Abstract
Mendeleev’s introduction of the periodic table of elements is one of the most important milestones in the history of chemistry, as it brought order into the known chemical and physical behaviour of the elements. The periodic table can be seen as parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties. The underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries. In the periodic table, the elements are placed into a certain period and group based on electronic configurations that originate from the Pauli and Aufbau principles for the electrons surrounding a positively charged nucleus. This order enables us to approximately predict the chemical and physical properties of elements. Apparent anomalies can arise from relativistic effects, partial-screening phenomena (of type lanthanide contraction) and the compact size of the first shell of every l-value. Further, ambiguities in electron configurations and the breakdown of assigning a dominant configuration, owing to configuration mixing and dense spectra for the heaviest elements in the periodic table. For the short-lived transactinides, the nuclear stability becomes an important factor in chemical studies. Nuclear stability, decay rates, spectra and reaction cross sections are also important for predicting the astrophysical origin of the elements, including the production of the heavy elements beyond iron in supernova explosions or neutron-star mergers. In this Perspective, we critically analyse the periodic table of elements and the current status of theoretical predictions and origins for the heaviest elements, which combine both quantum chemistry and physics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mendelejew, D. Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeit. Chem. 12, 405–406 (1869).
Van Spronsen, J. W. The Periodic System of Chemical Elements: A History of the First Hundred Years (Elsevier, 1969).
Kaji, M. D. I. Mendeleev’s concept of chemical elements and the principles of chemistry. Bull. Hist. Chem. 27, 4–16 (2002).
Scerri, E. R. The Periodic Table: Its Story and Its Significance (Oxford Univ. Press, 2007).
Gordin, M. D. A Well-Ordered Thing: Dmitrii Mendeleev and the Shadow of the Periodic Table (Princeton Univ. Press, 2018).
Pushcharovsky, D. Dmitry I. Mendeleev and his time. Substantia 3, 119–129 (2019).
Shaik, S., Cremades, E. & Alvarez, S. The periodic-table–a universal icon: its birth 150 years ago, and its popularization through literature art and music. Angew. Chem. Int. Ed. 58, 13194–13206 (2019).
Pyykkö, P. An essay on periodic tables. Pure Appl. Chem. 91, 1959–1967 (2019).
Pyykkö, P. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011).
Giuliani, S. A. et al. Colloquium: superheavy elements: oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).
Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).
Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1960).
Ruedenberg, K. The physical nature of the chemical bond. Rev. Mod. Phys. 34, 326 (1962).
Frenking, G. & Shaik, S. The Chemical Bond (Wiley, 2014).
Bacskay, G. B., Nordholm, S. & Ruedenberg, K. The virial theorem and covalent bonding. J. Phys. Chem. A 122, 7880–7893 (2018).
Zhao, L.-L., Schwarz, W. H. E. & Frenking, G. The Lewis electron-pair bonding model: the physical background one century later. Nat. Revs. Chem. 3, 35–47 (2019).
Pauli, W. The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940).
Zhao, L., Pan, S., Holzmann, N., Schwerdtfeger, P. & Frenking, G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 119, 8781–8845 (2019).
Goidenko, I. A. QED corrections for the valence electron in the heavy and superheavy metal atoms from the 11 and 12 groups. Eur. Phys. J. D 55, 35–42 (2009).
Goidenko, I., Labzowsky, L., Eliav, E., Kaldor, U. & Pyykkö, P. QED corrections to the binding energy of the eka-radon (Z = 118) negative ion. Phys. Rev. A 67, 020102 (2003).
Thierfelder, C. & Schwerdtfeger, P. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms. Phys. Rev. A 82, 062503 (2010).
Slater, J. C. Atomic shielding constants. Phys. Rev. 36, 57–64 (1930).
Zener, C. Analytic atomic wave functions. Phys. Rev. 36, 51–56 (1930).
Fermi, E. Anomalous groups in the periodic system of elements. Nature 121, 502 (1928).
Ivanenko, D. D. & Larin, S. Theory of the Periodic System of the Elements Vol. 2 (U.S. Atomic Energy Commission, Technical Information Service, 1953).
Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory 2nd edn Vol. 3 (Pergamon, 1965).
Essén, H. Periodic table of the elements and the Thomas–Fermi atom. Int. J. Quant. Chem. 21, 717–726 (1982).
Hartree, D. R. Variation of atomic wave functions with atomic number. Rev. Mod. Phys. 30, 63–68 (1958).
Desclaux, J. P. Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12, 311–406 (1973).
Pyykkö, P. The physics behind chemistry and the periodic table. Chem. Rev. 112, 371–384 (2012).
Mazurs, E. G. Graphic Representations of the Periodic System During One Hundred Years (Univ. Alabama Press, 1974).
Bensaude-Vincent, B. in Tools and Modes of Representation in the Laboratory Sciences (ed. Klein, U.) 133–161 (Springer, 2001).
Goudsmit, S. A. & Richards, P. I. The order of electron shells in ionized atoms. Proc. Natl Acad. Sci. USA 51, 664–671 (1964).
Madelung, E. Die Mathematischen Hilfsmittel des Physikers 3rd edn (Springer, 1936).
Janet, C. Concordance de l’Arrangement Quantique, de Base, des Électrons Planétaires, des Atomes, avec la Classification Scalariforme, Hélicoïdale, des Élements Chimiques (Beauvais Imprimerie Départementale de l’Oise, 1930).
Sommerfeld, A. Electronic structure of the atom and the quantum-theory. Mem. Proc. Manchester Lit. Phil. Soc. 70, 141–151 (1925).
Allen, L. C. & Knight, E. T. The Löwdin challenge: origin of the n + ℓ, n (Madelung) rule for filling the orbital configurations of the periodic table. Int. J. Quantum Chem. 90, 80–88 (2002).
Nefedov, V. I., Trzhaskovskaya, M. B. & Yarzhemskii, V. G. Electronic configurations and the periodic table for superheavy elements. Dokl. Phys. Chem. 408, 149–151 (2006).
Laing, M. A revised periodic table: with the lanthanides repositioned. Found. Chem. 7, 203 (2005).
Scerri, E. R. & Parsons, W. Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table (eds Scerri, E. & Restrepo, G.) 140–151 (Oxford Univ. Press, 2018).
Xu, W.-H. & Pyykkö, P. Is the chemistry of lawrencium peculiar? Phys. Chem. Chem. Phys. 18, 17351–17355 (2016).
Steinhauser, G. Wohin mit dem f-block? Nachr. Chem. 67, 8–11 (2019).
Eichler, R. The periodic table–an experimenter’s guide to transactinide chemistry. Radiochim. Acta 107, 865–877 (2019).
Cao, C.-S., Hu, H.-S., Li, J. & Schwarz, W. H. E. Physical origin of chemical periodicities in the system of elements. Pure. Appl. Chem. 91, 1969–1999 (2019).
Grupen, C. Astroparticle Physics 339–355 (Springer, 2020).
Kolar, M., Kubar, T. & Hobza, P. On the role of London dispersion forces in biomolecular structure determination. J. Phys. Chem. B 115, 8038–8046 (2011).
Moreno, D. et al. Re-examination of the C6Li6 structure: to be, or not to be symmetric. Chem. Eur. J. 19, 12668–12672 (2013).
Drozdov, A., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).
Drake, G. W. F. & Martin, W. C. Ionization energies and quantum electrodynamic effects in the lower 1sns and 1snp levels of neutral helium (4He I). Can. J. Phys. 76, 679–698 (1998).
Hotokka, M., Kindstedt, T., Pyykkö, P. & Roos, B. O. On bonding in transition-metal helide ions. Mol. Phys. 52, 23–32 (1984).
Wesendrup, R., Pernpointner, M. & Schwerdtfeger, P. Coulomb-stable triply charged diatomic: HeY3+. Phys. Rev. A 60, R3347–R3349 (1999).
Wright, T. G., Lee, E. P. F., Hotokka, M. & Pyykkö, P. Al3+-He: stability and spectroscopy. Chem. Phys. Lett. 392, 281–283 (2004).
Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).
Pyykkö, P. Dirac-Fock one-centre calculations part 8. The 1σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Phys. Scr. 20, 647–651 (1979).
Shchukarev, S. A. in Periodicheskij Zakon i Stroenie Atoma (ed. Levinski, Y. V.) (Atomizdat, 1971).
Imyanitov, N. S. Does the period table appear doubled? two variants of division of elements into two subsets. internal and secondary periodicity. Found. Chem. 21, 255–284 (2019).
Trinquier, G., Malrieu, J.-P. & Daudey, J.-P. Ab initio study of the regular polyhedral molecules N4, P4, As4, N8, P8 and As8. Chem. Phys. Lett. 80, 552–557 (1981).
Kutzelnigg, W. Chemical bonding in higher main group elements. Angew. Chem. Int. Ed. 23, 272–295 (1984).
Düllmann, C. E. et al. Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002).
Lu, J.-B. et al. Experimental and theoretical identification of the Fe(vii) oxidation state in \({{\rm{FeO}}}_{4}^{-}\). Phys. Chem. Chem. Phys. 18, 31125–31131 (2016).
Autschbach, J., Siekierski, S., Seth, M., Schwerdtfeger, P. & Schwarz, W. H. E. Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J. Comput. Chem. 23, 804–813 (2002).
Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F. & Allen, L. C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 122, 5132–5137 (2000).
Allen, L. C. Extension and completion of the periodic table. J. Am. Chem. Soc. 114, 1510–1511 (1992).
Nyholm, R. S. Electron configuration and structure of transition-metal complexes. Tilden Lecture. Proc. Chem. Soc. 1961, 273–298 (1961).
Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 28, 320–325 (2007).
Newell, D. B. et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia 55, L13 (2018).
Pašteka, L. F., Eliav, E., Borschevsky, A., Kaldor, U. & Schwerdtfeger, P. Relativistic coupled cluster calculations with variational quantum electrodynamics resolve the discrepancy between experiment and theory concerning the electron affinity and ionization potential of gold. Phys. Rev. Lett. 118, 023002 (2017).
Rose, S. J., Grant, I. P. & Pyper, N. C. The direct and indirect effects in the relativistic modification of atomic valence orbitals. J. Phys. B 11, 1171–1176 (1978).
Pyykkö, P. & Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979).
Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988).
Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012).
Schwarz, W. H. E., van Wezenbeek, E. M., Baerends, E. J. & Snijders, J. G. The origin of relativistic effects of atomic orbitals. J. Phys. B 22, 1515–1530 (1989).
Dehmer, J. L. Phase-amplitude method in atomic physics. II. Z dependence of spin-orbit coupling. Phys. Rev. A 7, 4–9 (1973).
Mayers, D. F. Relativistic self-consistent field calculation for mercury. Proc. R. Soc. A 241, 93–109 (1957).
Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P. & Nazarewicz, W. Electron and nucleon localization functions of oganesson: approaching the Thomas-Fermi limit. Phys. Rev. Lett. 120, 053001 (2018).
Schwerdtfeger, P. & Lein, M. in Gold Chemistry: Applications and Future Directions in the Life Sciences (ed. Mohr, F.) 183–247 (Wiley, 2009).
Dyall, K., Grant, I., Johnson, C., Parpia, F. & Plummer, E. GRASP: a general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425–456 (1989).
Türler, A. & Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237–1312 (2013).
Eliav, E., Kaldor, U., Schwerdtfeger, P., Hess, B. A. & Ishikawa, Y. Ground state electron configuration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994).
Seth, M., Schwerdtfeger, P. & Dolg, M. The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4. J. Chem. Phys. 106, 3623–3632 (1997).
Seth, M., Cooke, F., Schwerdtfeger, P., Heully, J.-L. & Pelissier, M. The chemistry of the superheavy elements. II. the stability of high oxidation states in group 11 elements: relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111. J. Chem. Phys. 109, 3935–3943 (1998).
Schwerdtfeger, P., Dolg, M., Schwarz, W. H. E., Bowmaker, G. A. & Boyd, P. D. W. Relativistic effects in gold chemistry. I. diatomic gold compounds. J. Chem. Phys. 91, 1762–1774 (1989).
Söhnel, T., Hermann, H. & Schwerdtfeger, P. Towards the understanding of solid-state structures: From cubic to chainlike arrangements in group 11 halides. Angew. Chem. Int. Ed. 40, 4381–4385 (2001).
Pahl, E. & Schwerdtfeger, P. in Handbook of Nanophysics: Clusters and Fullerenes Ch. 3 (ed. Sattler, K. D.) 1–13 (CRC Press, 2010).
Calvo, F., Pahl, E., Wormit, M. & Schwerdtfeger, P. Evidence for low-temperature melting of mercury owing to relativity. Angew. Chem. Int. Ed. 52, 7583–7585 (2013).
Steenbergen, K. G., Pahl, E. & Schwerdtfeger, P. Accurate, large-scale density functional melting of Hg: Relativistic effects decrease melting temperature by 160 K. J. Phys. Chem. Lett. 8, 1407–1412 (2017).
Mewes, J.-M., Smits, O. R., Kresse, G. & Schwerdtfeger, P. Copernicium: a relativistic noble liquid. Angew. Chem. Int. Ed. 58, 17964–17968 (2019).
Pitzer, K. S. Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032–1033 (1975).
Gaston, N., Opahle, I., Gäggeler, H. W. & Schwerdtfeger, P. Is eka-mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663–1666 (2007).
Deng, S., Simon, A. & Köhler, J. Superconductivity and chemical bonding in mercury. Angew. Chem. Int. Ed. 37, 640–643 (1998).
Kaupp, M. & von Schnering, H. G. Gaseous mercury(IV) fluoride, HgF4: an ab initio study. Angew. Chem. Int. Ed. 32, 861–863 (1993).
Wang, X., Andrews, L., Riedel, S. & Kaupp, M. Mercury is a transition metal: the first experimental evidence for HgF4. Angew. Chem. Int. Ed. 46, 8371–8375 (2007).
Eichler, R. et al. Chemical characterization of element 112. Nature 447, 72–75 (2007).
Trombach, L., Ehlert, S., Grimme, S., Schwerdtfeger, P. & Mewes, J.-M. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Phys. Chem. Chem. Phys. 21, 18048–18058 (2019).
Schwarz, W. H. E. in Relativistic Methods for Chemists (eds Barysz, M. & Ishikawa, Y.) 1–62 (Springer, 2010).
Froben, F. W., Schulze, W. & Kloss, U. Raman spectra of matrix-isolated group IIIA dimers: Ga2, In2, Tl2. Chem. Phys. Lett. 99, 500–502 (1983).
Liu, W., van Wüllen, C., Wang, F. & Li, L. Spectroscopic constants of MH and M2 (M=Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory. J. Chem. Phys. 116, 3626–3634 (2002).
Pershina, V. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties. Radiochim. Acta 107, 833–863 (2019).
Hermann, A., Furthmüller, J., Gäggeler, H. W. & Schwerdtfeger, P. Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).
Eichler, R. et al. Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010).
Yakushev, A. et al. Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014).
Egdell, R. G., Hotokka, M., Laaksonen, L., Pyykkö, P. & Snijders, J. G. Photoelectron spectra and their relativistic interpretation for gaseous bismuth trihalides. Chem. Phys. 72, 237–247 (1982).
Walsh, J. P. S. & Freedman, D. E. High-pressure synthesis: a new frontier in the search for next-generation intermetallic compounds. Acc. Chem. Res. 51, 1315–1323 (2018).
Nash, C. S. Atomic and molecular properties of elements 112, 114, and 118. J. Phys. Chem. A 109, 3493–3500 (2005).
Nash, C. S. & Bursten, B. E. Spin-orbit coupling versus the VSEPR method: On the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151–153 (1999).
Jerabek, P., Smits, O. R., Mewes, J.-M., Peterson, K. A. & Schwerdtfeger, P. Solid oganesson via a many-body interaction expansion based on relativistic coupled-cluster theory and from plane-wave relativistic density functional theory. J. Phys. Chem. A 123, 4201–4211 (2019).
Mewes, J.-M., Jerabek, P., Smits, O. R. & Schwerdtfeger, P. Oganesson is a semiconductor: On the relativistic band-gap narrowing in the heaviest noble-gas solids. Angew. Chem. Int. Ed. 58, 14260–14264 (2019).
Eliav, E., Kaldor, U., Ishikawa, Y. & Pyykkö, P. Element 118: The first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350–5352 (1996).
Sidgwick, N. V. The Covalent Link in Chemistry (Cornell Univ. Press, 1933).
Sidgwick, N. V. & Powell, H. M. Bakerian Lecture: stereochemical types and valency groups. Proc. R. Soc. A 176, 153–180 (1940).
Schwerdtfeger, P., Heath, G. A., Dolg, M. & Bennett, M. A. Low valencies and periodic trends in heavy element chemistry. a theoretical study of relativistic effects and electron correlation effects in group 13 and period 6 hydrides and halides. J. Am. Chem. Soc. 114, 7518–7527 (1992).
Seth, M., Faegri, K. & Schwerdtfeger, P. The stability of the oxidation state +4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. 37, 2493–2496 (1998).
Schwerdtfeger, P. & Seth, M. Relativistic quantum chemistry of the superheavy elements. closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133–136 (2002).
Vest, B., Klinkhammer, K., Thierfelder, C., Lein, M. & Schwerdtfeger, P. Kinetic and thermodynamic stability of the group 13 trihydrides. Inorg. Chem. 48, 7953–7961 (2009).
Ahuja, R., Blomqvist, A., Larsson, P., Pyykkö, P. & Zaleski-Ejgierd, P. Relativity and the lead-acid battery. Phys. Rev. Lett. 106, 018301 (2011).
Roos, B. O. & Pyykkö, P. Bonding trends in molecular compounds of lanthanides: The double-bonded carbene cations \({{\rm{LnCH}}}_{2}^{+}\), Ln = Sc, Y, La-Lu. Chem. Eur. J. 16, 270–275 (2010).
Xu, W.-H. et al. Rare-earth monocarbonyls MCO: comprehensive infrared observations and a transparent theoretical interpretation for M=Sc; Y; La-Lu. Chem. Sci. 3, 1548–1554 (2012).
Goldschmidt, V. M., Barth, T. F. W., Lunde, G. & Geochemische Verteilungsgesetze der Elemente, V. Isomorphie und Polymorphie der Sesquioxyde: Die Lanthanidenkontraktion und Ihre Konsequenzen. Skrifter Norske VidenskapsAkad. Oslo I Mat. Naturv. Kl. 7, 1–59 (1925).
Gao, C. et al. Observation of the asphericity of 4f-electron density and its relation to the magnetic anisotropy axis in single-molecule magnets. Nat. Chem. 12, 213–219 (2020).
Ryan, A. J. et al. Synthesis, structure, and magnetism of tris(amide) [ln{N(SiMe3)2}3]1− complexes of the non-traditional +2 lanthanide ions. Chem. Eur. J. 24, 7702–7709 (2018).
Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn Vol. 3 (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1893–2012 (Springer, 2006).
Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).
White, F. D., Dan, D. & Albrecht-Schmitt, T. E. Contemporary chemistry of berkelium and californium. Chem. Eur. J. 25, 10251–10261 (2019).
Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 16053 (2017).
Seth, M., Dolg, M., Fulde, P. & Schwerdtfeger, P. Lanthanide and actinide contractions: relativistic and shell structure effects. J. Am. Chem. Soc. 117, 6597–6598 (1995).
Küchle, W., Dolg, M. & Stoll, H. Ab initio study of the lanthanide and actinide contraction. J. Phys. Chem. A 101, 7128–7133 (1997).
Chemey, A. T. & Albrecht-Schmitt, T. E. Evolution of the periodic table through the synthesis of new elements. Radiochim. Acta 107, 771–801 (2019).
Pyykkö, P. Is the Periodic Table all right (“PT OK”)? EPJ Web Conf. 131, 01001 (2016).
Münzenberg, G. From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5–29 (2015).
Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G. & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).
Morita, K. SHE research at RIKEN/GARIS. Nucl. Phys. A 944, 30–61 (2015).
Dmitriev, S., Itkis, M. & Oganessian, Y. Status and perspectives of the Dubna superheavy element factory. EPJ Web Conf. 131, 08001 (2016).
Ball, P. Extreme chemistry: experiments at the edge of the periodic table. Nature 565, 552–555 (2019).
Lim, I. S. et al. Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. Phys. Rev. A 60, 2822–2828 (1999).
Schwerdtfeger, P. in Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals (eds Domenicano, A. & Hargittai, I.) 169–190 (Springer, 2002).
Borschevsky, A., Pershina, V., Eliav, E. & Kaldor, U. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs. J. Chem. Phys. 138, 124302 (2013).
Demidov, Y. A. & Zaitsevskii, A. V. A comparative study of the chemical properties of element 120 and its homologs. Radiochemistry 55, 461–465 (2013).
Seaborg, G. T. Prospects for further considerable extension of the periodic table. J. Chem. Ed. 46, 626–634 (1969).
Fricke, B., Greiner, W. & Waber, J. T. The continuation of the periodic table up to Z=172. the chemistry of superheavy elements. Theor. Chim. Acta 21, 235–260 (1971).
Indelicato, P., Bieroń, J. & Jönsson, P. Are MCDF calculations 101% correct in the super-heavy elements range? Theor. Chem. Acc. 129, 495–505 (2011).
Dognon, J.-P. & Pyykkö, P. Chemistry of the 5g elements: Relativistic calculations on hexafluorides. Angew. Chem. Int. Ed. 56, 10132–10134 (2017).
Schwerdtfeger, P., Pašteka, L. F., Punnett, A. & Bowman, P. O. Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551–577 (2015).
Grant, I. P. in Relativistic Effects in Atoms, Molecules, and Solids (ed. Malli, G. L.) 73–88 (Springer, 1983).
Thaller, B. The Dirac Equation (Springer, 1992).
Pomeranchuk, I. Y. & Smorodinsky, Y. A. On the energy levels of systems with Z>137. J. Phys. USSR 9, 97–100 (1945).
Zeldovich, Y. B. & Popov, V. S. Electronic structure of superheavy atoms. Sov. Phys. Uspekhi 14, 673–694 (1972).
Reinhardt, J. & Greiner, W. Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219–295 (1977).
Maltsev, I. A. et al. How to observe the vacuum decay in low-energy heavy-ion collisions. Phys. Rev. Lett. 123, 113401 (2019).
Unsöld, A. & Baschek, B. The New Cosmos: an Introduction to Astronomy and Astrophysics (Springer, 2013).
Oberhummer, H., Csoto, A. & Schlattl, H. Stellar production rates of carbon and its abundance in the universe. Science 289, 88–90 (2000).
Oberhummer, H., Csótó, A. & Schlattl, H. in The Future of the Universe and the Future of our Civilization (eds Burdyuzha, V. & Khozin, G.) 197–205 (World Scientific, 2000).
Borsanyi, S. et al. Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015).
Barrow, J. D. Impossibility: The Limits of Science and the Science of Limits (Oxford Univ. Press, 1999).
Uzan, J.-P. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).
Pašteka, L. F., Hao, Y., Borschevsky, A., Flambaum, V. V. & Schwerdtfeger, P. Material size dependence on fundamental constants. Phys. Rev. Lett. 122, 160801 (2019).
Guggenheimer, K. Remarques sur la constitution des noyaux - II. J. Phys. Radium 5, 475–485 (1934).
Guggenheimer, K. Remarques sur la constitution des noyaux atomiques - I. J. Phys. Radium 5, 253–256 (1934).
Fea, G. Tabelle riassuntive e bibliografia delle trasmutazioni artificiali. Il Nuovo Cimento 12, 368–406 (1935).
Segrè, E. Nuclei and Particles: an Introduction to Nuclear and Subnuclear Physics (Benjamin, 1964).
Hollander, J. M., Perlman, I. & Seaborg, G. T. Table of isotopes. Rev. Mod. Phys. 25, 469–651 (1953).
Strominger, D., Hollander, J. M. & Seaborg, G. T. Table of isotopes. Rev. Mod. Phys. 30, 585–904 (1958).
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).
Schatz, H. et al. End point of the rp process on accreting neutron stars. Phys. Rev. Lett. 86, 3471–3474 (2001).
Pignatari, M., Goebel, K., Reifarth, R. & Travaglio, C. The production of proton-rich isotopes beyond iron: The γ-process in stars. Int. J. Mod. Phys. E 25, 1630003 (2016).
Gamow, G. Expanding universe and the origin of elements. Phys. Rev. 70, 572 (1946).
Alpher, R. A. & Herman, R. C. Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22, 153 (1950).
Cirgiliano, V. et al. Precision beta decay as a probe of new physics. Preprint at arXiv https://arxiv.org/abs/1907.02164 (2019).
Yue, A. T. et al. Improved determination of the neutron lifetime. Phys. Rev. Lett. 111, 222501 (2013).
Ezhov, V. F. et al. Measurement of the neutron lifetime with ultracold neutrons stored in a magneto-gravitational trap. JETP Lett. 107, 671–675 (2018).
Thielemann, F.-K., Eichler, M., Panov, I. & Wehmeyer, B. Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017).
Frebel, A. From nuclei to the cosmos: tracing heavy-element production with the oldest stars. Annu. Rev. Nucl. Part. Sci. 68, 237–269 (2018).
Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G Nucl. Part. Phys. 46, 083001 (2019).
Heger, A., Hoffman, R. D., Rauscher, T. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).
Hampel, M., Stancliffe, R. J., Lugaro, M. & Meyer, B. S. The intermediate neutron-capture process and carbon-enhanced metal-poor stars. Astrophys. J. 831, 171 (2016).
Clarkson, O., Herwig, F. & Pignatari, M. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).
Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).
Cameron, A. G. Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146 (1973).
Ratzel, U. et al. Nucleosynthesis at the termination point of the s process. Phys. Rev. C 70, 065803 (2004).
Roederer, I. U. et al. New Hubble Space Telescope observations of heavy elements in four metal-poor stars. Astrophys. J. Suppl. Ser. 203, 27 (2012).
Clayton, D. D. Principles of Stellar Evolution and Nucleosynthesis (Univ. Chicago Press, 1983).
Clayton, D. D., Fowler, W. A., Hull, T. & Zimmerman, B. Neutron capture chains in heavy element synthesis. Ann. Phys. 12, 331–408 (1961).
Seeger, P. A., Fowler, W. A. & Clayton, D. D. Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. 11, 121–166 (1965).
Arlandini, C. et al. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886 (1999).
Straniero, O., Gallino, R. & Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 777, 311–339 (2006).
Cristallo, S. et al. Asymptotic-giant-branch models at very low metallicity. Publ. Astron. Soc. Aust. 26, 139–144 (2009).
Ulrich, R. in Explosive nucleosynthesis (ed. Schramm, D. N. & Arnett, W. D.) 139 (Univ. Texas Press, 1973).
Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157 (2011).
Schwarzschild, M. & Härm, R. Hydrogen mixing by helium-shell flashes. Astrophys. J. 150, 961 (1967).
Gallino, R. et al. Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-process. Astrophys. J. 497, 388 (1998).
Peters, J. G. Nucleosynthesis by the s-process in stars of 9 and 15 solar masses. Astrophys. J. 154, 225 (1968).
Travaglio, C. et al. Galactic chemical evolution of heavy elements: from barium to europium. Astrophys. J. 521, 691 (1999).
Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864 (2004).
Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).
Argast, D., Samland, M., Thielemann, F.-K. & Qian, Y.-Z. Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early galaxy. Astron. Astrophys. 416, 997–1011 (2004).
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).
Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).
Bartos, I. & Marka, S. A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature 569, 85–88 (2019).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Cowperthwaite, P. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).
Holmbeck, E. M. et al. Actinide production in the neutron-rich ejecta of a neutron star merger. Astrophys. J. 870, 23 (2019).
Watson, D. et al. Identification of strontium in the merger of two neutron stars. Nature 574, 497–500 (2019).
Truran, J. W. Nucleosynthesis. Annu. Rev. Nucl. Part. Sci. 34, 53–97 (1984).
Wallerstein, G. et al. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995 (1997).
Cheifetz, E., Jared, R. C., Giusti, E. R. & Thompson, S. G. Search for superheavy elements in nature. Phys. Rev. C 6, 1348–1361 (1972).
Schramm, D. N. Implied superheavy element decay lifetime from meteorites. Nature 233, 258–260 (1971).
Köber, E. & Langrock, E. J. Search for superheavy elements in the nature. Isot. Environ. Health Stud. 26, 576–583 (1990).
Ter-Akopian, G. M. & Dmitriev, S. N. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177–189 (2015).
Petermann, I. et al. Have superheavy elements been produced in nature? Eur. Phys. J. A 48, 122 (2012).
Goriely, S. & Pinedo, G. M. The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 158–176 (2015).
Wallner, A. et al. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015).
Seaborg, G. T., Mcmillan, E. M., Kennedy, J. W. & Wahl, A. C. Radioactive element 94 from deuterons on uranium. Phys. Rev. 69, 366–367 (1946).
Perlman, I. & Seaborg, G. T. The synthetic elements. Sci. Am. 182, 38–47 (1950).
Thompson, S. G., Ghiorso, A. & Seaborg, G. T. The new element berkelium (atomic number 97). Phys. Rev. 80, 781–789 (1950).
Seaborg, G. T. & Bloom, J. L. The synthetic elements: IV. Sci. Am. 220, 56–69 (1969).
Bohr, N. & Wheeler, J. A. The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).
Reed, B. C. Simple derivation of the Bohr–Wheeler spontaneous fission limit. Am. J. Phys. 71, 258–260 (2003).
Möller, P. The limits of the nuclear chart set by fission and alpha decay. EPJ Web Conf. 131, 03002 (2016).
Block, M. et al. Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785–788 (2010).
Ramirez, E. M. et al. Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207–1210 (2012).
Ito, Y. et al. First direct mass measurements of nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).
Block, M. Direct mass measurements and ionization potential measurements of the actinides. Radiochim. Acta 107, 821–831 (2019).
Fischer, C. F. Average-energy-of-configuration Hartree-Fock results for the atoms helium to radon. At. Data Nucl. Data Tables 12, 87–99 (1973).
Flambaum, V. V. & Ginges, J. S. M. Radiative potential and calculations of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys. Rev. A 72, 052115 (2005).
Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Comput. Phys. Commun. 189, 175–181 (2015).
Lindgren, I. Relativistic Many-Body Theory: A New Field-Theoretical Approach Vol. 63 (Springer, 2016).
Sonzogni, A. A. NuDat 2.0: Nuclear structure and decay data on the internet. AIP Conf. Proc. 769, 574–577 (2005).
Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).
Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the periodic table: electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc. 141, 10253–10271 (2019).
Schwerdtfeger, P. The pseudopotential approximation in electronic structure theory. ChemPhysChem 12, 3143–3155 (2011).
Myers, W. D. & Swiatecki, W. Average nuclear properties. Ann. Phys. 55, 395–505 (1969).
Nazarewicz, W. Challenges in nuclear structure theory. J. Phys. G Nucl. Part. Phys. 43, 044002 (2016).
Weizsäcker, C. F. V. Zur Theorie der Kernmassen. Zeit. Phys. 96, 431–458 (1935).
Bethe, H. A. & Bacher, R. F. Nuclear physics A. Stationary states of nuclei. Rev. Mod. Phys. 8, 82–229 (1936).
Kaiser, N., Fritsch, S. & Weise, W. Nuclear mean field from chiral pion–nucleon dynamics. Nucl. Phys. A 700, 343–358 (2002).
Yamazaki, T., Kuramashi, Y. & Ukawa, A. Helium nuclei in quenched lattice QCD. Phys. Rev. D 81, 111504 (2010).
Wiebke, J., Pahl, E. & Schwerdtfeger, P. Melting at high pressure: can first-principles computational chemistry challenge diamond-anvil cell experiments? Angew. Chem. Int. Ed. 52, 13202–13205 (2013).
Schwerdtfeger, P., Tonner, R., Moyano, G. E. & Pahl, E. Towards J/mol accuracy for the cohesive energy of solid argon. Angew. Chem. Int. Ed. 55, 12200–12205 (2016).
Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).
Coester, F. & Kümmel, H. Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–485 (1960).
Čižek, J. & Paldus, J. Correlation problems in atomic and molecular systems III. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. Int. J. Quantum Chem. 5, 359–379 (1971).
Kümmel, H. G. A biography of the coupled cluster method. Int. J. Mod. Phys. B 17, 5311–5325 (2003).
Kowalski, K., Dean, D. J., Hjorth-Jensen, M., Papenbrock, T. & Piecuch, P. Coupled cluster calculations of ground and excited states of nuclei. Phys. Rev. Lett. 92, 132501 (2004).
Hagen, G. et al. Coupled-cluster theory for three-body Hamiltonians. Phys. Rev. C 76, 034302 (2007).
Van Dyck, R. S. Jr, Zafonte, S. L., Van Liew, S., Pinegar, D. B. & Schwinberg, P. B. Ultraprecise atomic mass measurement of the α particle and 4He. Phys. Rev. Lett. 92, 220802 (2004).
Piecuch, P. & Bartlett, R. J. EOMXCC: A new coupled-cluster method for electronic excited states. Adv. Quantum Chem. 34, 295–380 (1999).
Kane, J. V., Pixley, R. E., Schwartz, R. B. & Schwarzschild, A. Lifetimes of the first excited states of F17 and O17. Phys. Rev. 120, 162–168 (1960).
Gour, J. R., Piecuch, P., Hjorth-Jensen, M., Wloch, M. & Dean, D. J. Coupled-cluster calculations for valence systems around 16O. Phys. Rev. C 74, 024310 (2006).
Cottingham, W. N. & Greenwood, D. A. An Introduction to Nuclear Physics (Cambridge Univ. Press, 2001).
Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995).
Moller, P. & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G Nucl. Part. Phys. 20, 1681–1747 (1994).
Sadhukhan, J., Dobaczewski, J., Nazarewicz, W., Sheikh, J. A. & Baran, A. Pairing-induced speedup of nuclear spontaneous fission. Phys. Rev. C 90, 061304 (2014).
Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003).
Rowe, D. J. & Wood, J. L. Fundamentals of Nuclear Models (World Scientific, 2010).
Zagrebaev, V. I. & Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257–307 (2015).
Oganessian, Y. T., Utyonkov, V. K. & Moody, K. J. Voyage to superheavy island. Sci. Am. 282, 63–67 (2000).
Myers, W. D. & Swiatecki, W. J. Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966).
Ćwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).
Matheson, Z., Giuliani, S. A., Nazarewicz, W., Sadhukhan, J. & Schunck, N. Cluster radioactivity of \({}_{118}^{294}{{\rm{Og}}}_{176}\). Phys. Rev. C 99, 041304 (2019).
Ćwiok, S., Dobaczewski, J., Heenen, P. H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211–246 (1996).
Kruppa, A. T. et al. Shell corrections of superheavy nuclei in self-consistent calculations. Phys. Rev. C 61, 034313 (2000).
Morita, K. et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. J. Phys. Soc. Jpn. 73, 2593–2596 (2004).
Münzenberg, G. & Morita, K. Synthesis of the heaviest nuclei in cold fusion reactions. Nucl. Phys. A 944, 3–4 (2015).
Oganessian, Y. T. et al. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006).
Oganessian, Y. Heaviest nuclei from 48Ca-induced reactions. J. Phys. G Nucl. Part. Phys. 34, R165–R242 (2007).
Hofmann, S. Super-heavy nuclei. J. Phys. G Nucl. Part. Phys. 42, 114001 (2015).
Kragh, H. The search for superheavy elements: historical and philosophical perspectives. Preprint at arXiv https://arxiv.org/abs/1708.04064 (2017).
Restrepo, G. Challenges for the periodic systems of elements: chemical, historical and mathematical perspectives. Chem. Eur. J. 25, 15430–15440 (2019).
Scerri, E. Can quantum ideas explain chemistry’s greatest icon? Nature 565, 557–559 (2019).
Scerri, E. & Restrepo, G. Mendeleev to Oganesson: a Multidisciplinary Perspective on the Periodic Table (Oxford Univ. Press, 2018).
Scerri, E. Cracks in the periodic table. Sci. Am. 308, 68–73 (2013).
Scerri, E. R. in Philosophy of Chemistry. Volume 6 in Handbook of the Philosophy of Science (eds Woody, A. I., Hendry, R. F. & Needham, P.) 329–338 (North Holland, 2012).
Kutzelnigg, W. The periodic table. Its story and its significance. Int. J. Quantum Chem. 110, 1443–1444 (2010).
Schädel, M. Chemistry of the superheavy elements. Philos. Trans. R. Soc. A 373, 20140191 (2015).
Kirsebom, O. S. et al. Discovery of an exceptionally strong β-decay transition of 20F and implications for the fate of intermediate-mass stars. Phys. Rev. Lett. 123, 262701 (2019).
Levi, P. The Periodic Table [transl. Rosenthal, R.] (Schocken Books, 1984).
Emsley, J. Nature's building blocks: an A-Z guide to the elements (Oxford University Press, 2011).
Gil, P. The St Andrews Periodic Table. University of St Andrews http://special-collections.wp.st-andrews.ac.uk/2019/08/05/the-st-andrews-periodic-table/ (2019).
Seaborg, G. T. The periodic table: tortuous path to man-made elements. Chem. Eng. News 57, 46–52 (1979).
Haba, H. A new period in superheavy-element hunting. Nat. Chem. 11, 10–13 (2019).
Johnson, J. A. Populating the periodic table: nucleosynthesis of the elements. Science 363, 474–478 (2019).
Aker, M. et al. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett. 123, 221802 (2019).
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database. NIST https://physics.nist.gov/asd (2018).
Lackenby, B. G. C., Dzuba, V. A. & Flambaum, V. V. Theoretical calculation of atomic properties of superheavy elements Z= 110–112 and their ions. Phys. Rev. A 101, 012514 (2019).
Schwerdtfeger, P. & Seth, M. in Encyclopedia of Computational Chemistry Vol. 4 (eds Schleyer, P. V. R. et al.) 2480–2499 (Wiley, 1998).
Eliav, E., Kaldor, U., Ishikawa, Y., Seth, M. & Pyykkö, P. Calculated energy levels of thallium and eka-thallium (element 113). Phys. Rev. A 53, 3926–3933 (1996).
Eliav, E. & Kaldor, U. in Relativistic Methods for Chemists (eds Barysz, M. & Ishikawa, Y.) 279–349 (Springer, 2010).
Rolfs, C. E., & Rodney, W. S. Cauldrons in the Cosmos: Nuclear Astrophysics (Univ. Chicago Press, 1988).
Oganessian, Y. T. Synthesis of the heaviest elements in 48Ca-induced reactions. Radiochim. Acta 99, 429–439 (2011).
Roederer, I. U. et al. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars. Astrophys. J. 791, 32 (2014).
Firsching, F. H. Anomalies in the periodic table. J. Chem. Educ. 58, 478–479 (1981).
Meyer, L. Die Natur der chemischen elemente als funktion ihrer atomgewichte. Annalen Chem. Pharm. 7, 354–364 (1870).
van Spronsen, J. W. The priority conflict between Mendeleev and Meyer. J. Chem. Ed. 46, 136–139 (1969).
Kuhn, N. & Zeller, K.-P. Lothar Meyer-eine Wiederentdeckung. Nachr. Chem. 67, 19–25 (2019).
Boeck, G. Das Periodensystem der Elemente und Lothar Meyer. Chem. Unserer Zeit 53, 372–382 (2019).
Schwerdtfeger, P. Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2. Chem. Phys. Lett. 183, 457–463 (1991).
Schwerdtfeger, P. Relativistic effects in properties of gold. Heteroat. Chem. 13, 578–584 (2002).
Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).
Glantschnig, K. & Ambrosch-Draxl, C. Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J. Phys. 12, 103048 (2010).
Schwerdtfeger, P. Gold goes nano - from small clusters to low-dimensional assemblies. Angew. Chem. Int. Ed. 42, 1892–1895 (2003).
Theilacker, K., Schlegel, H. B., Kaupp, M. & Schwerdtfeger, P. Relativistic and solvation effects on the stability of gold(III) halides in aqueous solution. Inorg. Chem. 54, 9869–9875 (2015).
Hashmi, A. S. K. The catalysis gold rush: New claims. Angew. Chem. Int. Ed. 44, 6990–6993 (2005).
Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).
Jones, K. L. & Nazarewicz, W. Designer nuclei — making atoms that barely exist. The Physics Teacher 48, 381 (2010).
Acknowledgements
This paper is dedicated to the memory of our friend and colleague Prof. Dr. Werner Kutzelnigg, who recently passed away. We acknowledge financial support by the Alexander von Humboldt Foundation (Bonn) and the Marsden Fund (17-MAU-021) of the Royal Society of New Zealand (Wellington). This work is part of the “Molecules in Extreme Environments” project funded by the Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway. We thank W. Nazarewicz and B. Sherrill (Michigan State), M. Wiescher (Notre Dame), W. H. E. Schwarz (Siegen), Y. Oganessian (Dubna), G. Boeck (Rostock), R. Eichler (Bern), L. Pašteka (Bratislava) and L. v. Szentpaly (Stuttgart) for interesting and stimulating discussions. P.P. acknowledges a travel scholarship from the Magnus Ehrnrooth Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the preparation of this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Internet database of periodic tables: https://www.meta-synthesis.com/webbook/35pt/ptdatabase.php
National Nuclear Data Center’s NuDat 2 database: http://www.nndc.bnl.gov
Rights and permissions
About this article
Cite this article
Schwerdtfeger, P., Smits, O.R. & Pyykkö, P. The periodic table and the physics that drives it. Nat Rev Chem 4, 359–380 (2020). https://doi.org/10.1038/s41570-020-0195-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-020-0195-y
This article is cited by
-
Halogen-powered static conversion chemistry
Nature Reviews Chemistry (2024)
-
Quantum Physics, Digital Computers, and Life from a Holistic Perspective
Foundations of Physics (2024)
-
The quest for superheavy elements and the limit of the periodic table
Nature Reviews Physics (2023)
-
Study of alpha-decay chain for even–even isotopes of \(Z=120\) superheavy nuclei
Pramana (2023)
-
Non-periodic table of periodicities and periodic table with additional periodicities: tetrad periodicity
Foundations of Chemistry (2022)