The periodic table and the physics that drives it


Mendeleev’s introduction of the periodic table of elements is one of the most important milestones in the history of chemistry, as it brought order into the known chemical and physical behaviour of the elements. The periodic table can be seen as parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties. The underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries. In the periodic table, the elements are placed into a certain period and group based on electronic configurations that originate from the Pauli and Aufbau principles for the electrons surrounding a positively charged nucleus. This order enables us to approximately predict the chemical and physical properties of elements. Apparent anomalies can arise from relativistic effects, partial-screening phenomena (of type lanthanide contraction) and the compact size of the first shell of every l-value. Further, ambiguities in electron configurations and the breakdown of assigning a dominant configuration, owing to configuration mixing and dense spectra for the heaviest elements in the periodic table. For the short-lived transactinides, the nuclear stability becomes an important factor in chemical studies. Nuclear stability, decay rates, spectra and reaction cross sections are also important for predicting the astrophysical origin of the elements, including the production of the heavy elements beyond iron in supernova explosions or neutron-star mergers. In this Perspective, we critically analyse the periodic table of elements and the current status of theoretical predictions and origins for the heaviest elements, which combine both quantum chemistry and physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Periodic tables.
Fig. 2: The Standard Model of fundamental particles.
Fig. 3: Electronic states and configurations.
Fig. 4: Relativistic effects.
Fig. 5: Localization functions.
Fig. 6: Nuclear stability.
Fig. 7: Abundancies of elements.


  1. 1.

    Mendelejew, D. Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeit. Chem. 12, 405–406 (1869).

    Google Scholar 

  2. 2.

    Van Spronsen, J. W. The Periodic System of Chemical Elements: A History of the First Hundred Years (Elsevier, 1969).

  3. 3.

    Kaji, M. D. I. Mendeleev’s concept of chemical elements and the principles of chemistry. Bull. Hist. Chem. 27, 4–16 (2002).

    CAS  Google Scholar 

  4. 4.

    Scerri, E. R. The Periodic Table: Its Story and Its Significance (Oxford Univ. Press, 2007).

  5. 5.

    Gordin, M. D. A Well-Ordered Thing: Dmitrii Mendeleev and the Shadow of the Periodic Table (Princeton Univ. Press, 2018).

  6. 6.

    Pushcharovsky, D. Dmitry I. Mendeleev and his time. Substantia 3, 119–129 (2019).

    Google Scholar 

  7. 7.

    Shaik, S., Cremades, E. & Alvarez, S. The periodic-table–a universal icon: its birth 150 years ago, and its popularization through literature art and music. Angew. Chem. Int. Ed. 58, 13194–13206 (2019).

    CAS  Google Scholar 

  8. 8.

    Pyykkö, P. An essay on periodic tables. Pure Appl. Chem. 91, 1959–1967 (2019).

    Google Scholar 

  9. 9.

    Pyykkö, P. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011).

    PubMed  Google Scholar 

  10. 10.

    Giuliani, S. A. et al. Colloquium: superheavy elements: oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).

    CAS  Google Scholar 

  11. 11.

    Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).

    CAS  Google Scholar 

  12. 12.

    Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1960).

  13. 13.

    Ruedenberg, K. The physical nature of the chemical bond. Rev. Mod. Phys. 34, 326 (1962).

    CAS  Google Scholar 

  14. 14.

    Frenking, G. & Shaik, S. The Chemical Bond (Wiley, 2014).

  15. 15.

    Bacskay, G. B., Nordholm, S. & Ruedenberg, K. The virial theorem and covalent bonding. J. Phys. Chem. A 122, 7880–7893 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhao, L.-L., Schwarz, W. H. E. & Frenking, G. The Lewis electron-pair bonding model: the physical background one century later. Nat. Revs. Chem. 3, 35–47 (2019).

    Google Scholar 

  17. 17.

    Pauli, W. The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940).

    Google Scholar 

  18. 18.

    Zhao, L., Pan, S., Holzmann, N., Schwerdtfeger, P. & Frenking, G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 119, 8781–8845 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Goidenko, I. A. QED corrections for the valence electron in the heavy and superheavy metal atoms from the 11 and 12 groups. Eur. Phys. J. D 55, 35–42 (2009).

    CAS  Google Scholar 

  20. 20.

    Goidenko, I., Labzowsky, L., Eliav, E., Kaldor, U. & Pyykkö, P. QED corrections to the binding energy of the eka-radon (Z = 118) negative ion. Phys. Rev. A 67, 020102 (2003).

    Google Scholar 

  21. 21.

    Thierfelder, C. & Schwerdtfeger, P. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms. Phys. Rev. A 82, 062503 (2010).

    Google Scholar 

  22. 22.

    Slater, J. C. Atomic shielding constants. Phys. Rev. 36, 57–64 (1930).

    CAS  Google Scholar 

  23. 23.

    Zener, C. Analytic atomic wave functions. Phys. Rev. 36, 51–56 (1930).

    CAS  Google Scholar 

  24. 24.

    Fermi, E. Anomalous groups in the periodic system of elements. Nature 121, 502 (1928).

    CAS  Google Scholar 

  25. 25.

    Ivanenko, D. D. & Larin, S. Theory of the Periodic System of the Elements Vol. 2 (U.S. Atomic Energy Commission, Technical Information Service, 1953).

  26. 26.

    Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory 2nd edn Vol. 3 (Pergamon, 1965).

  27. 27.

    Essén, H. Periodic table of the elements and the Thomas–Fermi atom. Int. J. Quant. Chem. 21, 717–726 (1982).

    Google Scholar 

  28. 28.

    Hartree, D. R. Variation of atomic wave functions with atomic number. Rev. Mod. Phys. 30, 63–68 (1958).

    CAS  Google Scholar 

  29. 29.

    Desclaux, J. P. Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables 12, 311–406 (1973).

    CAS  Google Scholar 

  30. 30.

    Pyykkö, P. The physics behind chemistry and the periodic table. Chem. Rev. 112, 371–384 (2012).

    PubMed  Google Scholar 

  31. 31.

    Mazurs, E. G. Graphic Representations of the Periodic System During One Hundred Years (Univ. Alabama Press, 1974).

  32. 32.

    Bensaude-Vincent, B. in Tools and Modes of Representation in the Laboratory Sciences (ed. Klein, U.) 133–161 (Springer, 2001).

  33. 33.

    Goudsmit, S. A. & Richards, P. I. The order of electron shells in ionized atoms. Proc. Natl Acad. Sci. USA 51, 664–671 (1964).

    CAS  PubMed  Google Scholar 

  34. 34.

    Madelung, E. Die Mathematischen Hilfsmittel des Physikers 3rd edn (Springer, 1936).

  35. 35.

    Janet, C. Concordance de l’Arrangement Quantique, de Base, des Électrons Planétaires, des Atomes, avec la Classification Scalariforme, Hélicoïdale, des Élements Chimiques (Beauvais Imprimerie Départementale de l’Oise, 1930).

  36. 36.

    Sommerfeld, A. Electronic structure of the atom and the quantum-theory. Mem. Proc. Manchester Lit. Phil. Soc. 70, 141–151 (1925).

    Google Scholar 

  37. 37.

    Allen, L. C. & Knight, E. T. The Löwdin challenge: origin of the n + , n (Madelung) rule for filling the orbital configurations of the periodic table. Int. J. Quantum Chem. 90, 80–88 (2002).

    CAS  Google Scholar 

  38. 38.

    Nefedov, V. I., Trzhaskovskaya, M. B. & Yarzhemskii, V. G. Electronic configurations and the periodic table for superheavy elements. Dokl. Phys. Chem. 408, 149–151 (2006).

    CAS  Google Scholar 

  39. 39.

    Laing, M. A revised periodic table: with the lanthanides repositioned. Found. Chem. 7, 203 (2005).

    CAS  Google Scholar 

  40. 40.

    Scerri, E. R. & Parsons, W. Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table (eds Scerri, E. & Restrepo, G.) 140–151 (Oxford Univ. Press, 2018).

  41. 41.

    Xu, W.-H. & Pyykkö, P. Is the chemistry of lawrencium peculiar? Phys. Chem. Chem. Phys. 18, 17351–17355 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Steinhauser, G. Wohin mit dem f-block? Nachr. Chem. 67, 8–11 (2019).

    Google Scholar 

  43. 43.

    Eichler, R. The periodic table–an experimenter’s guide to transactinide chemistry. Radiochim. Acta 107, 865–877 (2019).

    CAS  Google Scholar 

  44. 44.

    Cao, C.-S., Hu, H.-S., Li, J. & Schwarz, W. H. E. Physical origin of chemical periodicities in the system of elements. Pure. Appl. Chem. 91, 1969–1999 (2019).

    CAS  Google Scholar 

  45. 45.

    Grupen, C. Astroparticle Physics 339–355 (Springer, 2020).

  46. 46.

    Kolar, M., Kubar, T. & Hobza, P. On the role of London dispersion forces in biomolecular structure determination. J. Phys. Chem. B 115, 8038–8046 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Moreno, D. et al. Re-examination of the C6Li6 structure: to be, or not to be symmetric. Chem. Eur. J. 19, 12668–12672 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Drozdov, A., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    CAS  PubMed  Google Scholar 

  52. 52.

    Drake, G. W. F. & Martin, W. C. Ionization energies and quantum electrodynamic effects in the lower 1sns and 1snp levels of neutral helium (4He I). Can. J. Phys. 76, 679–698 (1998).

    CAS  Google Scholar 

  53. 53.

    Hotokka, M., Kindstedt, T., Pyykkö, P. & Roos, B. O. On bonding in transition-metal helide ions. Mol. Phys. 52, 23–32 (1984).

    CAS  Google Scholar 

  54. 54.

    Wesendrup, R., Pernpointner, M. & Schwerdtfeger, P. Coulomb-stable triply charged diatomic: HeY3+. Phys. Rev. A 60, R3347–R3349 (1999).

    CAS  Google Scholar 

  55. 55.

    Wright, T. G., Lee, E. P. F., Hotokka, M. & Pyykkö, P. Al3+-He: stability and spectroscopy. Chem. Phys. Lett. 392, 281–283 (2004).

    CAS  Google Scholar 

  56. 56.

    Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Pyykkö, P. Dirac-Fock one-centre calculations part 8. The 1σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Phys. Scr. 20, 647–651 (1979).

    Google Scholar 

  58. 58.

    Shchukarev, S. A. in Periodicheskij Zakon i Stroenie Atoma (ed. Levinski, Y. V.) (Atomizdat, 1971).

  59. 59.

    Imyanitov, N. S. Does the period table appear doubled? two variants of division of elements into two subsets. internal and secondary periodicity. Found. Chem. 21, 255–284 (2019).

    CAS  Google Scholar 

  60. 60.

    Trinquier, G., Malrieu, J.-P. & Daudey, J.-P. Ab initio study of the regular polyhedral molecules N4, P4, As4, N8, P8 and As8. Chem. Phys. Lett. 80, 552–557 (1981).

    CAS  Google Scholar 

  61. 61.

    Kutzelnigg, W. Chemical bonding in higher main group elements. Angew. Chem. Int. Ed. 23, 272–295 (1984).

    Google Scholar 

  62. 62.

    Düllmann, C. E. et al. Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002).

    PubMed  Google Scholar 

  63. 63.

    Lu, J.-B. et al. Experimental and theoretical identification of the Fe(vii) oxidation state in \({{\rm{FeO}}}_{4}^{-}\). Phys. Chem. Chem. Phys. 18, 31125–31131 (2016).

  64. 64.

    Autschbach, J., Siekierski, S., Seth, M., Schwerdtfeger, P. & Schwarz, W. H. E. Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J. Comput. Chem. 23, 804–813 (2002).

    CAS  PubMed  Google Scholar 

  65. 65.

    Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F. & Allen, L. C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 122, 5132–5137 (2000).

    CAS  Google Scholar 

  66. 66.

    Allen, L. C. Extension and completion of the periodic table. J. Am. Chem. Soc. 114, 1510–1511 (1992).

    CAS  Google Scholar 

  67. 67.

    Nyholm, R. S. Electron configuration and structure of transition-metal complexes. Tilden Lecture. Proc. Chem. Soc. 1961, 273–298 (1961).

    Google Scholar 

  68. 68.

    Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 28, 320–325 (2007).

    CAS  PubMed  Google Scholar 

  69. 69.

    Newell, D. B. et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia 55, L13 (2018).

    CAS  Google Scholar 

  70. 70.

    Pašteka, L. F., Eliav, E., Borschevsky, A., Kaldor, U. & Schwerdtfeger, P. Relativistic coupled cluster calculations with variational quantum electrodynamics resolve the discrepancy between experiment and theory concerning the electron affinity and ionization potential of gold. Phys. Rev. Lett. 118, 023002 (2017).

    PubMed  Google Scholar 

  71. 71.

    Rose, S. J., Grant, I. P. & Pyper, N. C. The direct and indirect effects in the relativistic modification of atomic valence orbitals. J. Phys. B 11, 1171–1176 (1978).

    CAS  Google Scholar 

  72. 72.

    Pyykkö, P. & Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979).

    Google Scholar 

  73. 73.

    Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988).

    Google Scholar 

  74. 74.

    Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012).

    PubMed  Google Scholar 

  75. 75.

    Schwarz, W. H. E., van Wezenbeek, E. M., Baerends, E. J. & Snijders, J. G. The origin of relativistic effects of atomic orbitals. J. Phys. B 22, 1515–1530 (1989).

    CAS  Google Scholar 

  76. 76.

    Dehmer, J. L. Phase-amplitude method in atomic physics. II. Z dependence of spin-orbit coupling. Phys. Rev. A 7, 4–9 (1973).

    CAS  Google Scholar 

  77. 77.

    Mayers, D. F. Relativistic self-consistent field calculation for mercury. Proc. R. Soc. A 241, 93–109 (1957).

    CAS  Google Scholar 

  78. 78.

    Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P. & Nazarewicz, W. Electron and nucleon localization functions of oganesson: approaching the Thomas-Fermi limit. Phys. Rev. Lett. 120, 053001 (2018).

    CAS  PubMed  Google Scholar 

  79. 79.

    Schwerdtfeger, P. & Lein, M. in Gold Chemistry: Applications and Future Directions in the Life Sciences (ed. Mohr, F.) 183–247 (Wiley, 2009).

  80. 80.

    Dyall, K., Grant, I., Johnson, C., Parpia, F. & Plummer, E. GRASP: a general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425–456 (1989).

    CAS  Google Scholar 

  81. 81.

    Türler, A. & Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237–1312 (2013).

    PubMed  Google Scholar 

  82. 82.

    Eliav, E., Kaldor, U., Schwerdtfeger, P., Hess, B. A. & Ishikawa, Y. Ground state electron configuration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994).

    CAS  PubMed  Google Scholar 

  83. 83.

    Seth, M., Schwerdtfeger, P. & Dolg, M. The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4. J. Chem. Phys. 106, 3623–3632 (1997).

    CAS  Google Scholar 

  84. 84.

    Seth, M., Cooke, F., Schwerdtfeger, P., Heully, J.-L. & Pelissier, M. The chemistry of the superheavy elements. II. the stability of high oxidation states in group 11 elements: relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111. J. Chem. Phys. 109, 3935–3943 (1998).

    CAS  Google Scholar 

  85. 85.

    Schwerdtfeger, P., Dolg, M., Schwarz, W. H. E., Bowmaker, G. A. & Boyd, P. D. W. Relativistic effects in gold chemistry. I. diatomic gold compounds. J. Chem. Phys. 91, 1762–1774 (1989).

    CAS  Google Scholar 

  86. 86.

    Söhnel, T., Hermann, H. & Schwerdtfeger, P. Towards the understanding of solid-state structures: From cubic to chainlike arrangements in group 11 halides. Angew. Chem. Int. Ed. 40, 4381–4385 (2001).

    Google Scholar 

  87. 87.

    Pahl, E. & Schwerdtfeger, P. in Handbook of Nanophysics: Clusters and Fullerenes Ch. 3 (ed. Sattler, K. D.) 1–13 (CRC Press, 2010).

  88. 88.

    Calvo, F., Pahl, E., Wormit, M. & Schwerdtfeger, P. Evidence for low-temperature melting of mercury owing to relativity. Angew. Chem. Int. Ed. 52, 7583–7585 (2013).

    CAS  Google Scholar 

  89. 89.

    Steenbergen, K. G., Pahl, E. & Schwerdtfeger, P. Accurate, large-scale density functional melting of Hg: Relativistic effects decrease melting temperature by 160 K. J. Phys. Chem. Lett. 8, 1407–1412 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    Mewes, J.-M., Smits, O. R., Kresse, G. & Schwerdtfeger, P. Copernicium: a relativistic noble liquid. Angew. Chem. Int. Ed. 58, 17964–17968 (2019).

    CAS  Google Scholar 

  91. 91.

    Pitzer, K. S. Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032–1033 (1975).

    CAS  Google Scholar 

  92. 92.

    Gaston, N., Opahle, I., Gäggeler, H. W. & Schwerdtfeger, P. Is eka-mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663–1666 (2007).

    CAS  Google Scholar 

  93. 93.

    Deng, S., Simon, A. & Köhler, J. Superconductivity and chemical bonding in mercury. Angew. Chem. Int. Ed. 37, 640–643 (1998).

    CAS  Google Scholar 

  94. 94.

    Kaupp, M. & von Schnering, H. G. Gaseous mercury(IV) fluoride, HgF4: an ab initio study. Angew. Chem. Int. Ed. 32, 861–863 (1993).

    Google Scholar 

  95. 95.

    Wang, X., Andrews, L., Riedel, S. & Kaupp, M. Mercury is a transition metal: the first experimental evidence for HgF4. Angew. Chem. Int. Ed. 46, 8371–8375 (2007).

    CAS  Google Scholar 

  96. 96.

    Eichler, R. et al. Chemical characterization of element 112. Nature 447, 72–75 (2007).

    CAS  PubMed  Google Scholar 

  97. 97.

    Trombach, L., Ehlert, S., Grimme, S., Schwerdtfeger, P. & Mewes, J.-M. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Phys. Chem. Chem. Phys. 21, 18048–18058 (2019).

    CAS  PubMed  Google Scholar 

  98. 98.

    Schwarz, W. H. E. in Relativistic Methods for Chemists (eds Barysz, M. & Ishikawa, Y.) 1–62 (Springer, 2010).

  99. 99.

    Froben, F. W., Schulze, W. & Kloss, U. Raman spectra of matrix-isolated group IIIA dimers: Ga2, In2, Tl2. Chem. Phys. Lett. 99, 500–502 (1983).

    Google Scholar 

  100. 100.

    Liu, W., van Wüllen, C., Wang, F. & Li, L. Spectroscopic constants of MH and M2 (M=Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory. J. Chem. Phys. 116, 3626–3634 (2002).

    CAS  Google Scholar 

  101. 101.

    Pershina, V. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties. Radiochim. Acta 107, 833–863 (2019).

    CAS  Google Scholar 

  102. 102.

    Hermann, A., Furthmüller, J., Gäggeler, H. W. & Schwerdtfeger, P. Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).

    Google Scholar 

  103. 103.

    Eichler, R. et al. Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010).

    CAS  Google Scholar 

  104. 104.

    Yakushev, A. et al. Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Egdell, R. G., Hotokka, M., Laaksonen, L., Pyykkö, P. & Snijders, J. G. Photoelectron spectra and their relativistic interpretation for gaseous bismuth trihalides. Chem. Phys. 72, 237–247 (1982).

    CAS  Google Scholar 

  106. 106.

    Walsh, J. P. S. & Freedman, D. E. High-pressure synthesis: a new frontier in the search for next-generation intermetallic compounds. Acc. Chem. Res. 51, 1315–1323 (2018).

    CAS  PubMed  Google Scholar 

  107. 107.

    Nash, C. S. Atomic and molecular properties of elements 112, 114, and 118. J. Phys. Chem. A 109, 3493–3500 (2005).

    CAS  PubMed  Google Scholar 

  108. 108.

    Nash, C. S. & Bursten, B. E. Spin-orbit coupling versus the VSEPR method: On the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151–153 (1999).

    CAS  Google Scholar 

  109. 109.

    Jerabek, P., Smits, O. R., Mewes, J.-M., Peterson, K. A. & Schwerdtfeger, P. Solid oganesson via a many-body interaction expansion based on relativistic coupled-cluster theory and from plane-wave relativistic density functional theory. J. Phys. Chem. A 123, 4201–4211 (2019).

    CAS  PubMed  Google Scholar 

  110. 110.

    Mewes, J.-M., Jerabek, P., Smits, O. R. & Schwerdtfeger, P. Oganesson is a semiconductor: On the relativistic band-gap narrowing in the heaviest noble-gas solids. Angew. Chem. Int. Ed. 58, 14260–14264 (2019).

    CAS  Google Scholar 

  111. 111.

    Eliav, E., Kaldor, U., Ishikawa, Y. & Pyykkö, P. Element 118: The first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350–5352 (1996).

    CAS  PubMed  Google Scholar 

  112. 112.

    Sidgwick, N. V. The Covalent Link in Chemistry (Cornell Univ. Press, 1933).

  113. 113.

    Sidgwick, N. V. & Powell, H. M. Bakerian Lecture: stereochemical types and valency groups. Proc. R. Soc. A 176, 153–180 (1940).

    CAS  Google Scholar 

  114. 114.

    Schwerdtfeger, P., Heath, G. A., Dolg, M. & Bennett, M. A. Low valencies and periodic trends in heavy element chemistry. a theoretical study of relativistic effects and electron correlation effects in group 13 and period 6 hydrides and halides. J. Am. Chem. Soc. 114, 7518–7527 (1992).

    CAS  Google Scholar 

  115. 115.

    Seth, M., Faegri, K. & Schwerdtfeger, P. The stability of the oxidation state +4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. 37, 2493–2496 (1998).

    CAS  Google Scholar 

  116. 116.

    Schwerdtfeger, P. & Seth, M. Relativistic quantum chemistry of the superheavy elements. closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133–136 (2002).

    Google Scholar 

  117. 117.

    Vest, B., Klinkhammer, K., Thierfelder, C., Lein, M. & Schwerdtfeger, P. Kinetic and thermodynamic stability of the group 13 trihydrides. Inorg. Chem. 48, 7953–7961 (2009).

    CAS  PubMed  Google Scholar 

  118. 118.

    Ahuja, R., Blomqvist, A., Larsson, P., Pyykkö, P. & Zaleski-Ejgierd, P. Relativity and the lead-acid battery. Phys. Rev. Lett. 106, 018301 (2011).

    PubMed  Google Scholar 

  119. 119.

    Roos, B. O. & Pyykkö, P. Bonding trends in molecular compounds of lanthanides: The double-bonded carbene cations \({{\rm{LnCH}}}_{2}^{+}\), Ln = Sc, Y, La-Lu. Chem. Eur. J. 16, 270–275 (2010).

  120. 120.

    Xu, W.-H. et al. Rare-earth monocarbonyls MCO: comprehensive infrared observations and a transparent theoretical interpretation for M=Sc; Y; La-Lu. Chem. Sci. 3, 1548–1554 (2012).

    CAS  Google Scholar 

  121. 121.

    Goldschmidt, V. M., Barth, T. F. W., Lunde, G. & Geochemische Verteilungsgesetze der Elemente, V. Isomorphie und Polymorphie der Sesquioxyde: Die Lanthanidenkontraktion und Ihre Konsequenzen. Skrifter Norske VidenskapsAkad. Oslo I Mat. Naturv. Kl. 7, 1–59 (1925).

    Google Scholar 

  122. 122.

    Gao, C. et al. Observation of the asphericity of 4f-electron density and its relation to the magnetic anisotropy axis in single-molecule magnets. Nat. Chem. 12, 213–219 (2020).

    CAS  PubMed  Google Scholar 

  123. 123.

    Ryan, A. J. et al. Synthesis, structure, and magnetism of tris(amide) [ln{N(SiMe3)2}3]1− complexes of the non-traditional +2 lanthanide ions. Chem. Eur. J. 24, 7702–7709 (2018).

    CAS  PubMed  Google Scholar 

  124. 124.

    Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn Vol. 3 (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1893–2012 (Springer, 2006).

  125. 125.

    Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).

    CAS  PubMed  Google Scholar 

  126. 126.

    White, F. D., Dan, D. & Albrecht-Schmitt, T. E. Contemporary chemistry of berkelium and californium. Chem. Eur. J. 25, 10251–10261 (2019).

    CAS  PubMed  Google Scholar 

  127. 127.

    Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 16053 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Seth, M., Dolg, M., Fulde, P. & Schwerdtfeger, P. Lanthanide and actinide contractions: relativistic and shell structure effects. J. Am. Chem. Soc. 117, 6597–6598 (1995).

    CAS  Google Scholar 

  129. 129.

    Küchle, W., Dolg, M. & Stoll, H. Ab initio study of the lanthanide and actinide contraction. J. Phys. Chem. A 101, 7128–7133 (1997).

    Google Scholar 

  130. 130.

    Chemey, A. T. & Albrecht-Schmitt, T. E. Evolution of the periodic table through the synthesis of new elements. Radiochim. Acta 107, 771–801 (2019).

    CAS  Google Scholar 

  131. 131.

    Pyykkö, P. Is the Periodic Table all right (“PT OK”)? EPJ Web Conf. 131, 01001 (2016).

    Google Scholar 

  132. 132.

    Münzenberg, G. From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5–29 (2015).

    Google Scholar 

  133. 133.

    Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G. & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

    CAS  Google Scholar 

  134. 134.

    Morita, K. SHE research at RIKEN/GARIS. Nucl. Phys. A 944, 30–61 (2015).

    CAS  Google Scholar 

  135. 135.

    Dmitriev, S., Itkis, M. & Oganessian, Y. Status and perspectives of the Dubna superheavy element factory. EPJ Web Conf. 131, 08001 (2016).

    Google Scholar 

  136. 136.

    Ball, P. Extreme chemistry: experiments at the edge of the periodic table. Nature 565, 552–555 (2019).

    CAS  PubMed  Google Scholar 

  137. 137.

    Lim, I. S. et al. Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. Phys. Rev. A 60, 2822–2828 (1999).

    CAS  Google Scholar 

  138. 138.

    Schwerdtfeger, P. in Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals (eds Domenicano, A. & Hargittai, I.) 169–190 (Springer, 2002).

  139. 139.

    Borschevsky, A., Pershina, V., Eliav, E. & Kaldor, U. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs. J. Chem. Phys. 138, 124302 (2013).

    CAS  PubMed  Google Scholar 

  140. 140.

    Demidov, Y. A. & Zaitsevskii, A. V. A comparative study of the chemical properties of element 120 and its homologs. Radiochemistry 55, 461–465 (2013).

    CAS  Google Scholar 

  141. 141.

    Seaborg, G. T. Prospects for further considerable extension of the periodic table. J. Chem. Ed. 46, 626–634 (1969).

    CAS  Google Scholar 

  142. 142.

    Fricke, B., Greiner, W. & Waber, J. T. The continuation of the periodic table up to Z=172. the chemistry of superheavy elements. Theor. Chim. Acta 21, 235–260 (1971).

    CAS  Google Scholar 

  143. 143.

    Indelicato, P., Bieroń, J. & Jönsson, P. Are MCDF calculations 101% correct in the super-heavy elements range? Theor. Chem. Acc. 129, 495–505 (2011).

    CAS  Google Scholar 

  144. 144.

    Dognon, J.-P. & Pyykkö, P. Chemistry of the 5g elements: Relativistic calculations on hexafluorides. Angew. Chem. Int. Ed. 56, 10132–10134 (2017).

    CAS  Google Scholar 

  145. 145.

    Schwerdtfeger, P., Pašteka, L. F., Punnett, A. & Bowman, P. O. Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551–577 (2015).

    CAS  Google Scholar 

  146. 146.

    Grant, I. P. in Relativistic Effects in Atoms, Molecules, and Solids (ed. Malli, G. L.) 73–88 (Springer, 1983).

  147. 147.

    Thaller, B. The Dirac Equation (Springer, 1992).

  148. 148.

    Pomeranchuk, I. Y. & Smorodinsky, Y. A. On the energy levels of systems with Z>137. J. Phys. USSR 9, 97–100 (1945).

    CAS  Google Scholar 

  149. 149.

    Zeldovich, Y. B. & Popov, V. S. Electronic structure of superheavy atoms. Sov. Phys. Uspekhi 14, 673–694 (1972).

    Google Scholar 

  150. 150.

    Reinhardt, J. & Greiner, W. Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219–295 (1977).

    CAS  Google Scholar 

  151. 151.

    Maltsev, I. A. et al. How to observe the vacuum decay in low-energy heavy-ion collisions. Phys. Rev. Lett. 123, 113401 (2019).

    CAS  PubMed  Google Scholar 

  152. 152.

    Unsöld, A. & Baschek, B. The New Cosmos: an Introduction to Astronomy and Astrophysics (Springer, 2013).

  153. 153.

    Oberhummer, H., Csoto, A. & Schlattl, H. Stellar production rates of carbon and its abundance in the universe. Science 289, 88–90 (2000).

    CAS  PubMed  Google Scholar 

  154. 154.

    Oberhummer, H., Csótó, A. & Schlattl, H. in The Future of the Universe and the Future of our Civilization (eds Burdyuzha, V. & Khozin, G.) 197–205 (World Scientific, 2000).

  155. 155.

    Borsanyi, S. et al. Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015).

    CAS  PubMed  Google Scholar 

  156. 156.

    Barrow, J. D. Impossibility: The Limits of Science and the Science of Limits (Oxford Univ. Press, 1999).

  157. 157.

    Uzan, J.-P. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).

    CAS  Google Scholar 

  158. 158.

    Pašteka, L. F., Hao, Y., Borschevsky, A., Flambaum, V. V. & Schwerdtfeger, P. Material size dependence on fundamental constants. Phys. Rev. Lett. 122, 160801 (2019).

    PubMed  Google Scholar 

  159. 159.

    Guggenheimer, K. Remarques sur la constitution des noyaux - II. J. Phys. Radium 5, 475–485 (1934).

    CAS  Google Scholar 

  160. 160.

    Guggenheimer, K. Remarques sur la constitution des noyaux atomiques - I. J. Phys. Radium 5, 253–256 (1934).

    CAS  Google Scholar 

  161. 161.

    Fea, G. Tabelle riassuntive e bibliografia delle trasmutazioni artificiali. Il Nuovo Cimento 12, 368–406 (1935).

    CAS  Google Scholar 

  162. 162.

    Segrè, E. Nuclei and Particles: an Introduction to Nuclear and Subnuclear Physics (Benjamin, 1964).

  163. 163.

    Hollander, J. M., Perlman, I. & Seaborg, G. T. Table of isotopes. Rev. Mod. Phys. 25, 469–651 (1953).

    CAS  Google Scholar 

  164. 164.

    Strominger, D., Hollander, J. M. & Seaborg, G. T. Table of isotopes. Rev. Mod. Phys. 30, 585–904 (1958).

    CAS  Google Scholar 

  165. 165.

    Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    Google Scholar 

  166. 166.

    Schatz, H. et al. End point of the rp process on accreting neutron stars. Phys. Rev. Lett. 86, 3471–3474 (2001).

    CAS  PubMed  Google Scholar 

  167. 167.

    Pignatari, M., Goebel, K., Reifarth, R. & Travaglio, C. The production of proton-rich isotopes beyond iron: The γ-process in stars. Int. J. Mod. Phys. E 25, 1630003 (2016).

    CAS  Google Scholar 

  168. 168.

    Gamow, G. Expanding universe and the origin of elements. Phys. Rev. 70, 572 (1946).

    CAS  Google Scholar 

  169. 169.

    Alpher, R. A. & Herman, R. C. Theory of the origin and relative abundance distribution of the elements. Rev. Mod. Phys. 22, 153 (1950).

    CAS  Google Scholar 

  170. 170.

    Cirgiliano, V. et al. Precision beta decay as a probe of new physics. Preprint at arXiv (2019).

  171. 171.

    Yue, A. T. et al. Improved determination of the neutron lifetime. Phys. Rev. Lett. 111, 222501 (2013).

    CAS  PubMed  Google Scholar 

  172. 172.

    Ezhov, V. F. et al. Measurement of the neutron lifetime with ultracold neutrons stored in a magneto-gravitational trap. JETP Lett. 107, 671–675 (2018).

    CAS  Google Scholar 

  173. 173.

    Thielemann, F.-K., Eichler, M., Panov, I. & Wehmeyer, B. Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017).

    CAS  Google Scholar 

  174. 174.

    Frebel, A. From nuclei to the cosmos: tracing heavy-element production with the oldest stars. Annu. Rev. Nucl. Part. Sci. 68, 237–269 (2018).

    CAS  Google Scholar 

  175. 175.

    Horowitz, C. J. et al. r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G Nucl. Part. Phys. 46, 083001 (2019).

    CAS  Google Scholar 

  176. 176.

    Heger, A., Hoffman, R. D., Rauscher, T. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).

  177. 177.

    Hampel, M., Stancliffe, R. J., Lugaro, M. & Meyer, B. S. The intermediate neutron-capture process and carbon-enhanced metal-poor stars. Astrophys. J. 831, 171 (2016).

    Google Scholar 

  178. 178.

    Clarkson, O., Herwig, F. & Pignatari, M. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).

    CAS  Google Scholar 

  179. 179.

    Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).

    CAS  Google Scholar 

  180. 180.

    Cameron, A. G. Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146 (1973).

    CAS  Google Scholar 

  181. 181.

    Ratzel, U. et al. Nucleosynthesis at the termination point of the s process. Phys. Rev. C 70, 065803 (2004).

    Google Scholar 

  182. 182.

    Roederer, I. U. et al. New Hubble Space Telescope observations of heavy elements in four metal-poor stars. Astrophys. J. Suppl. Ser. 203, 27 (2012).

    Google Scholar 

  183. 183.

    Clayton, D. D. Principles of Stellar Evolution and Nucleosynthesis (Univ. Chicago Press, 1983).

  184. 184.

    Clayton, D. D., Fowler, W. A., Hull, T. & Zimmerman, B. Neutron capture chains in heavy element synthesis. Ann. Phys. 12, 331–408 (1961).

    CAS  Google Scholar 

  185. 185.

    Seeger, P. A., Fowler, W. A. & Clayton, D. D. Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. 11, 121–166 (1965).

    CAS  Google Scholar 

  186. 186.

    Arlandini, C. et al. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886 (1999).

    CAS  Google Scholar 

  187. 187.

    Straniero, O., Gallino, R. & Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 777, 311–339 (2006).

    Google Scholar 

  188. 188.

    Cristallo, S. et al. Asymptotic-giant-branch models at very low metallicity. Publ. Astron. Soc. Aust. 26, 139–144 (2009).

    Google Scholar 

  189. 189.

    Ulrich, R. in Explosive nucleosynthesis (ed. Schramm, D. N. & Arnett, W. D.) 139 (Univ. Texas Press, 1973).

  190. 190.

    Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W. The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157 (2011).

    Google Scholar 

  191. 191.

    Schwarzschild, M. & Härm, R. Hydrogen mixing by helium-shell flashes. Astrophys. J. 150, 961 (1967).

    CAS  Google Scholar 

  192. 192.

    Gallino, R. et al. Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-process. Astrophys. J. 497, 388 (1998).

    CAS  Google Scholar 

  193. 193.

    Peters, J. G. Nucleosynthesis by the s-process in stars of 9 and 15 solar masses. Astrophys. J. 154, 225 (1968).

    CAS  Google Scholar 

  194. 194.

    Travaglio, C. et al. Galactic chemical evolution of heavy elements: from barium to europium. Astrophys. J. 521, 691 (1999).

    CAS  Google Scholar 

  195. 195.

    Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864 (2004).

    CAS  Google Scholar 

  196. 196.

    Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).

    CAS  PubMed  Google Scholar 

  197. 197.

    Argast, D., Samland, M., Thielemann, F.-K. & Qian, Y.-Z. Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early galaxy. Astron. Astrophys. 416, 997–1011 (2004).

    CAS  Google Scholar 

  198. 198.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    Google Scholar 

  199. 199.

    Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    CAS  PubMed  Google Scholar 

  200. 200.

    Bartos, I. & Marka, S. A nearby neutron-star merger explains the actinide abundances in the early Solar System. Nature 569, 85–88 (2019).

    CAS  PubMed  Google Scholar 

  201. 201.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    CAS  PubMed  Google Scholar 

  202. 202.

    Cowperthwaite, P. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    Google Scholar 

  203. 203.

    Holmbeck, E. M. et al. Actinide production in the neutron-rich ejecta of a neutron star merger. Astrophys. J. 870, 23 (2019).

    CAS  Google Scholar 

  204. 204.

    Watson, D. et al. Identification of strontium in the merger of two neutron stars. Nature 574, 497–500 (2019).

    CAS  PubMed  Google Scholar 

  205. 205.

    Truran, J. W. Nucleosynthesis. Annu. Rev. Nucl. Part. Sci. 34, 53–97 (1984).

    CAS  Google Scholar 

  206. 206.

    Wallerstein, G. et al. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995 (1997).

    CAS  Google Scholar 

  207. 207.

    Cheifetz, E., Jared, R. C., Giusti, E. R. & Thompson, S. G. Search for superheavy elements in nature. Phys. Rev. C 6, 1348–1361 (1972).

    CAS  Google Scholar 

  208. 208.

    Schramm, D. N. Implied superheavy element decay lifetime from meteorites. Nature 233, 258–260 (1971).

    CAS  PubMed  Google Scholar 

  209. 209.

    Köber, E. & Langrock, E. J. Search for superheavy elements in the nature. Isot. Environ. Health Stud. 26, 576–583 (1990).

    Google Scholar 

  210. 210.

    Ter-Akopian, G. M. & Dmitriev, S. N. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177–189 (2015).

    CAS  Google Scholar 

  211. 211.

    Petermann, I. et al. Have superheavy elements been produced in nature? Eur. Phys. J. A 48, 122 (2012).

    Google Scholar 

  212. 212.

    Goriely, S. & Pinedo, G. M. The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 158–176 (2015).

    CAS  Google Scholar 

  213. 213.

    Wallner, A. et al. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Seaborg, G. T., Mcmillan, E. M., Kennedy, J. W. & Wahl, A. C. Radioactive element 94 from deuterons on uranium. Phys. Rev. 69, 366–367 (1946).

    CAS  Google Scholar 

  215. 215.

    Perlman, I. & Seaborg, G. T. The synthetic elements. Sci. Am. 182, 38–47 (1950).

    Google Scholar 

  216. 216.

    Thompson, S. G., Ghiorso, A. & Seaborg, G. T. The new element berkelium (atomic number 97). Phys. Rev. 80, 781–789 (1950).

    CAS  Google Scholar 

  217. 217.

    Seaborg, G. T. & Bloom, J. L. The synthetic elements: IV. Sci. Am. 220, 56–69 (1969).

    Google Scholar 

  218. 218.

    Bohr, N. & Wheeler, J. A. The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939).

    CAS  Google Scholar 

  219. 219.

    Reed, B. C. Simple derivation of the Bohr–Wheeler spontaneous fission limit. Am. J. Phys. 71, 258–260 (2003).

    CAS  Google Scholar 

  220. 220.

    Möller, P. The limits of the nuclear chart set by fission and alpha decay. EPJ Web Conf. 131, 03002 (2016).

    Google Scholar 

  221. 221.

    Block, M. et al. Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785–788 (2010).

    CAS  PubMed  Google Scholar 

  222. 222.

    Ramirez, E. M. et al. Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207–1210 (2012).

    CAS  Google Scholar 

  223. 223.

    Ito, Y. et al. First direct mass measurements of nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).

    CAS  PubMed  Google Scholar 

  224. 224.

    Block, M. Direct mass measurements and ionization potential measurements of the actinides. Radiochim. Acta 107, 821–831 (2019).

    CAS  Google Scholar 

  225. 225.

    Fischer, C. F. Average-energy-of-configuration Hartree-Fock results for the atoms helium to radon. At. Data Nucl. Data Tables 12, 87–99 (1973).

    CAS  Google Scholar 

  226. 226.

    Flambaum, V. V. & Ginges, J. S. M. Radiative potential and calculations of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys. Rev. A 72, 052115 (2005).

    Google Scholar 

  227. 227.

    Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Comput. Phys. Commun. 189, 175–181 (2015).

    CAS  Google Scholar 

  228. 228.

    Lindgren, I. Relativistic Many-Body Theory: A New Field-Theoretical Approach Vol. 63 (Springer, 2016).

  229. 229.

    Sonzogni, A. A. NuDat 2.0: Nuclear structure and decay data on the internet. AIP Conf. Proc. 769, 574–577 (2005).

    CAS  Google Scholar 

  230. 230.

    Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

    CAS  Google Scholar 

  231. 231.

    Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the periodic table: electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc. 141, 10253–10271 (2019).

    CAS  PubMed  Google Scholar 

  232. 232.

    Schwerdtfeger, P. The pseudopotential approximation in electronic structure theory. ChemPhysChem 12, 3143–3155 (2011).

    CAS  PubMed  Google Scholar 

  233. 233.

    Myers, W. D. & Swiatecki, W. Average nuclear properties. Ann. Phys. 55, 395–505 (1969).

    CAS  Google Scholar 

  234. 234.

    Nazarewicz, W. Challenges in nuclear structure theory. J. Phys. G Nucl. Part. Phys. 43, 044002 (2016).

    Google Scholar 

  235. 235.

    Weizsäcker, C. F. V. Zur Theorie der Kernmassen. Zeit. Phys. 96, 431–458 (1935).

    Google Scholar 

  236. 236.

    Bethe, H. A. & Bacher, R. F. Nuclear physics A. Stationary states of nuclei. Rev. Mod. Phys. 8, 82–229 (1936).

    CAS  Google Scholar 

  237. 237.

    Kaiser, N., Fritsch, S. & Weise, W. Nuclear mean field from chiral pion–nucleon dynamics. Nucl. Phys. A 700, 343–358 (2002).

    Google Scholar 

  238. 238.

    Yamazaki, T., Kuramashi, Y. & Ukawa, A. Helium nuclei in quenched lattice QCD. Phys. Rev. D 81, 111504 (2010).

    Google Scholar 

  239. 239.

    Wiebke, J., Pahl, E. & Schwerdtfeger, P. Melting at high pressure: can first-principles computational chemistry challenge diamond-anvil cell experiments? Angew. Chem. Int. Ed. 52, 13202–13205 (2013).

    CAS  Google Scholar 

  240. 240.

    Schwerdtfeger, P., Tonner, R., Moyano, G. E. & Pahl, E. Towards J/mol accuracy for the cohesive energy of solid argon. Angew. Chem. Int. Ed. 55, 12200–12205 (2016).

    CAS  Google Scholar 

  241. 241.

    Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    CAS  Google Scholar 

  242. 242.

    Coester, F. & Kümmel, H. Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–485 (1960).

    CAS  Google Scholar 

  243. 243.

    Čižek, J. & Paldus, J. Correlation problems in atomic and molecular systems III. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. Int. J. Quantum Chem. 5, 359–379 (1971).

    Google Scholar 

  244. 244.

    Kümmel, H. G. A biography of the coupled cluster method. Int. J. Mod. Phys. B 17, 5311–5325 (2003).

    Google Scholar 

  245. 245.

    Kowalski, K., Dean, D. J., Hjorth-Jensen, M., Papenbrock, T. & Piecuch, P. Coupled cluster calculations of ground and excited states of nuclei. Phys. Rev. Lett. 92, 132501 (2004).

    CAS  PubMed  Google Scholar 

  246. 246.

    Hagen, G. et al. Coupled-cluster theory for three-body Hamiltonians. Phys. Rev. C 76, 034302 (2007).

    Google Scholar 

  247. 247.

    Van Dyck, R. S. Jr, Zafonte, S. L., Van Liew, S., Pinegar, D. B. & Schwinberg, P. B. Ultraprecise atomic mass measurement of the α particle and 4He. Phys. Rev. Lett. 92, 220802 (2004).

    PubMed  Google Scholar 

  248. 248.

    Piecuch, P. & Bartlett, R. J. EOMXCC: A new coupled-cluster method for electronic excited states. Adv. Quantum Chem. 34, 295–380 (1999).

    CAS  Google Scholar 

  249. 249.

    Kane, J. V., Pixley, R. E., Schwartz, R. B. & Schwarzschild, A. Lifetimes of the first excited states of F17 and O17. Phys. Rev. 120, 162–168 (1960).

    CAS  Google Scholar 

  250. 250.

    Gour, J. R., Piecuch, P., Hjorth-Jensen, M., Wloch, M. & Dean, D. J. Coupled-cluster calculations for valence systems around 16O. Phys. Rev. C 74, 024310 (2006).

    Google Scholar 

  251. 251.

    Cottingham, W. N. & Greenwood, D. A. An Introduction to Nuclear Physics (Cambridge Univ. Press, 2001).

  252. 252.

    Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995).

    Google Scholar 

  253. 253.

    Moller, P. & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G Nucl. Part. Phys. 20, 1681–1747 (1994).

    Google Scholar 

  254. 254.

    Sadhukhan, J., Dobaczewski, J., Nazarewicz, W., Sheikh, J. A. & Baran, A. Pairing-induced speedup of nuclear spontaneous fission. Phys. Rev. C 90, 061304 (2014).

    Google Scholar 

  255. 255.

    Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003).

    CAS  Google Scholar 

  256. 256.

    Rowe, D. J. & Wood, J. L. Fundamentals of Nuclear Models (World Scientific, 2010).

  257. 257.

    Zagrebaev, V. I. & Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257–307 (2015).

    CAS  Google Scholar 

  258. 258.

    Oganessian, Y. T., Utyonkov, V. K. & Moody, K. J. Voyage to superheavy island. Sci. Am. 282, 63–67 (2000).

    CAS  Google Scholar 

  259. 259.

    Myers, W. D. & Swiatecki, W. J. Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966).

    CAS  Google Scholar 

  260. 260.

    Ćwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).

    PubMed  Google Scholar 

  261. 261.

    Matheson, Z., Giuliani, S. A., Nazarewicz, W., Sadhukhan, J. & Schunck, N. Cluster radioactivity of \({}_{118}^{294}{{\rm{Og}}}_{176}\). Phys. Rev. C 99, 041304 (2019).

  262. 262.

    Ćwiok, S., Dobaczewski, J., Heenen, P. H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211–246 (1996).

    Google Scholar 

  263. 263.

    Kruppa, A. T. et al. Shell corrections of superheavy nuclei in self-consistent calculations. Phys. Rev. C 61, 034313 (2000).

    Google Scholar 

  264. 264.

    Morita, K. et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. J. Phys. Soc. Jpn. 73, 2593–2596 (2004).

    CAS  Google Scholar 

  265. 265.

    Münzenberg, G. & Morita, K. Synthesis of the heaviest nuclei in cold fusion reactions. Nucl. Phys. A 944, 3–4 (2015).

    Google Scholar 

  266. 266.

    Oganessian, Y. T. et al. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006).

    Google Scholar 

  267. 267.

    Oganessian, Y. Heaviest nuclei from 48Ca-induced reactions. J. Phys. G Nucl. Part. Phys. 34, R165–R242 (2007).

    CAS  Google Scholar 

  268. 268.

    Hofmann, S. Super-heavy nuclei. J. Phys. G Nucl. Part. Phys. 42, 114001 (2015).

    Google Scholar 

  269. 269.

    Kragh, H. The search for superheavy elements: historical and philosophical perspectives. Preprint at arXiv (2017).

  270. 270.

    Restrepo, G. Challenges for the periodic systems of elements: chemical, historical and mathematical perspectives. Chem. Eur. J. 25, 15430–15440 (2019).

    CAS  PubMed  Google Scholar 

  271. 271.

    Scerri, E. Can quantum ideas explain chemistry’s greatest icon? Nature 565, 557–559 (2019).

    CAS  PubMed  Google Scholar 

  272. 272.

    Scerri, E. & Restrepo, G. Mendeleev to Oganesson: a Multidisciplinary Perspective on the Periodic Table (Oxford Univ. Press, 2018).

  273. 273.

    Scerri, E. Cracks in the periodic table. Sci. Am. 308, 68–73 (2013).

    CAS  PubMed  Google Scholar 

  274. 274.

    Scerri, E. R. in Philosophy of Chemistry. Volume 6 in Handbook of the Philosophy of Science (eds Woody, A. I., Hendry, R. F. & Needham, P.) 329–338 (North Holland, 2012).

  275. 275.

    Kutzelnigg, W. The periodic table. Its story and its significance. Int. J. Quantum Chem. 110, 1443–1444 (2010).

    CAS  Google Scholar 

  276. 276.

    Schädel, M. Chemistry of the superheavy elements. Philos. Trans. R. Soc. A 373, 20140191 (2015).

    Google Scholar 

  277. 277.

    Kirsebom, O. S. et al. Discovery of an exceptionally strong β-decay transition of 20F and implications for the fate of intermediate-mass stars. Phys. Rev. Lett. 123, 262701 (2019).

    CAS  PubMed  Google Scholar 

  278. 278.

    Levi, P. The Periodic Table [transl. Rosenthal, R.] (Schocken Books, 1984).

  279. 279.

    Emsley, J. Nature's building blocks: an A-Z guide to the elements (Oxford University Press, 2011).

  280. 280.

    Gil, P. The St Andrews Periodic Table. University of St Andrews (2019).

  281. 281.

    Seaborg, G. T. The periodic table: tortuous path to man-made elements. Chem. Eng. News 57, 46–52 (1979).

    CAS  Google Scholar 

  282. 282.

    Haba, H. A new period in superheavy-element hunting. Nat. Chem. 11, 10–13 (2019).

    CAS  PubMed  Google Scholar 

  283. 283.

    Johnson, J. A. Populating the periodic table: nucleosynthesis of the elements. Science 363, 474–478 (2019).

    CAS  PubMed  Google Scholar 

  284. 284.

    Aker, M. et al. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett. 123, 221802 (2019).

    CAS  PubMed  Google Scholar 

  285. 285.

    Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database. NIST (2018).

  286. 286.

    Lackenby, B. G. C., Dzuba, V. A. & Flambaum, V. V. Theoretical calculation of atomic properties of superheavy elements Z= 110–112 and their ions. Phys. Rev. A 101, 012514 (2019).

    Google Scholar 

  287. 287.

    Schwerdtfeger, P. & Seth, M. in Encyclopedia of Computational Chemistry Vol. 4 (eds Schleyer, P. V. R. et al.) 2480–2499 (Wiley, 1998).

  288. 288.

    Eliav, E., Kaldor, U., Ishikawa, Y., Seth, M. & Pyykkö, P. Calculated energy levels of thallium and eka-thallium (element 113). Phys. Rev. A 53, 3926–3933 (1996).

    CAS  PubMed  Google Scholar 

  289. 289.

    Eliav, E. & Kaldor, U. in Relativistic Methods for Chemists (eds Barysz, M. & Ishikawa, Y.) 279–349 (Springer, 2010).

  290. 290.

    Rolfs, C. E., & Rodney, W. S. Cauldrons in the Cosmos: Nuclear Astrophysics (Univ. Chicago Press, 1988).

  291. 291.

    Oganessian, Y. T. Synthesis of the heaviest elements in 48Ca-induced reactions. Radiochim. Acta 99, 429–439 (2011).

    CAS  Google Scholar 

  292. 292.

    Roederer, I. U. et al. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars. Astrophys. J. 791, 32 (2014).

    Google Scholar 

  293. 293.

    Firsching, F. H. Anomalies in the periodic table. J. Chem. Educ. 58, 478–479 (1981).

    CAS  Google Scholar 

  294. 294.

    Meyer, L. Die Natur der chemischen elemente als funktion ihrer atomgewichte. Annalen Chem. Pharm. 7, 354–364 (1870).

    Google Scholar 

  295. 295.

    van Spronsen, J. W. The priority conflict between Mendeleev and Meyer. J. Chem. Ed. 46, 136–139 (1969).

    Google Scholar 

  296. 296.

    Kuhn, N. & Zeller, K.-P. Lothar Meyer-eine Wiederentdeckung. Nachr. Chem. 67, 19–25 (2019).

    CAS  Google Scholar 

  297. 297.

    Boeck, G. Das Periodensystem der Elemente und Lothar Meyer. Chem. Unserer Zeit 53, 372–382 (2019).

    CAS  Google Scholar 

  298. 298.

    Schwerdtfeger, P. Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2. Chem. Phys. Lett. 183, 457–463 (1991).

    CAS  Google Scholar 

  299. 299.

    Schwerdtfeger, P. Relativistic effects in properties of gold. Heteroat. Chem. 13, 578–584 (2002).

    CAS  Google Scholar 

  300. 300.

    Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).

    Google Scholar 

  301. 301.

    Glantschnig, K. & Ambrosch-Draxl, C. Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J. Phys. 12, 103048 (2010).

    Google Scholar 

  302. 302.

    Schwerdtfeger, P. Gold goes nano - from small clusters to low-dimensional assemblies. Angew. Chem. Int. Ed. 42, 1892–1895 (2003).

    CAS  Google Scholar 

  303. 303.

    Theilacker, K., Schlegel, H. B., Kaupp, M. & Schwerdtfeger, P. Relativistic and solvation effects on the stability of gold(III) halides in aqueous solution. Inorg. Chem. 54, 9869–9875 (2015).

    CAS  PubMed  Google Scholar 

  304. 304.

    Hashmi, A. S. K. The catalysis gold rush: New claims. Angew. Chem. Int. Ed. 44, 6990–6993 (2005).

    CAS  Google Scholar 

  305. 305.

    Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

    CAS  PubMed  Google Scholar 

  306. 306.

    Jones, K. L. & Nazarewicz, W. Designer nuclei — making atoms that barely exist. The Physics Teacher 48, 381 (2010).

    Google Scholar 

Download references


This paper is dedicated to the memory of our friend and colleague Prof. Dr. Werner Kutzelnigg, who recently passed away. We acknowledge financial support by the Alexander von Humboldt Foundation (Bonn) and the Marsden Fund (17-MAU-021) of the Royal Society of New Zealand (Wellington). This work is part of the “Molecules in Extreme Environments” project funded by the Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway. We thank W. Nazarewicz and B. Sherrill (Michigan State), M. Wiescher (Notre Dame), W. H. E. Schwarz (Siegen), Y. Oganessian (Dubna), G. Boeck (Rostock), R. Eichler (Bern), L. Pašteka (Bratislava) and L. v. Szentpaly (Stuttgart) for interesting and stimulating discussions. P.P. acknowledges a travel scholarship from the Magnus Ehrnrooth Foundation.

Author information




All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Peter Schwerdtfeger or Odile R. Smits or Pekka Pyykkö.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Internet database of periodic tables:

National Nuclear Data Center’s NuDat 2 database:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwerdtfeger, P., Smits, O.R. & Pyykkö, P. The periodic table and the physics that drives it. Nat Rev Chem 4, 359–380 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing