Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stabilization strategies in biomass depolymerization using chemical functionalization

Abstract

A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depolymerization of polysaccharides in lignocellulosic biomass by conventional acid hydrolysis.
Fig. 2: Depolymerization of lignin in lignocellulosic biomass by conventional acid hydrolysis.
Fig. 3: Lignin structures and their stabilized products.
Fig. 4: Overall mass balances of the main stabilization approaches.
Fig. 5: Upgrading strategies for lignin-derived and polysaccharide-derived products.
Fig. 6: Modified 3D van Krevelen plot and pathways to terephthalic acid starting from both biomass and fossil fuels.

Similar content being viewed by others

References

  1. Muradov, N. in Liberating Energy from Carbon: Introduction to Decarbonization (ed. Muradov, N.) 141–184 (Springer, 2014).

  2. Luterbacher, J. S., Alonso, D. M. & Dumesic, J. A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 16, 4816–4838 (2014).

    Article  CAS  Google Scholar 

  3. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Heinze, T. in Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials (ed. Rojas, O. J.) 1–52 (Springer, 2016).

  5. Rojas, O. J. (ed.) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials (Springer, 2016).

  6. Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Azizi Samir, M. A. S., Alloin, F. & Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant. Biol. 61, 263–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Gírio, F. M. et al. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Wilkie, K. C. B. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 36 (eds Tipson, R. S. & Horton, D.) 215–264 (Academic, 1979).

  12. Jones, D., Ormondroyd, G. O., Curling, S. F., Popescu, C.-M. & Popescu, M.-C. in Advanced High Strength Natural Fibre Composites in Construction (eds Fan, M. & Fu, F.) 23–58 (Woodhead, 2017).

  13. Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Bajpai, P. Pretreatment of Lignocellulosic Biomass for Biofuel Production (Springer, 2016).

  16. Werpy, T. & Petersen, G. Top value added chemicals from biomass: volume I — Results of screening for potential candidates from sugars and synthesis gas (US Department of Energy, 2004).

  17. Holladay, J. E., White, J. F., Bozell, J. J. & Johnson, D. Top value-added chemicals from biomass: volume II — Results of screening for potential candidates from biorefinery lignin (US Department of Energy, 2007).

  18. van Putten, R.-J. et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    Article  CAS  Google Scholar 

  20. Putro, J. N., Soetaredjo, F. E., Lin, S.-Y., Ju, Y.-H. & Ismadji, S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv. 6, 46834–46852 (2016).

    Article  CAS  Google Scholar 

  21. Questell-Santiago, Y. M., Zambrano-Varela, R., Amiri, M. T. & Luterbacher, J. S. Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nat. Chem. 10, 1222–1228 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y. Y., Iyer, P. & Torget, R. W. in Recent Progress in Bioconversion of Lignocellulosics (ed. Tsao, G. T.) 93–115 (Springer, 1999).

  23. Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C. & Gírio, F. M. Wheat straw autohydrolysis: process optimization and products characterization. Appl. Biochem. Biotechnol. 153, 84–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bobleter, O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19, 797–841 (1994).

    Article  CAS  Google Scholar 

  25. Loerbroks, C., Rinaldi, R. & Thiel, W. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem. Eur. J. 19, 16282–16294 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. van Zandvoort, I. et al. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6, 1745–1758 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Guadix-Montero, S. & Sankar, M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top. Catal. 61, 183–198 (2018).

    Article  CAS  Google Scholar 

  28. Moriarty, K. L., Milbrandt, A. R., Warner, E., Lewis, J. E. & Schwab, A. A. 2016 bioenergy industry status report (US Department of Energy, 2018).

  29. Renders, T., Van den Bosch, S., Koelewijn, S.-F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

    Article  CAS  Google Scholar 

  30. Shuai, L., Talebi Amiri, M. & Luterbacher, J. S. The influence of interunit carbon–carbon linkages during lignin upgrading. Curr. Opin. Green Sustain. Chem. 2, 59–63 (2016).

    Article  Google Scholar 

  31. Phongpreecha, T. et al. Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chem. 19, 5131–5143 (2017).

    Article  CAS  Google Scholar 

  32. Talebi Amiri, M., Bertella, S., Questell-Santiago, Y. M. & Luterbacher, J. S. Establishing lignin structure-upgradeability relationships using quantitative 1H–13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy. Chem. Sci. 10, 8135–8142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan, N. et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1, 626–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Lan, W. & Luterbacher, J. S. Preventing lignin condensation to facilitate aromatic monomer production. Chimia 73, 591–598 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett. 2, 2846–2852 (2011).

    Article  CAS  Google Scholar 

  37. Rinaldi, R. in Lignin Valorization: Emerging Approaches (ed. Beckham, G. T.) 108–127 (Royal Society of Chemistry, 2018).

  38. Sturgeon, M. R. et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2, 472–485 (2014).

    Article  CAS  Google Scholar 

  39. Parthasarathi, R., Romero, R. A., Redondo, A. & Gnanakaran, S. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666 (2011).

    Article  CAS  Google Scholar 

  40. Miles-Barrett, D. M. et al. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Org. Biomol. Chem. 14, 10023–10030 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, S. Fundamental Study on Kinetics of Hemicellulose Hydrolysis and Bioconversion of Hemicellulose Hydrolysate Mixture into Lactic Acid. Thesis, Auburn Univ. (2015).

  42. Chum, H. L., Johnson, D. K., Black, S. K. & Overend, R. P. Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24, 1 (1990).

    Article  Google Scholar 

  43. Shimada, K., Hosoya, S. & Ikeda, T. Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J. Wood Chem. Technol. 17, 57–72 (1997).

    Article  CAS  Google Scholar 

  44. Lan, W., Amiri, M. T., Hunston, C. M. & Luterbacher, J. S. Protection group effects during α,γ-diol lignin stabilization promote high-selectivity monomer production. Angew. Chem. Int. Ed. 57, 1356–1360 (2018).

    Article  CAS  Google Scholar 

  45. Li, N. et al. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chem. 20, 4224–4235 (2018).

    Article  CAS  Google Scholar 

  46. Renders, T. et al. Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose. ACS Catal. 6, 2055–2066 (2016).

    Article  CAS  Google Scholar 

  47. Ouyang, X., Huang, X., Hendriks, B. M. S., Boot, M. D. & Hensen, E. J. M. Coupling organosolv fractionation and reductive depolymerization of woody biomass in a two-step catalytic process. Green Chem. 20, 2308–2319 (2018).

    Article  CAS  Google Scholar 

  48. Deuss, P. J. et al. Metal triflates for the production of aromatics from lignin. ChemSusChem 9, 2974–2981 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Deuss, P. J. et al. Phenolic acetals from lignins of varying compositions via iron(iii) triflate catalysed depolymerisation. Green Chem. 19, 2774–2782 (2017).

    Article  CAS  Google Scholar 

  50. Parsell, T. et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 17, 1492–1499 (2015).

    Article  CAS  Google Scholar 

  51. Talebi Amiri, M., Dick, G. R., Questell-Santiago, Y. M. & Luterbacher, J. S. Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nat. Protoc. 14, 921–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Chesi, C., de Castro, I. B. D., Clough, M. T., Ferrini, P. & Rinaldi, R. The influence of hemicellulose sugars on product distribution of early-stage conversion of lignin oligomers catalysed by Raney nickel. ChemCatChem 8, 2079–2088 (2016).

    Article  CAS  Google Scholar 

  53. Wan, G. & Frazier, C. E. Lignin acidolysis predicts formaldehyde generation in pine wood. ACS Sustain. Chem. Eng. 5, 4830–4836 (2017).

    Article  CAS  Google Scholar 

  54. Luterbacher, J. S. et al. Lignin monomer production integrated into the γ-valerolactone sugar platform. Energy Environ. Sci. 8, 2657–2663 (2015).

    Article  CAS  Google Scholar 

  55. Yokoyama, T. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 6: A review. J. Wood Chem. Technol. 35, 27–42 (2015).

    Article  CAS  Google Scholar 

  56. Lan, W., de Bueren, J. B. & Luterbacher, J. S. Highly selective oxidation and depolymerization of α,γ-diol-protected lignin. Angew. Chem. Int. Ed. 58, 2649–2654 (2019).

    Article  CAS  Google Scholar 

  57. Anderson, E. M. et al. Flowthrough reductive catalytic fractionation of biomass. Joule 1, 613–622 (2017).

    Article  CAS  Google Scholar 

  58. Kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).

    Article  CAS  Google Scholar 

  59. Zhou, H. et al. Rapid flow-through fractionation of biomass to preserve labile aryl ether bonds in native lignin. Green Chem. 21, 4625–4632 (2019).

    Article  CAS  Google Scholar 

  60. Wijaya, Y. P. et al. Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour. Technol. 164, 221–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Timell, T. E. The acid hydrolysis of glycosides: I. General conditions and the effect of the nature of the aglycone. Can. J. Chem. 42, 1456–1472 (1964).

    Article  CAS  Google Scholar 

  62. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J. & Penner, M. H. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 59, 129–136 (1997).

    Article  CAS  Google Scholar 

  63. Jin, Q., Zhang, H., Yan, L., Qu, L. & Huang, H. Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass Bioenerg. 35, 4158–4164 (2011).

    Article  CAS  Google Scholar 

  64. Fagan, R. D., Grethlein, H. E., Converse, A. O. & Porteous, A. Kinetics of the acid hydrolysis of cellulose found in paper refuse. Environ. Sci. Technol. 5, 545–547 (1971).

    Article  CAS  Google Scholar 

  65. Saeman, J. F. Kinetics of wood saccharification - hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind. Eng. Chem. 37, 43–52 (1945).

    Article  CAS  Google Scholar 

  66. Wyman, C. E. & Yang, B. in Hydrothermal Processing in Biorefineries (eds Ruiz H. A., Hedegaard Thomsen, M. & Trajano, H. L.) 161–180 (Springer, 2017).

  67. Patil, S. K. R., Heltzel, J. & Lund, C. R. F. Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuels 26, 5281–5293 (2012).

    Article  CAS  Google Scholar 

  68. Chiang, Y. et al. Separation and purification of furans from n-butanol by zeolitic imidazole frameworks: multicomponent adsorption behavior and simulated moving bed process design. ACS Sustain. Chem. Eng. 7, 16560–16568 (2019).

    Article  CAS  Google Scholar 

  69. Metkar, P. S. et al. Reactive distillation process for the production of furfural using solid acid catalysts. Green Chem. 17, 1453–1466 (2015).

    Article  CAS  Google Scholar 

  70. Hoang, T. M. C., Lefferts, L. & Seshan, K. Valorization of humin-based byproducts from biomass processing - a route to sustainable hydrogen. ChemSusChem 6, 1651–1658 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Kang, S. et al. Valorization of humins by phosphoric acid activation for activated carbon production. Biomass Convers. Biorefin. 8, 889–897 (2018).

    Article  CAS  Google Scholar 

  72. Rogalinski, T., Liu, K., Albrecht, T. & Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids 46, 335–341 (2008).

    Article  CAS  Google Scholar 

  73. Peterson, A. A. et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32–65 (2008).

    Article  CAS  Google Scholar 

  74. Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T. & Arai, K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind. Eng. Chem. Res. 39, 2883–2890 (2000).

    Article  CAS  Google Scholar 

  75. Cantero, D. A., Bermejo, M. D. & Cocero, M. J. Kinetic analysis of cellulose depolymerization reactions in near critical water. J. Supercrit. Fluids 75, 48–57 (2013).

    Article  CAS  Google Scholar 

  76. Kilambi, S. & Kadam, K. L. Production of fermentable sugars and lignin from biomass using supercritical fluids. US patent US9359651B2 (2018).

  77. Wagemann, K. & Tippkötter, N. in Biorefineries (eds Wagemann, K. & Tippkötter, N.) 1–11 (Springer, 2019).

  78. Stuart, E. Advanced biorefinery process. European patent EP2069406A2 (2010).

  79. Genta, M. et al. Biomass hydrothermal decomposition apparatus and method. US patent US9238827B2 (2010).

  80. South, C. R., Wyman, C. E. & Martin, R. L. Two-stage method for pretreatment of lignocellulosic biomass. US patent US20100279361A1 (2010).

  81. Nguyen, Q. A., Keller, F. A. & Tucker, M. P. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics. US patent US20030199049A1 (2003).

  82. Tao, L. et al. NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover (US Department of Energy, 2014).

  83. Luterbacher, J. S. et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343, 277–280 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Shuai, L., Questell-Santiago, Y. M. & Luterbacher, J. S. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chem. 18, 937–943 (2016).

    Article  CAS  Google Scholar 

  85. Ghosh, A., Bai, X. & Brown, R. C. Solubilized carbohydrate production by acid-catalyzed depolymerization of cellulose in polar aprotic solvents. ChemistrySelect 3, 4777–4785 (2018).

    Article  CAS  Google Scholar 

  86. Shuai, L. & Luterbacher, J. Organic solvent effects in biomass conversion reactions. ChemSusChem 9, 133–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

    Article  CAS  Google Scholar 

  88. Mellmer, M. A. et al. Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nat. Commun. 10, 1132 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mellmer, M. A. et al. Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53, 11872–11875 (2014).

    Article  CAS  Google Scholar 

  90. Mellmer, M. A., Alonso, D. M., Luterbacher, J. S., Gallo, J. M. R. & Dumesic, J. A. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem. 16, 4659–4662 (2014).

    Article  CAS  Google Scholar 

  91. Motagamwala, A. H., Won, W., Maravelias, C. T. & Dumesic, J. A. An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone. Green Chem. 18, 5756–5763 (2016).

    Article  CAS  Google Scholar 

  92. Borand, M. N. & Karaosmanoğlu, F. Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J. Renew. Sustain. Energy 10, 033104 (2018).

    Article  CAS  Google Scholar 

  93. Han, J., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. & Maravelias, C. T. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis. Bioresour. Technol. 182, 258–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Alonso, D. M. et al. Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci. Adv. 3, e1603301 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Jérôme, F., Marinkovic, S. & Estrine, B. Transglycosylation: a key reaction to access alkylpolyglycosides from lignocellulosic biomass. ChemSusChem 11, 1395–1409 (2018).

    Article  PubMed  CAS  Google Scholar 

  96. Panovic, I., Lancefield, C. S., Phillips, D., Gronnow, M. J. & Westwood, N. J. Selective primary alcohol oxidation of lignin streams from butanol-pretreated agricultural waste biomass. ChemSusChem 12, 542–548 (2019).

    CAS  PubMed  Google Scholar 

  97. Yu, F. et al. Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem. 19, 153–163 (2017).

    Article  CAS  Google Scholar 

  98. Deng, W., Liu, M., Zhang, Q., Tan, X. & Wang, Y. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem. Commun. 46, 2668–2670 (2010).

    Article  CAS  Google Scholar 

  99. Kanchanalai, P., Temani, G., Kawajiri, Y. & Realff, M. J. Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. BioResources 11, 1672–1689 (2016).

    Article  CAS  Google Scholar 

  100. Moe, S. T. et al. Saccharification of lignocellulosic biomass for biofuel and biorefinery applications - a renaissance for the concentrated acid hydrolysis? Energy Procedia 20, 50–58 (2012).

    Article  CAS  Google Scholar 

  101. Cuzens, J. E. & Farone, W. A. Method of strong acid hydrolysis. US patent US5562777A (1998).

  102. Liu, Z.-S., Wu, X.-L., Kida, K. & Tang, Y.-Q. Corn stover saccharification with concentrated sulfuric acid: Effects of saccharification conditions on sugar recovery and by-product generation. Bioresour. Technol. 119, 224–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Ioelovich, M. Study of cellulose interaction with concentrated solutions of sulfuric acid. Int. Sch. Res. Notices 2012, 428974 (2012).

  104. Braconnot, H. Action de l’acide sulfurique sur la sciure de bois de charme. Ann. Chim. Phys. 12, 172–195 (1819).

    Google Scholar 

  105. Stern, A. L. X. - Contributions to the chemistry of cellulose. I. Cellulose-sulphuric acid, and the products of its hydrolysis. J. Chem. Soc. Trans. 67, 74–90 (1895).

    Article  CAS  Google Scholar 

  106. Binder, J. B. & Raines, R. T. Fermentable sugars by chemical hydrolysis of biomass. Proc. Natl Acad. Sci. USA 107, 4516–4521 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Samayam, I. P., Hanson, B. L., Langan, P. & Schall, C. A. Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12, 3091–3098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dee, S. J. & Bell, A. T. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. ChemSusChem 4, 1166–1173 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Bergius, F. Conversion of wood to carbohydrates. Ind. Eng. Chem. 29, 247–253 (1937).

    Article  CAS  Google Scholar 

  111. Shahbazi, A. & Zhang, B. in Bioalcohol Production (ed. Waldron, K. W.) 143–158 (Woodhead, 2010).

  112. BlueFire Renewables. Our technology. BlueFire https://bfreinc.com/our-technology/ (2011).

  113. van Groenestijn, J. W., Hazewinkel, J. H. O. & Bakker, R. R. Pre-treatment of ligno-cellulose with biological acid recycling (the Biosulfurol process). Int. Sugar J. 110, 689–692 (2008).

    Google Scholar 

  114. Gschwend, F. J. V., Brandt-Talbot, A., Chambon, C. L. & Hallett, J. P. in Ionic Liquids: Current State and Future Directions Vol. 1250 (eds Shiflett, M. B. & Scurto, A. M.) 209–223 (American Chemical Society, 2017).

  115. Zhou, J. et al. Recovery and purification of ionic liquids from solutions: a review. RSC Adv. 8, 32832–32864 (2018).

    Article  CAS  Google Scholar 

  116. Konda, N. M. et al. Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol. Biofuels 7, 86 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Jeoh, T., Cardona, M. J., Karuna, N., Mudinoor, A. R. & Nill, J. Mechanistic kinetic models of enzymatic cellulose hydrolysis - a review. Biotechnol. Bioeng. 114, 1369–1385 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Moreira, L. R. S. & Filho, E. X. F. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl. Microbiol. Biotechnol. 100, 5205–5214 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Luterbacher, J. S., Parlange, J.-Y. & Walker, L. P. A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnol. Bioeng. 110, 127–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Singh, N. et al. Overview of the process of enzymatic transformation of biomass. IntechOpen https://doi.org/10.5772/intechopen.85036 (2019).

    Article  Google Scholar 

  122. Galkin, M. V. & Samec, J. S. M. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang, X. et al. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts. Faraday Discuss. 202, 141–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Renders, T. et al. Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem. 20, 4607–4619 (2018).

    Article  CAS  Google Scholar 

  126. De Santi, A., Galkin, M. V., Lahive, C. W., Deuss, P. J. & Barta, K. Lignin-first fractionation of softwood lignocellulose using a mild dimethyl carbonate and ethylene glycol organosolv process. ChemSusChem https://doi.org/10.1002/cssc.201903526 (2020).

  127. Li, S., Lundquist, K. & Westermark, U. Cleavage of arylglycerol β-aryl ethers under neutral and acid conditions. Nord. Pulp Pap. Res. J. 15, 292–299 (2000).

    Article  CAS  Google Scholar 

  128. Nimz, H. A new type of rearrangement in the lignin field. Angew. Chem. Int. Ed. 5, 843 (1966).

    Article  Google Scholar 

  129. Kishimoto, T. & Sano, Y. Delignification mechanism during high-boiling solvent pulping. IV. Effect of a reducing sugar on the degradation of guaiacylglycerol-β-guaiacyl ether. J. Wood Chem. Technol. 23, 233–248 (2003).

    Article  CAS  Google Scholar 

  130. Sano, Y. & Kishimoto, T. Delignification mechanism during high-boiling solvent pulping. V. Reaction of nonphenolic β-O-4 model compounds in the presence and absence of glucose. J. Wood Chem. Technol. 23, 279–292 (2003).

    Article  CAS  Google Scholar 

  131. Omori, S., Aoyama, M. & Sakakibara, A. Hydrolysis of lignin with dioxane–water XIX. Reaction of β-O-4 lignin model compounds in the presence of carbohydrates. Holzforschung 52, 391–397 (1998).

    Article  CAS  Google Scholar 

  132. Zijlstra, D. S. et al. Extraction of lignin with high β-O-4 content by mild ethanol extraction and its effect on the depolymerization yield. J. Vis. Exp. 143, e58575 (2019).

    Google Scholar 

  133. Jasiukaitytė-Grojzdek, E., Kunaver, M. & Crestini, C. Lignin structural changes during liquefaction in acidified ethylene glycol. J. Wood Chem. Technol. 32, 342–360 (2012).

    Article  CAS  Google Scholar 

  134. Li, H. & Song, G. Ru-catalyzed hydrogenolysis of lignin: base-dependent tunability of monomeric phenols and mechanistic study. ACS Catal. 9, 4054–4064 (2019).

    Article  CAS  Google Scholar 

  135. Nichols, J. M., Bishop, L. M., Bergman, R. G. & Ellman, J. A. Catalytic C–O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 132, 12554–12555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. He, J., Zhao, C. & Lercher, J. A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Jiang, L., Guo, H., Li, C., Zhou, P. & Zhang, Z. Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chem. Sci. 10, 4458–4468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Anderson, E. M. et al. Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nat. Commun. 10, 2033 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Anderson, E. M., Stone, M. L., Hülsey, M. J., Beckham, G. T. & Román-Leshkov, Y. Kinetic studies of lignin solvolysis and reduction by reductive catalytic fractionation decoupled in flow-through reactors. ACS Sustain. Chem. Eng. 6, 7951–7959 (2018).

    Article  CAS  Google Scholar 

  140. Sarkanen, K. V. & Hoo, L. H. Kinetics of hydrolysis of erythro-guaiacylglycerol β-(2-methoxyphenyl) ether and its veratryl analogue using Hc1 and aluminum chloride as catalysts. J. Wood Chem. Technol. 1, 11–27 (1981).

    Article  CAS  Google Scholar 

  141. Li, Y. et al. Kinetic and mechanistic insights into hydrogenolysis of lignin to monomers in a continuous flow reactor. Green Chem. 21, 3561–3572 (2019).

    Article  CAS  Google Scholar 

  142. Anderson, E. M. et al. Reductive catalytic fractionation of corn stover lignin. ACS Sustain. Chem. Eng. 4, 6940–6950 (2016).

    Article  CAS  Google Scholar 

  143. Schutyser, W. et al. Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chem. 17, 5035–5045 (2015).

    Article  CAS  Google Scholar 

  144. Galkin, M. V. et al. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 9, 3280–3287 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Liao, Y. et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Guo, H. et al. Unravelling the enigma of ligninOX: can the oxidation of lignin be controlled? Chem. Sci. 9, 702–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Vangeel, T., Schutyser, W., Renders, T. & Sels, B. F. Perspective on lignin oxidation: advances, challenges, and future directions. Top. Curr. Chem. 376, 30 (2018).

    Article  CAS  Google Scholar 

  148. Dawange, M., Galkin, M. V. & Samec, J. S. M. Selective aerobic benzylic alcohol oxidation of lignin model compounds: route to aryl ketones. ChemCatChem 7, 401–404 (2015).

    Article  CAS  Google Scholar 

  149. Mottweiler, J., Rinesch, T., Besson, C., Buendia, J. & Bolm, C. Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem. 17, 5001–5008 (2015).

    Article  CAS  Google Scholar 

  150. Zhang, Z., Lahive, C. W., Zijlstra, D. S., Wang, Z. & Deuss, P. J. Sequential catalytic modification of the lignin α-ethoxylated β-O-4 motif to facilitate C–O bond cleavage by ruthenium-Xantphos catalyzed hydrogen transfer. ACS Sustain. Chem. Eng. 7, 12105–12116 (2019).

    CAS  Google Scholar 

  151. Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Qu, S., Dang, Y., Song, C., Guo, J. & Wang, Z.-X. Depolymerization of oxidized lignin catalyzed by formic acid exploits an unconventional elimination mechanism involving 3c–4e bonding: a DFT mechanistic study. ACS Catal. 5, 6386–6396 (2015).

    Article  CAS  Google Scholar 

  153. Zhang, C. et al. Promoting lignin depolymerization and restraining the condensation via an oxidation–hydrogenation strategy. ACS Catal. 7, 3419–3429 (2017).

    Article  CAS  Google Scholar 

  154. Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135, 6415–6418 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Bosque, I., Magallanes, G., Rigoulet, M., Kärkäs, M. D. & Stephenson, C. R. J. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 3, 621–628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dabral, S., Hernández, J. G., Kamer, P. C. J. & Bolm, C. Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin. ChemSusChem 10, 2707–2713 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Lancefield, C. S., Teunissen, L. W., Weckhuysen, B. M. & Bruijnincx, P. C. A. Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem. 20, 3214–3221 (2018).

    Article  CAS  Google Scholar 

  158. Magallanes, G. et al. Selective C–O bond cleavage of lignin systems and polymers enabled by sequential palladium-catalyzed aerobic oxidation and visible-light photoredox catalysis. ACS Catal. 9, 2252–2260 (2019).

    Article  CAS  Google Scholar 

  159. Lancefield, C. S., Ojo, O. S., Tran, F. & Westwood, N. J. Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the β-O-4 linkages in lignin. Angew. Chem. Int. Ed. 54, 258–262 (2015).

    Article  CAS  Google Scholar 

  160. Galkin, M. V., Dahlstrand, C. & Samec, J. S. M. Mild and robust redox-neutral Pd/C-catalyzed lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 8, 2187–2192 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Li, H. et al. NH2OH-mediated lignin conversion to isoxazole and nitrile. ACS Sustain. Chem. Eng. 6, 3748–3753 (2018).

    Article  CAS  Google Scholar 

  162. Guo, H. et al. Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chem. 21, 803–811 (2019).

    Article  CAS  Google Scholar 

  163. Muurinen, E. Organosolv Pulping: A Review and Distillation Study Related to Peroxyacid Pulping. Thesis, Univ. Oulu (2000).

  164. Lancefield, C. S., Panovic, I., Deuss, P. J., Barta, K. & Westwood, N. J. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19, 202–214 (2017).

    Article  CAS  Google Scholar 

  165. Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc. 137, 7456–7467 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Lahive, C. W. et al. Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent. J. Am. Chem. Soc. 138, 8900–8911 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Dong, C. et al. Diol pretreatment to fractionate a reactive lignin in lignocellulosic biomass biorefineries. Green Chem. 21, 2788–2800 (2019).

    Article  CAS  Google Scholar 

  168. Zhang, C. et al. Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMo sulfide catalyst. Green Chem. 18, 6545–6555 (2016).

    Article  CAS  Google Scholar 

  169. Constant, S. et al. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651–2665 (2016).

    Article  CAS  Google Scholar 

  170. Mu, X., Han, Z., Liu, C. & Zhang, D. Mechanistic Insights into formaldehyde-blocked lignin condensation: a DFT study. J. Phys. Chem. C 123, 8640–8648 (2019).

    Article  CAS  Google Scholar 

  171. Greene, T. W. & Wuts, P. G. M. Protective Groups in Organic Synthesis 3rd edn (Wiley, 1999).

  172. Kaiho, A., Kogo, M., Sakai, R., Saito, K. & Watanabe, T. In situ trapping of enol intermediates with alcohol during acid-catalysed de-polymerisation of lignin in a nonpolar solvent. Green Chem. 17, 2780–2783 (2015).

    Article  CAS  Google Scholar 

  173. Miljković, M. in Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects (ed. Miljkovic, M.) 143–167 (Springer, 2009).

  174. Robyt, J. F. Essentials of Carbohydrate Chemistry (Springer, 1998).

  175. Pétursson, S. Protecting groups in carbohydrate chemistry. J. Chem. Educ. 74, 1297–1303 (1997).

    Article  Google Scholar 

  176. Adkins, H. & Broderick, A. E. Hemiacetal formation and the refractive indices and densities of mixtures of certain alcohols and aldehydes. J. Am. Chem. Soc. 50, 499–503 (1928).

    Article  CAS  Google Scholar 

  177. Lewis, E. S. (ed.) Investigation of Rates and Mechanisms of Reactions. Part I. General Considerations and Reactions at Conventional Rates 3rd edn (Wiley, 1974).

  178. Agirre, I. et al. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde. Biomass Bioenerg. 35, 3636–3642 (2011).

    Article  CAS  Google Scholar 

  179. Batalha, N. et al. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization. ChemSusChem 7, 1627–1636 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Paszner, L. & Chang, P.-C. Organosolv delignification and saccharification process for lignocellulosic plant materials. US patent US4409032A (1983).

  181. Chernyavskaya, N. A. Method of continuous acid hydrolysis of cellulose containing substances. Patent WO2009116885A1 (2009).

  182. Questell-Santiago, Y. M., Yeap, J. H., Talebi Amiri, M., Le Monnier, B. P. & Luterbacher, J. S. Catalyst evolution enhances production of xylitol from acetal-stabilized xylose. ACS Sustain. Chem. Eng. 8, 1709–1714 (2020).

    Article  CAS  Google Scholar 

  183. Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 2000).

  184. Fiorani, G., Perosa, A. & Selva, M. Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chem. 20, 288–322 (2018).

    Article  CAS  Google Scholar 

  185. Scott, M., Deuss, P. J., de Vries, J. G., Prechtl, M. H. G. & Barta, K. New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catal. Sci. Technol. 6, 1882–1891 (2016).

    Article  CAS  Google Scholar 

  186. Van den Bosch, S. et al. Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3 catalyst pellets during lignin-first fractionation. Green Chem. 19, 3313–3326 (2017).

    Article  Google Scholar 

  187. Ferrini, P. & Rinaldi, R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53, 8634–8639 (2014).

    Article  CAS  Google Scholar 

  188. Sun, Z. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92 (2018).

    Article  CAS  Google Scholar 

  189. Iffland, K. et al. Definition, calculation and comparison of the “biomass utilization efficiency (BUE)” of various bio-based chemicals, polymers and fuels (nova-Institut, 2015).

  190. Pandey, M. P. & Kim, C. S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34, 29–41 (2011).

    Article  CAS  Google Scholar 

  191. Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

    Article  CAS  Google Scholar 

  192. Koelewijn, S.-F. et al. Promising bulk production of a potentially benign bisphenol a replacement from a hardwood lignin platform. Green Chem. 20, 1050–1058 (2018).

    Article  CAS  Google Scholar 

  193. Feghali, E. et al. Thermosetting polymers from lignin model compounds and depolymerized lignins. Top. Curr. Chem. 376, 32 (2018).

    Article  CAS  Google Scholar 

  194. Zhao, S. & Abu-Omar, M. M. Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromolecules 16, 2025–2031 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. van de Pas, D. J. & Torr, K. M. Biobased epoxy resins from deconstructed native softwood lignin. Biomacromolecules 18, 2640–2648 (2017).

    Article  PubMed  CAS  Google Scholar 

  196. François, C. et al. Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications. RSC Adv. 6, 68732–68738 (2016).

    Article  CAS  Google Scholar 

  197. Kaiho, A. et al. Construction of the di(trimethylolpropane) cross linkage and the phenylnaphthalene structure coupled with selective β-O-4 bond cleavage for synthesizing lignin-based epoxy resins with a controlled glass transition temperature. Green Chem. 18, 6526–6535 (2016).

    Article  CAS  Google Scholar 

  198. Peng, Y., Nicastro, K. H., Epps, T. H. & Wu, C. Evaluation of estrogenic activity of novel bisphenol A alternatives, four bioinspired bisguaiacol F specimens, by in vitro assays. J. Agric. Food Chem. 66, 11775–11783 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Elangovan, S. et al. From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds. ACS Cent. Sci. 5, 1707–1716 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tobisu, M. & Chatani, N. in Organometallics for Green Catalysis (eds Dixneuf, P. H. & Soulé, J.-F.) 103–140 (Springer, 2019).

  201. Deuss, P. J. & Barta, K. From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 306, 510–532 (2016).

    Article  CAS  Google Scholar 

  202. Bender, T. A., Dabrowski, J. A. & Gagné, M. R. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass. Nat. Rev. Chem. 2, 35–46 (2018).

    Article  CAS  Google Scholar 

  203. Blondiaux, E. et al. Bio-based aromatic amines from lignin-derived monomers. ACS Sustain. Chem. Eng. 7, 6906–6916 (2019).

    Article  CAS  Google Scholar 

  204. Lie, Y., Ortiz, P., Vendamme, R., Vanbroekhoven, K. & Farmer, T. J. BioLogicTool: a simple visual tool for assisting in the logical selection of pathways from biomass to products. Ind. Eng. Chem. Res. 58, 15945–15957 (2019).

    Article  CAS  Google Scholar 

  205. Orazov, M. & Davis, M. E. Catalysis by framework zinc in silica-based molecular sieves. Chem. Sci. 7, 2264–2274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Song, S., Zhang, J., Gözaydın, G. & Yan, N. Production of terephthalic acid from corn stover lignin. Angew. Chem. 131, 4988–4991 (2019).

    Article  Google Scholar 

  207. Eerhart, A. J. J. E., Faaij, A. P. C. & Patel, M. K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422 (2012).

    Article  CAS  Google Scholar 

  208. Choudhary, V., Sandler, S. I. & Vlachos, D. G. Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catal. 2, 2022–2028 (2012).

    Article  CAS  Google Scholar 

  209. Rinaldi, R. & Schüth, F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2, 1096–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Tan-Soetedjo, J. N. M. et al. Experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural using sulfuric acid in water. Ind. Eng. Chem. Res. 56, 13228–13239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Huang, J.-b et al. Theoretical study of bond dissociation energies for lignin model compounds. J. Fuel Chem. Technol. 43, 429–436 (2015).

    Article  CAS  Google Scholar 

  212. Elder, T. Bond dissociation enthalpies of a pinoresinol lignin model compound. Energy Fuels 28, 1175–1182 (2014).

    Article  CAS  Google Scholar 

  213. Younker, J. M., Beste, A. & Buchanan, A. C. Computational study of bond dissociation enthalpies for lignin model compounds: β-5 arylcoumaran. Chem. Phys. Lett. 545, 100–106 (2012).

    Article  CAS  Google Scholar 

  214. Elder, T., Berstis, L., Beckham, G. T. & Crowley, M. F. Density functional theory study of spirodienone stereoisomers in lignin. ACS Sustain. Chem. Eng. 5, 7188–7194 (2017).

    Article  CAS  Google Scholar 

  215. Elder, T. Bond dissociation enthalpies of a dibenzodioxocin lignin model compound. Energy Fuels 27, 4785–4790 (2013).

    Article  CAS  Google Scholar 

  216. Dusselier, M., Mascal, M. & Sels, B. F. in Selective Catalysis for Renewable Feedstocks and Chemicals (ed. Nicholas, K. M.) 1–40 (Springer, 2014).

Download references

Acknowledgements

J.S.L. and Y.M.Q.-S. acknowledge support from the Swiss Competence Center for Energy Research: Biomass for Swiss Energy Future through the Swiss Commission for Technology and Innovation grant KTI.2014.0116, and by EPFL. K.B. and M.V.G. are grateful for financial support from the European Research Council, ERC Starting Grant 2015 (CatASus) 638076. This work is part of the research programme Talent Scheme (Vidi) with project number 723.015.005 (K.B.), which is partly financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

J.S.L. and K.B. designed the review. Y.M.Q.-S. and M.V.G. wrote initial drafts of the document and prepared initial figures. All authors edited the manuscript.

Corresponding authors

Correspondence to Katalin Barta or Jeremy S. Luterbacher.

Ethics declarations

Competing interests

The authors declare competing interests. J.S.L. is an inventor on European patent applications (EP16165180, EP19203000 and EP19202957) and has co-founded a spin-off company (Bloom Biorenewables) that seeks to produce lignin and sugars using methods described in this Review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Questell-Santiago, Y.M., Galkin, M.V., Barta, K. et al. Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 4, 311–330 (2020). https://doi.org/10.1038/s41570-020-0187-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0187-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing