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).
Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).
Wang, H. et al. CALYPSO structure prediction method and its wide application. Comput. Mater. Sci. 112, 406–415 (2016).
Su, C. et al. Construction of crystal structure prototype database: Methods and applications. J. Phys. Condens. Matter 29, 165901 (2017).
McMahon, M. I. & Nelmes, R. J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35, 943–963 (2006).
Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).
Itie, J. P. et al. Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys. Rev. Lett. 63, 398–401 (1989).
Nunez-Regueiro, M., Marques, L., Hodeau, J. L., Bethoux, O. & Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 74, 278–281 (1995).
Blank, V. D. et al. High-pressure polymerized phases of C60. Carbon 36, 319–343 (1998).
Iota, V. Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999).
Yong, X. et al. Crystal structures and dynamical properties of dense CO2. Proc. Natl Acad. Sci. USA 113, 11110–11115 (2016).
Yoo, C. S. et al. Crystal structure of carbon dioxide at high pressure: “Superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999).
Lin, J. F. & Tsuchiya, T. Spin transition of iron in the Earth’s lower mantle. Phys. Earth Planet. Inter. 170, 248–259 (2008).
Lyubutin, I. S. et al. Spin transition of Fe2+ in ringwoodite (Mg,Fe)2SiO4 at high pressures. Am. Mineral. 98, 1803–1810 (2013).
Lin, J.-F. et al. Pressure-induced electronic spin transition of iron in magnesiowustite-(Mg,Fe)O. Phys. Rev. B 73, 113107 (2006).
Drickamer, H. G. & Frank, C. W. Electronic Transitions and the High Pressure Chemistry and Physics of Solids (Springer, 2013).
Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18, R1–R8 (2005).
Schilling, J. S. Superconductivity in the alkali metals. High Press. Res. 26, 145–163 (2006).
Sakata, M., Nakamoto, Y., Shimizu, K., Matsuoka, T. & Ohishi, Y. Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Phys. Rev. B 83, 220512 (2011).
Matsuoka, T. et al. Pressure-induced superconductivity in CaLi2. Phys. Rev. Lett. 100, 197003 (2008).
Chen, X. J. et al. Superconducting behavior in compressed solid SiH4 with a layered structure. Phys. Rev. Lett. 101, 077002 (2008).
Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).
Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015). The first synthesis of a superconducting hydride that broke the 30-year Tc record of cuprates, revealing the potential of compounds with atypical compositions at achieving unusual properties.
Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).
Akashi, R., Sano, W., Arita, R. & Tsuneyuki, S. Possible ‘Magneli’ phases and self-alloying in the superconducting sulfur hydride. Phys. Rev. Lett. 117, 075503 (2016).
Li, X., Liu, H. & Peng, F. Crystal structures and superconductivity of technetium hydrides under pressure. Phys. Chem. Chem. Phys. 18, 28791–28796 (2016).
Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).
Zhang, W. W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013). A good example showing, by using both DFT calculations and diamond anvil cell experiments, that common compounds such as NaCl can assume very different (atypical) compositions under high pressure.
Peng, F., Yao, Y., Liu, H. & Ma, Y. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett. 6, 2363–2366 (2015).
Shen, Y. et al. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep. 5, 14204 (2015).
Hemley, R. J., Ahart, M., Liu, H. & Somayazulu, M. in Proceedings of the International Symposium - Superconductivity and Pressure: A Fruitful Relationship on the Road to Room Temperature Superconductivity (ed. Alario-Franco, M. A.) 199–213 (Fundación Ramón Areces, 2019).
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990 (2017).
Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Geballe, Z. M. et al. Synthesis and stability of lanthanum superhydrides. Angew. Chem. Int. Ed. 57, 688–692 (2018).
Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nat. Chem. 6, 644–648 (2014). DFT calculations and crystal structure prediction searches reveal that Xe can become reactive with Fe under pressure, and show how the modification of the properties of these elements can provide answers to geochemistry puzzles.
Miao, M. S. Cesium in high oxidation states and as a p-block element. Nat. Chem. 5, 846–852 (2013). Being the first example of core electron reactivity, this work uses DFT calculations to show how elements can change their chemical identity under high pressure.
Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017). DFT calculations and diamond anvil cell experiments are used to demonstrate the first example of a stable solid He containing compound.
Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell Univ. Press, 1960).
Prewitt, C. T. & Downs, R. T. in Ultrahigh Pressure Mineralogy (ed. Hemley, R. J.) 283–318 (De Gruyter, 1998).
Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, 1976).
Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174–178 (2000).
Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009). One of the first studies demonstrating that simple metals like Na can become high-pressure electrides, performed using both DFT calculations and diamond anvil cell experiments.
Miao, M.-S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014). This theoretical study illustrates that the occupation of local orbitals at interstitial sites (quasi-atoms) is the mechanism that leads to the formation of high-pressure electrides, providing a route to understanding many related phenomena.
Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).
Botana, J. et al. Mercury under pressure acts as a transition metal: calculated from first principles. Angew. Chem. Int. Ed. 54, 9280–9283 (2015).
Botana, J. & Miao, M. S. Pressure-stabilized lithium caesides with caesium anions beyond the −1 state. Nat. Commun. 5, 4861 (2014). DFT calculations demonstrate how the non-valence orbitals are involved in chemical bonds, and show how these affect structures and properties of the compounds under pressure.
Housecroft, C. E. & Sharpe, A. G. Inorganic Chemistry (Pearson Prentice Hall, 2012).
Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley, 1999).
Janka, O. & Kauzlarich, S. M. in Encyclopedia of Inorganic and Bioinorganic Chemistry (Wiley, 2014).
Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew. Chem. Int. Ed. 50, 3630–3670 (2011).
Peng, F., Miao, M., Wang, H., Li, Q. & Ma, Y. Predicted lithium-boron compounds under high pressure. J. Am. Chem. Soc. 134, 18599–18605 (2012).
Hermann, A. et al. LiB and its boron-deficient variants under pressure. Phys. Rev. B 86, 144110 (2012).
Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004). This pioneering study proposes that chemical pre-compression may be a way to metallize H-rich compounds at experimentally accessible pressures.
Zurek, E, Hoffmann, R., Ashcroft, N. W., Oganov A. R., & Lyakhov A. O. A little bit of lithium does a lot for hydrogen. Proc. Natl. Acad. Sci. USA 106, 17640 (2009). The first DFT study on hydrogen metallization in atypical metal hydrides with hydrogen rich composition, actualizing the pre-compression strategy proposed in Ref. 78.
Struzhkin, V. V. et al. Synthesis of sodium polyhydrides at high pressures. Nat. Commun. 7, 12267 (2016).
Pépin, C., Loubeyre, P., Occelli, F. & Dumas, P. Synthesis of lithium polyhydrides above 130 GPa at 300 K. Proc. Natl Acad. Sci. USA 112, 7673–7676 (2015).
Mishra, A. K. et al. New calcium hydrides with mixed atomic and molecular hydrogen. J. Phys. Chem. C 122, 19370–19378 (2018).
Hooper, J. & Zurek, E. Rubidium polyhydrides under pressure: emergence of the linear H3− species. Chemistry 18, 5013–5021 (2012).
Shamp, A., Hooper, J. & Zurek, E. Compressed cesium polyhydrides: Cs+ sublattices and H3− three-connected nets. Inorg. Chem. 51, 9333–9342 (2012).
Wang, H., Li, X., Gao, G., Li, Y. & Ma, Y. Hydrogen-rich superconductors at high pressures. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1330 (2018).
Wang, Z., Wang, H., Tse, J. S., Iitaka, T. & Ma, Y. Stabilization of H3+ in the high pressure crystalline structure of HnCl (n = 2–7). Chem. Sci. 6, 522–526 (2014).
Hooper, J., Terpstra, T., Shamp, A. & Zurek, E. Composition and constitution of compressed strontium polyhydrides. J. Phys. Chem. C 118, 6433–6447 (2014).
Wang, Y., Wang, H., Tse, J. S., Iitaka, T. & Ma, Y. Structural morphologies of high-pressure polymorphs of strontium hydrides. Phys. Chem. Chem. Phys. 17, 19379–19385 (2015).
Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463 (2012). The first DFT-based computational study predicting that metals can form superhydrides with sodalite H covalent lattices, heralding the recent remarkable discovery of superconducting metal superhydrides.
Shamp, A. & Zurek, E. Superconductivity in hydrides doped with main group elements under pressure. Nov. Supercond. Mater. 3, 14–22 (2017).
Martinez-Canales, M. et al. Novel structures and superconductivity of silane under pressure. Phys. Rev. Lett. 102, 087005 (2009).
Cui, W. et al. Hydrogen segregation and its roles in structural stability and metallization: silane under pressure. Sci. Rep. 5, 13039 (2015).
Li, Y. et al. Superconductivity at approximately 100 K in dense SiH4(H2)2 predicted by first principles. Proc. Natl Acad. Sci. USA 107, 15708–15711 (2010).
Mahdi Davari Esfahani, M. et al. Superconductivity of novel tin hydrides (SnnHm) under pressure. Sci. Rep. 6, 22873 (2016).
Gao, G. et al. Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002 (2008).
Yuan, Y. et al. Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides. Natl Sci. Rev. 6, 524–531 (2019).
Flores-Livas, J. A., Sanna, A. & Gross, E. K. U. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 89, 63 (2016).
Flores-Livas, J. A. et al. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 93, 020508 (2016).
Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).
Zurek, E. & Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys. 150, 050901 (2019).
Heil, C., di Cataldo, S., Bachelet, G. B. & Boeri, L. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B 99, 220502 (2019).
Zurek, E. Viewpoint: Pushing towards room-temperature superconductivity. Physics 12, 1 (2019).
Flores-Livas, J. A. et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 856, 1–78 (2020).
Etourneau, J. & Hagenmuller, P. Structure and physical features of the rare-earth borides. Philos. Mag. B 52, 589–610 (1985).
Harran, I., Chen, Y., Wang, H. & Ni, Y. Pressure induced evolution of structures and properties of iron tetraboride. CrystEngComm 20, 3928–3935 (2018).
Zhang, X. et al. First-principles structural design of superhard material of ZrB4. Phys. Chem. Chem. Phys. 15, 20894–20899 (2013).
Li, X., Tao, Y. & Peng, F. Pressure and temperature induced phase transition in WB4: a first principles study. J. Alloys Compd. 687, 579–585 (2016).
Li, X. & Peng, F. Predicted superhard phases of Zr–B compounds under pressure. Phys. Chem. Chem. Phys. 12, 15609–15614 (2019).
Zhang, G., Bai, T., Zhao, Y. & Hu, Y. A new superhard phase and physical properties of ZrB3 from first-principles calculations. Materials 9, 703 (2016).
Chu, B. et al. Structural, mechanical, and electronic properties of Rh2B and RhB2: First-principles calculations. Sci. Rep. 5, 10500 (2015).
Wang, Q. et al. Novel high-pressure phase of RhB: First-principles calculations. J. Phys. Chem. C 115, 19910–19915 (2011).
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).
Kolmogorov, A. N. et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).
Gou, H. et al. Discovery of a superhard iron tetraboride superconductor. Phys. Rev. Lett. 111, 157002 (2013).
Kolmogorov, A. N. & Curtarolo, S. Theoretical study of metal borides stability. Phys. Rev. B 74, 224507 (2006).
Kolmogorov, A. N. & Curtarolo, S. Prediction of different crystal structure phases in metal borides: A lithium monoboride analog to MgB2. Phys. Rev. B 73, 180501 (2006).
Kolmogorov, A. N., Calandra, M. & Curtarolo, S. Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors. Phys. Rev. B 78, 094520 (2008).
Hermann, A., McSorley, A., Ashcroft, N. W. & Hoffmann, R. From Wade–Mingos to Zintl–Klemm at 100 GPa: binary compounds of boron and lithium. J. Am. Chem. Soc. 134, 18606–18618 (2012).
Kolmogorov, A. N., Hajinazar, S., Angyal, C., Kuznetsov, V. L. & Jephcoat, A. P. Synthesis of a predicted layered LiB via cold compression. Phys. Rev. B 92, 144110 (2015).
Wang, H., LeBlanc, K. A., Gao, B. & Yao, Y. Thermodynamic ground state of MgB6 predicted from first principles structure search methods. J. Chem. Phys. 140, 044710 (2014).
Benson, D. et al. Lithium and calcium carbides with polymeric carbon structures. Inorg. Chem. 52, 6402–6406 (2013).
Li, Y. L. et al. Pressure-induced superconductivity in CaC2. Proc. Natl Acad. Sci. USA 110, 9289–9294 (2013).
Zhong, X. et al. Pressure stabilization of long-missing bare C6 hexagonal rings in binary sesquicarbides. Chem. Sci. 5, 3936–3940 (2014).
Feng, C. et al. First-principle study of pressure-induced phase transitions and electronic properties of electride Y2C. Solid State Commun. 266, 34–38 (2017).
Guo, Y. et al. Pressure-induced structural transformations and polymerization in ThC2. Sci. Rep. 7, 45872 (2017).
Liu, H., Gao, G., Li, Y., Hao, J. & Tse, J. S. Crystal structures and chemical bonding of magnesium carbide at high pressure. J. Phys. Chem. C 119, 23168–23174 (2015).
Liu, H., Naumov & Hemley, R. J. Dense hydrocarbon structures at megabar pressures. J. Phys. Chem. Lett. 7, 4218–4222 (2016).
Feng, X. et al. Carbon network evolution from dimers to sheets in superconducting ytrrium dicarbide under pressure. Commun. Chem. 1, 85 (2018).
Du, H. et al. Nonmetallization and band inversion in beryllium dicarbide at high pressure. Sci. Rep. 6, 26398 (2016).
Wang, D., Yan, Y., Zhou, D. & Liu, Y. Evolution of crystal and electronic structures of magnesium dicarbide at high pressure. Sci. Rep. 5, 17815 (2015).
Wei, Q., Zhang, Q., Yan, H. & Zhang, M. Cubic C3N: A new superhard phase of carbon-rich nitride. Materials 9, 840 (2016).
Medvedev, S. A. et al. Phase stability of lithium azide at pressures up to 60 GPa. J. Phys. Condens. Matter 21, 195404 (2009).
Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and Iridium. Science 311, 1275–1278 (2006).
Wang, X. et al. Polymerization of nitrogen in lithium azide. J. Chem. Phys. 139, 164710 (2013).
Li, J. et al. Pressure-induced polymerization of nitrogen in potassium azides. EPL 104, 16005 (2013).
Wang, X., Li, J., Zhu, H., Chen, L. & Lin, H. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys. 141, 044717 (2014).
Bykov, M. et al. High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions. Nat. Commun. 10, 2994 (2019).
Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).
Laniel, D. et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun. 10, 4515 (2019).
Yu, S. et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure. J. Phys. Chem. C 121, 11037–11046 (2017).
Wei, S. et al. Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials. Phys. Chem. Chem. Phys. 19, 9246–9252 (2017).
Chen, Y., Cai, X., Wang, H., Wang, H. & Wang, H. Novel triadius-like N4 specie of iron nitride compounds under high pressure. Sci. Rep. 8, 10670 (2018).
Vij, A., Pavlovich, J. G., Wilson, W. W., Vij, V. & Christe, K. O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5−. Angew. Chem. Int. Ed. 41, 3051–3054 (2002).
Steele, B. A. & Oleynik, I. I. Sodium pentazolate: a nitrogen rich high energy density material. Chem. Phys. Lett. 643, 21–26 (2016).
Peng, F., Han, Y., Liu, H. & Yao, Y. Exotic stable cesium polynitrides at high pressure. Sci. Rep. 5, 16902 (2015).
Li, J., Sun, L., Wang, X., Zhu, H. & Miao, M. Simple route to metal cyclo-N5– salt: High-pressure synthesis of CuN5. J. Phys. Chem. C 122, 22339–22344 (2018).
Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett. 9, 1600–1604 (2018). A good example of the synthesis of unusual compounds with desired properties by exploiting pressure-induced stabilization of homonuclear bonds.
Yi, W. et al. Packing high-energy together: Binding the power of pentazolate and high-valence metals with strong bonds. Mater. Des. 193, 108820 (2020).
Weerasinghe, G. L., Pickard, C. J. & Needs, R. J. Computational searches for iron oxides at high pressures. J. Phys. Condens. Matter 27, 455501 (2015).
Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016).
Hu, Q. et al. Dehydrogenation of goethite in Earth’s deep lower mantle. Proc. Natl Acad. Sci. USA 114, 1498–1501 (2017).
Tang, M., Niu, Z.-W., Zhang, X.-L. & Cai, L.-C. Structural stability of FeO2 in the pressure range of lower mantle. J. Alloys Compd. 765, 271–277 (2018).
Huang, S. X., Wu, X. & Qin, S. Ultrahigh-pressure phase transitions in FeS2 and FeO2: Implications for super-Earths’ deep interior. J. Geophys. Res. Solid Earth 123, 277–284 (2018).
Schmidt, B., Schröder, B., Sonnenberg, K., Steinhauer, S. & Riedel, S. From polyhalides to polypseudohalides: Chemistry based on cyanogen bromide. Angew. Chem. Int. Ed. 58, 10340–10344 (2019).
Wei, S., Wang, J., Deng, S., Zhang, S. & Li, Q. Hypervalent iodine with linear chain at high pressure. Sci. Rep. 5, 14393 (2015).
Zhu, Q., Oganov, A. R. & Zeng, Q. Formation of stoichiometric CsFn compounds. Sci. Rep. 5, 7875 (2015).
Shamp, A., Saitta, P. & Zurek, E. Theoretical predictions of novel potassium chloride phases under pressure. Phys. Chem. Chem. Phys. 17, 12265–12272 (2015).
Zhang, W. et al. Stability of numerous novel potassium chlorides at high pressure. Sci. Rep. 6, 26265 (2016).
Guerette, M. et al. Advanced synthesis of Na4Si24. MRS Adv. 3, 1427–1433 (2018).
Hohmann, E. Silicides and germanides of the alkali metals. Z. Anorg. Allg. Chem. 257, 113–126 (1948).
Witte, J. The behavior of alkali metals relative to semimetals XI, the crystal structure of NaSi and NaGe. Z. Anorg. Allg. Chem. 327, 260–273 (1964).
Goebel, T., Prots, Y. & Haarmann, F. Refinement of the crystal structure of tetrasodium tetrasilicide, Na4Si4. Z. Kristallogr. NCS. 223, 187–188 (2014).
Shi, J. et al. Investigation of new phases in the Ba–Si phase diagram under high pressure using ab initio structural search. Phys. Chem. Chem. Phys. 18, 8108–8114 (2016).
Gao, G., Ashcroft, N. W., Miao, M. & Hoffmann, R. Novel Si networks in the Ca/Si phase diagram under pressure. J. Phys. Chem. C 118, 25167–25175 (2014).
Li, W. et al. Crystal structures of CsSi6 at high pressures. Comput. Mater. Sci. 150, 144–148 (2018).
McMahan, A. K. & Albers, R. C. Insulating nickel at a pressure of 34 TPa. Phys. Rev. Lett. 49, 1198–1201 (1982).
Parker, L. J., Atou, T. & Badding, J. V. Transition element-like chemistry for potassium under pressure. Science 273, 95–97 (1996). This work demonstrates experimentally how K behaves like a transition metal under pressure; a well-known example of how pressure changes the fundamental properties of elements.
Takemura, K., Shimomura, O. & Fujihisa, H. CsVI: a new high-pressure polymorph of cesium above 72 GPa. Phys. Rev. Lett. 66, 2014–2017 (1991).
Ahuja, R., Eriksson, O. & Johansson, B. Theoretical high-pressure studies of Cs metal. Phys. Rev. B 63, 014102 (2001).
Zhu, Q. et al. Stability of xenon oxides at high pressures. Nat. Chem. 5, 61–65 (2013).
Dewaele, A. et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nat. Chem. 8, 784–790 (2016).
Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth’s missing xenon. J. Am. Chem. Soc. 133, 6265–6269 (2011).
Dmochowski, I. Xenon out of its shell. Nat. Chem. 1, 250 (2009).
Hermann, A. & Schwerdtfeger, P. Xenon suboxides stable under pressure. J. Phys. Chem. Lett. 5, 4336–4342 (2014).
Feng, J., Hennig, R. G., Ashcroft, N. W. & Hoffmann, R. Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys. Nature 451, 445–448 (2008).
Miao, M., Botana, J., Pravica, M., Sneed, D. & Park, C. Inner-shell chemistry under high pressure. Jpn. J. Appl. Phys. 56, 05FA10 (2017).
Pauling, L. The formulas of antimonic acid and the antimonates. J. Am. Chem. Soc. 55, 1895–1900 (1933).
Bartlett, N. Xenon hexafluoroplatinate(V) Xe+[PtF6]−. Proc. Chem. Soc. Lond. 6, 197–236 (1962).
Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007).
Wang, X., Andrews, L., Riedel, S. & Kaupp, M. Mercury is a transition metal: the first experimental evidence for HgF4. Angew. Chem. Int. Ed. 46, 8371–8375 (2007).
Riedel, S., Straka, M. & Kaupp, M. Validation of density functional methods for computing structures and energies of mercury (IV) complexes. Phys. Chem. Chem. Phys. 6, 1122–1127 (2004).
Riedel, S., Straka, M. & Kaupp, M. Can weakly coordinating anions stabilize mercury in its oxidation state +IV? Chemistry 11, 2743–2755 (2005).
Moock, K. & Seppelt, K. Indications of cesium in a higher oxidation state. Angew. Chem. Int. Ed. Engl. 28, 1676–1678 (1989).
Jehoulet, C. & Bard, A. J. On the electrochemical oxidation of Cs⊕ and other alkali-metal ions in liquid sulfur dioxide and acetonitrile. Angew. Chem. Int. Ed. Engl. 30, 836–838 (1991).
Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the periodic table: Electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc. 144, 10253–10271 (2019).
Tramsek, M. & Zemva, B. Synthesis, properties and chemistry of xenon(II) fluoride. Acta Chim. Slov. 53, 105–116 (2006).
Christe, K. O. et al. The pentafluoroxenate(IV) anion, XeF5−: the first example of a pentagonal planar AX5 species. J. Am. Chem. Soc. 113, 3351–3361 (1991).
Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).
Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).
Rogachev, A. Y., Miao, M., Merino, G. & Hoffmann, R. Molecular CsF5 and CsF2+. Angew. Chem. 127, 8393–8396 (2015).
Goesten, M. G., Rahm, M., Bickelhaupt, F. M. & Hensen, E. J. M. Cesium’s off-the-map valence orbital. Angew. Chem. Int. Ed. 56, 9772–9776 (2017).
Miao, M. S. et al. Anionic chemistry of noble gases: Formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure. J. Am. Chem. Soc. 137, 14122–14128 (2015).
Botana, J., Brgoch, J., Hou, C. & Miao, M. Iodine anions beyond −1: formation of LinI (n = 2–5) and its interaction with quasiatoms. Inorg. Chem. 55, 9377–9382 (2016).
Li, X. et al. Stable lithium argon compounds under high pressure. Sci. Rep. 5, 16675 (2015).
Liu, Z., Botana, J., Miao, M. S. & Yan, D. D. Unexpected Xe anions in XeLin intermetallic compounds. EPL 117, 26002 (2017).
Li, P., Gao, G., Wang, Y. & Ma, Y. Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C 114, 21745–21749 (2010).
Dye, J. L. Compounds of alkali metal anions. Angew. Chem. Int. Ed. Engl. 18, 587–598 (1979).
Zurek, E. Alkali metals in ethylenediamine: a computational study of the optical absorption spectra and NMR parameters of [M(en)3δ+∙Mδ−] ion pairs. J. Am. Chem. Soc. 133, 4829–4839 (2011).
Jansen, M. Effects of relativistic motion of electrons on the chemistry of gold and platinum. Solid State Sci. 7, 1464–1474 (2005).
Karpov, A., Nuss, J., Wedig, U. & Jansen, M. Cs2Pt: A platinide(-II) exhibiting complete charge separation. Angew. Chem. Int. Ed. 42, 4818–4821 (2003).
Yang, G., Wang, Y., Peng, F., Bergara, A. & Ma, Y. Gold as a 6p-element in dense lithium aurides. J. Am. Chem. Soc. 138, 4046–4052 (2016).
Brgoch, J. & Hermus, M. Pressure-stabilized Ir3− in a superconducting potassium iridide. J. Phys. Chem. C 120, 20033–20039 (2016).
Dawes, S. B., Ward, D. L., Huang, R. H. & Dye, J. L. First electride crystal structure. J. Am. Chem. Soc. 108, 3534–3535 (1986).
Dye, J. L. et al. Cavities and channels in electrides. J. Am. Chem. Soc. 118, 7329–7336 (1996).
Dye, J. L. Electrides: Early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009).
Takemura, K. et al. Phase stability of highly compressed cesium. Phys. Rev. B 61, 14399–14404 (2000).
Zurek, E., Jepsen, O. & Andersen, O. K. Muffin-tin orbital Wannier-like functions for insulators and metals. ChemPhysChem 6, 1934–1942 (2005).
Maksimov, E. G., Magnitskaya, M. V. & Fortov, V. E. Non-simple behavior of simple metals at high pressure. Phys.-Uspekhi 48, 761–780 (2005).
Schnering, H. G. von & Nesper, R. How nature adapts chemical structures to curved surfaces. Angew. Chem. Int. Ed. Engl. 26, 1059–1080 (1987).
Neaton, J. B. & Ashcroft, N. W. On the constitution of sodium at higher densities. Phys. Rev. Lett. 86, 2830–2833 (2001).
Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999).
Rousseau, B. & Ashcroft, N. W. Interstitial electronic localization. Phys. Rev. Lett. 101, 046407 (2008).
Marqués, M. et al. Optical and electronic properties of dense sodium. Phys. Rev. B 83, 184106 (2011).
Gatti, M., Tokatly, I. V. & Rubio, A. Sodium: a charge-transfer insulator at high pressures. Phys. Rev. Lett. 104, 216404 (2010).
Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).
Pickard, C. J. & Needs, R. J. Dense low-coordination phases of lithium. Phys. Rev. Lett. 102, 146401 (2009).
Adebayo, G. A. Ab initio calculations of optical properties of Li and K at high pressures. J. Phys. Chem. Solids 74, 1221–1226 (2013).
Guillaume, C. L. et al. Cold melting and solid structures of dense lithium. Nat. Phys. 7, 211–214 (2011).
Rousseau, B., Xie, Y., Ma, Y. & Bergara, A. Exotic high-pressure behavior of light alkali metals, lithium and sodium. Eur. Phys. J. B 81, 1 (2011).
Marques, M. et al. Crystal structures of dense lithium: a metal-semiconductor-metal transition. Phys. Rev. Lett. 106, 095502 (2011).
Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).
Martinez-Canales, M., Pickard, C. J. & Needs, R. J. Thermodynamically stable phases of carbon at multiterapascal pressures. Phys. Rev. Lett. 108, 045704 (2012).
Zhu, Q., Oganov, A. R. & Lyakhov, A. O. Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 15, 7696–7700 (2013).
Dong, X. & Oganov, A. R. in Correlations in Condensed Matter Under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of his 70th Birthday (eds Angilella, G. G. N. & La Magna, A.) 69–84 (Springer, 2017).
Modak, P. & Verma, A. K. Pressure induced multi-centre bonding and metal–insulator transition in PtAl2. Phys. Chem. Chem. Phys. 21, 13337–13346 (2019).
Naumov, I. I. & Hemley, R. J. Origin of transitions between metallic and insulating states in simple metals. Phys. Rev. Lett. 114, 156403 (2015).
Lv, J., Wang, Y., Zhu, L. & Ma, Y. Predicted novel high-pressure phases of lithium. Phys. Rev. Lett. 106, 015503 (2011).
Sternheimer, R. On the compressibility of metallic cesium. Phys. Rev. 78, 235–243 (1950).
Miao, M. S. & Hoffmann, R. High-pressure electrides: The chemical nature of interstitial quasiatoms. J. Am. Chem. Soc. 137, 3631–3637 (2015).
Miao, M. S., Hoffmann, R., Botana, J., Naumov & Hemley, R. J. Quasimolecules in compressed lithium. Angew. Chem. Int. Ed. 56, 972–975 (2017).
Saunders, M. et al. Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure. J. Am. Chem. Soc. 116, 2193–2194 (1994).
Grochala, W. A metastable He–O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. Phys. Chem. Chem. Phys. 14, 14860–14868 (2012).
Hogness, T. R. & Lunn, E. G. The ionization of hydrogen by electron impact as interpreted by positive ray analysis. Phys. Rev. 26, 44–55 (1925).
Miao, M. Helium chemistry: react with nobility. Nat. Chem. 9, 409–410 (2017).
Liu, Z. et al. Reactivity of He with ionic compounds under high pressure. Nat. Commun. 9, 951 (2018). This work provides a new mechanism explaining how He can be reactive without forming any local chemical bonds, uncovering potential insertion reactions of He with many ionic compounds.
Botana, J. & Miao, M. Helium shows new chemistry not seen anywhere else. Chemistry 2, 466–467 (2017).
Gao, H., Sun, J., Pickard, C. J. & Needs, R. J. Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides. Phys. Rev. Mater. 3, 015002 (2019).
Liu, H. Y., Yao, Y. S. & Klug, D. D. Stable structures of He and H2O at high pressure. Phys. Rev. B 91, 014102 (2015).
Bai, Y. et al. Electrostatic force driven helium insertion into ammonia and water crystals under pressure. Commun. Chem. 2, 102 (2019).
Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).
Liu, C. et al. Multiple superionic states in helium–water compounds. Nat. Phys. 15, 1065–1070 (2019).
Zhang, J. et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions. Phys. Rev. Lett. 121, 255703 (2018).
Fredrickson, D. C. DFT-chemical pressure analysis: Visualizing the role of atomic size in shaping the structures of inorganic materials. J. Am. Chem. Soc. 134, 5991–5999 (2012).
Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).
Deng, N., Yang, G., Wang, W. & Qiu, Y. Structural transitions and electronic properties of sodium superoxide at high pressures. RSC Adv. 6, 67910–67915 (2016).
Morito, H., Momma, K. & Yamane, H. Crystal structure analysis of Na4Si4−xGex by single crystal X-ray diffraction. J. Alloys Compd. 623, 473–479 (2015).
Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).
Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48–51 (1999).
Zurek, E. in Handbook of Solid State Chemistry (ed. Dronskowski, R.) 571–605 (Wiley, 2017).
Jansen, M. Conceptual inorganic materials discovery – a road map. Adv. Mater. 27, 3229–3242 (2015).
Schön, J. C., Doll, K. & Jansen, M. Predicting solid compounds via global exploration of the energy landscape of solids on the ab initio level without recourse to experimental information. Phys. Status Solidi B 247, 23–39 (2010).
Revard, B. C., Tipton, W. W. & Hennig, R. G. in Prediction and Calculation of Crystal Structures: Methods and Applications (eds Atahan-Evrenk, S. & Aspuru-Guzik, A.) 181–222 (Springer, 2014).
Oganov, A. R. Modern Methods of Crystal Structure Prediction (Wiley, 2011).
Lonie, D. C. & Zurek, E. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).
Avery, P., Toher, C., Curtarolo, S. & Zurek, E. XtalOpt Version r12: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 237, 274–275 (2019).
Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917 (2004).
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).
Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: Determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. Engl. 35, 1286–1304 (1996).
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Acknowledgements
M.M. and Y.S. acknowledge the support of NSF CAREER award 1848141 and computational resources provided by XSEDE (TG-DMR130005). M.M. also acknowledges the support of ACS PRF 59249-UNI6. E.Z. acknowledges the support of NSF (DMR-1827815) and DOE (DE-SC0020340). H.L. acknowledges financial support from NSAF U1930402 and computational resources from the Beijing Computational Science Research Center.
Author information
Authors and Affiliations
Contributions
M.M. conceived the synopsis of the article, proposed the conceptual framework and wrote the first draft. M.M. and E.Z. made major revisions to the article. E.Z. wrote Box 1 and made major contributions to the section on hydrides. Y.S. made Table 1, Fig. 1, contributed to the literature search and helped with the other figures. H.L. supported and discussed the research and writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Miao, M., Sun, Y., Zurek, E. et al. Chemistry under high pressure. Nat Rev Chem 4, 508–527 (2020). https://doi.org/10.1038/s41570-020-0213-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-020-0213-0
This article is cited by
-
Exciton engineering of 2D Ruddlesden–Popper perovskites by synergistically tuning the intra and interlayer structures
Nature Communications (2024)
-
A database of high-pressure crystal structures from hydrogen to lanthanum
Scientific Data (2024)
-
Electron transfer rules of minerals under pressure informed by machine learning
Nature Communications (2023)
-
Open questions on the high-pressure chemistry of the noble gases
Communications Chemistry (2022)
-
Superconducting ScP4 with a novel phosphorus framework
Applied Physics A (2022)