Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase engineering of nanomaterials

An Author Correction to this article was published on 06 April 2020

This article has been updated


Phase has emerged as an important structural parameter — in addition to composition, morphology, architecture, facet, size and dimensionality — that determines the properties and functionalities of nanomaterials. In particular, unconventional phases in nanomaterials that are unattainable in the bulk state can potentially endow nanomaterials with intriguing properties and innovative applications. Great progress has been made in the phase engineering of nanomaterials (PEN), including synthesis of nanomaterials with unconventional phases and phase transformation of nanomaterials. This Review provides an overview on the recent progress in PEN. We discuss various strategies used to synthesize nanomaterials with unconventional phases and induce phase transformation of nanomaterials, by taking noble metals and layered transition metal dichalcogenides as typical examples. Moreover, we also highlight recent advances in the preparation of amorphous nanomaterials, amorphous–crystalline and crystal phase-based hetero-nanostructures. We also provide personal perspectives on challenges and opportunities in this emerging field, including exploration of phase-dependent properties and applications, rational design of phase-based heterostructures and extension of the concept of phase engineering to a wider range of materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic models of different phases of metals and transition metal dichalcogenides.
Fig. 2: Direct synthesis of metal nanomaterials with unconventional crystal phases.
Fig. 3: Phase transformation of metal nanomaterials.
Fig. 4: Direct synthesis and phase transformation of transition metal dichalcogenides.
Fig. 5: Amorphous and amorphous–crystalline heterophase nanomaterials.

Change history


  1. 1.

    Porter, D. A., Easterling, K. E. & Sherif, M. Phase Transformations in Metals and Alloys 3rd edn (CRC, 2009).

  2. 2.

    Callister, W. D. Jr & Rethwisch, D. G. Materials Science and Engineering 8th edn 44–83 (Wiley, 2011).

  3. 3.

    Sharma, S. M. & Sikka, S. K. Pressure induced amorphization of materials. Prog. Mater. Sci. 40, 1–77 (1996).

    CAS  Google Scholar 

  4. 4.

    Hemley, R. J., Chen, L. C. & Mao, H. K. New transformations between crystalline and amorphous ice. Nature 338, 638–640 (1989).

    CAS  Google Scholar 

  5. 5.

    Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    CAS  Google Scholar 

  6. 6.

    Zeng, Q. et al. Long-range topological order in metallic glass. Science 332, 1404–1406 (2011).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Klimov, V. I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (CRC, 2003).

  11. 11.

    Hollingsworth, J. A., Poojary, D. M., Clearfield, A. & Buhro, W. E. Catalyzed growth of a metastable InS crystal structure as colloidal crystals. J. Am. Chem. Soc. 122, 3562–3563 (2000).

    CAS  Google Scholar 

  12. 12.

    Wu, G., Chan, K. C., Zhu, L., Sun, L. & Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 545, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    CAS  PubMed  Google Scholar 

  16. 16.

    Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Li, H. & Wang, X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc. Chem. Res. 52, 780–790 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Wang, J., Wei, Y., Li, H., Huang, X. & Zhang, H. Crystal phase control in two-dimensional materials. Sci. China Chem. 61, 1227–1242 (2018).

    Google Scholar 

  20. 20.

    Fan, Z. & Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 45, 63–82 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Cheng, H., Yang, N., Lu, Q., Zhang, Z. & Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 30, 1707189 (2018).

    Google Scholar 

  22. 22.

    Sood, S. & Gouma, P. Polymorphism in nanocrystalline binary metal oxides. Nanomater. Energy 2, 82–96 (2013).

    CAS  Google Scholar 

  23. 23.

    Wang, R. et al. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018).

    Google Scholar 

  24. 24.

    Giacovazzo, C. et al. Fundamentals of Crystallography 3rd edn (Oxford Univ. Press, 2011).

  25. 25.

    Taneja, P., Banerjee, R., Ayyub, P. & Dey, G. K. Observation of a hexagonal (4H) phase in nanocrystalline silver. Phys. Rev. B 64, 033405 (2001).

    Google Scholar 

  26. 26.

    Thomson, G. P. The crystal structure of nickel films. Nature 123, 912 (1929).

    CAS  Google Scholar 

  27. 27.

    Doye, J. P. & Calvo, F. Entropic effects on the size dependence of cluster structure. Phys. Rev. Lett. 86, 3570–3573 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Liu, X., Luo, J. & Zhu, J. Size effect on the crystal structure of silver nanowires. Nano Lett. 6, 408–412 (2006).

    CAS  PubMed  Google Scholar 

  29. 29.

    Fan, Z. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Huang, X. et al. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011).

    PubMed  Google Scholar 

  31. 31.

    Huang, X. et al. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 24, 979–983 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Chen, Y. et al. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 29, 1701331 (2017).

    Google Scholar 

  33. 33.

    Fan, Z., Huang, X., Chen, Y., Huang, W. & Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 12, 2367–2378 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Liang, H., Yang, H., Wang, W., Li, J. & Xu, H. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J. Am. Chem. Soc. 131, 6068–6069 (2009).

    CAS  PubMed  Google Scholar 

  35. 35.

    Shen, X. S. et al. Anisotropic growth of one-dimensional silver rod–needle and plate–belt heteronanostructures induced by twins and hcp phase. J. Am. Chem. Soc. 131, 10812–10813 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kusada, K. et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135, 5493–5496 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Fan, Z. & Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 49, 2841–2850 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Fan, Z. et al. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 8, 795–799 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Fan, Z. et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Lu, Q. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 10, 456–461 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Ye, H. et al. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 16, 2812–2817 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Lu, Q. et al. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14, 1801090 (2018).

    Google Scholar 

  43. 43.

    Kobayashi, H., Kusada, K. & Kitagawa, H. Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc. Chem. Res. 48, 1551–1559 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Kusada, K. & Kitagawa, H. A route for phase control in metal nanoparticles: a potential strategy to create advanced materials. Adv. Mater. 28, 1129–1142 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Vasquez, Y., Luo, Z. & Schaak, R. E. Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals. J. Am. Chem. Soc. 130, 11866–11867 (2008).

    CAS  PubMed  Google Scholar 

  46. 46.

    Li, J. & Sun, S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 52, 2015–2025 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Yun, Q. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 13, 14329–14336 (2019).

    CAS  PubMed  Google Scholar 

  48. 48.

    Zhang, Q. et al. Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nat. Commun. 9, 510 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zhang, Q. et al. Crystal structure-dependent thermal stability and catalytic performance of AuRu3 solid-solution alloy nanoparticles. Chem. Lett. 47, 559–561 (2018).

    CAS  Google Scholar 

  50. 50.

    Cao, Z. et al. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 8, 15131 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zhang, Z. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 30, 1801741 (2018).

    Google Scholar 

  52. 52.

    Fan, Z. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6, 6571 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Li, Q. et al. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc. 140, 15783–15790 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    CAS  PubMed  Google Scholar 

  55. 55.

    Benaissa, H. & Ferhat, M. Polytypism-induced stabilization of hexagonal 2H, 4H and 6H phases of gold. Superlattices Microstruct. 109, 170–175 (2017).

    CAS  Google Scholar 

  56. 56.

    McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    CAS  Google Scholar 

  57. 57.

    Zhang, H., Gilbert, B., Huang, F. & Banfield, J. F. Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025–1029 (2003).

    CAS  PubMed  Google Scholar 

  58. 58.

    Fan, Z. et al. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core–shell nanoplates from hexagonal-close-packed Au square sheets. Angew. Chem. Int. Ed. 54, 5672–5676 (2015).

    CAS  Google Scholar 

  59. 59.

    Bai, F., Bian, K., Huang, X., Wang, Z. & Fan, H. Pressure induced nanoparticle phase behavior, property, and applications. Chem. Rev. 119, 7673–7717 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Guo, Q. et al. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett. 8, 972–975 (2008).

    CAS  PubMed  Google Scholar 

  61. 61.

    Koski, K. et al. Structural distortions in 5–10 nm silver nanoparticles under high pressure. Phys. Rev. B 78, 165410 (2008).

    Google Scholar 

  62. 62.

    Sun, Y., Yang, W., Ren, Y., Wang, L. & Lei, C. Multiple-step phase transformation in silver nanoplates under high pressure. Small 7, 606–611 (2011).

    CAS  PubMed  Google Scholar 

  63. 63.

    Liang, J. et al. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 3, 956–991 (2019).

    CAS  Google Scholar 

  64. 64.

    Alloyeau, D. et al. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat. Mater. 8, 940–946 (2009).

    CAS  Google Scholar 

  65. 65.

    Kim, J., Lee, Y. & Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010).

    CAS  PubMed  Google Scholar 

  66. 66.

    Cui, Z., Li, L., Manthiram, A. & Goodenough, J. B. Enhanced cycling stability of hybrid Li–air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. J. Am. Chem. Soc. 137, 7278–7281 (2015).

    CAS  PubMed  Google Scholar 

  67. 67.

    Qiu, Y. et al. BCC-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 140, 16580–16588 (2018).

    CAS  PubMed  Google Scholar 

  68. 68.

    Zheng, H. et al. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333, 206–209 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Smith, D. J., Petford-Long, A. K., Wallenberg, L. R. & Bovin, J.-O. Dynamic atomic-level rearrangements in small gold particles. Science 233, 872–875 (1986).

    CAS  PubMed  Google Scholar 

  70. 70.

    Saleem, F. et al. Size-dependent phase transformation of noble metal nanomaterials. Small 15, 1903253 (2019).

    CAS  Google Scholar 

  71. 71.

    Li, J. et al. In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Adv. Sci. 5, 1700992 (2018).

    Google Scholar 

  72. 72.

    Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    CAS  PubMed  Google Scholar 

  73. 73.

    Zhang, X., Lai, Z., Ma, Q. & Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 47, 3301–3338 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Google Scholar 

  75. 75.

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    CAS  PubMed  Google Scholar 

  76. 76.

    Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    CAS  PubMed  Google Scholar 

  78. 78.

    Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).

    CAS  PubMed  Google Scholar 

  79. 79.

    Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun. 10, 712 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Tan, C. et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018).

    Google Scholar 

  81. 81.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    CAS  PubMed  Google Scholar 

  82. 82.

    Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Google Scholar 

  83. 83.

    Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    Wypych, F. & Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 19, 1386–1388 (1992).

  87. 87.

    Bampoulis, P., Sotthewes, K., Siekman, M. H., Zandvliet, H. J. W. & Poelsema, B. Graphene visualizes the ion distribution on air-cleaved mica. Sci. Rep. 7, 43451 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Geng, X. et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    CAS  Google Scholar 

  90. 90.

    Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    CAS  Google Scholar 

  91. 91.

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    CAS  PubMed  Google Scholar 

  92. 92.

    Sun, X., Wang, Z., Li, Z. & Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 6, 26666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Sun, L. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 18, 3435–3440 (2018).

    CAS  PubMed  Google Scholar 

  94. 94.

    Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    CAS  Google Scholar 

  95. 95.

    Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  PubMed  Google Scholar 

  96. 96.

    Xiong, F. et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    CAS  Google Scholar 

  97. 97.

    He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    CAS  PubMed  Google Scholar 

  98. 98.

    Kim, S. et al. Long-range lattice engineering of MoTe2 by a 2D electride. Nano Lett. 17, 3363–3368 (2017).

    CAS  PubMed  Google Scholar 

  99. 99.

    Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    CAS  PubMed  Google Scholar 

  100. 100.

    Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    CAS  Google Scholar 

  102. 102.

    Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).

    CAS  PubMed  Google Scholar 

  103. 103.

    Song, S. et al. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    CAS  PubMed  Google Scholar 

  104. 104.

    Nayak, A. P. et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Zhu, J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139, 10216–10219 (2017).

    CAS  PubMed  Google Scholar 

  106. 106.

    Qi, Y. et al. CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 10, 2903–2909 (2016).

    CAS  PubMed  Google Scholar 

  107. 107.

    Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    CAS  PubMed  Google Scholar 

  109. 109.

    Liu, Y. H. et al. Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007).

    CAS  PubMed  Google Scholar 

  110. 110.

    Luo, Q., Zhao, D. Q., Pan, M. X. & Wang, W. H. Magnetocaloric effect in Gd-based bulk metallic glasses. Appl. Phys. Lett. 89, 081914 (2006).

    Google Scholar 

  111. 111.

    Morales-Guio, C. G. & Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47, 2671–2681 (2014).

    CAS  PubMed  Google Scholar 

  112. 112.

    Anantharaj, S. & Noda, S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16, 1905779 (2020).

  113. 113.

    Liu, J. et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics. J. Am. Chem. Soc. 132, 11934–11942 (2010).

    CAS  PubMed  Google Scholar 

  114. 114.

    Wang, X. et al. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 133, 20692–20695 (2011).

    CAS  PubMed  Google Scholar 

  115. 115.

    Hall, J. W. et al. Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries. J. Am. Chem. Soc. 134, 5532–5535 (2012).

    CAS  PubMed  Google Scholar 

  116. 116.

    Lu, K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater. Sci. Eng. R Rep. 16, 161–221 (1996).

    Google Scholar 

  117. 117.

    Zhao, H., Chen, X., Wang, G., Qiu, Y. & Guo, L. Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Mater. 6, 032002 (2019).

    CAS  Google Scholar 

  118. 118.

    Amstad, E. et al. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science 349, 956–960 (2015).

    CAS  PubMed  Google Scholar 

  119. 119.

    Nai, J., Kang, J. & Guo, L. Tailoring the shape of amorphous nanomaterials: recent developments and applications. Sci. China Mater. 58, 44–59 (2015).

    CAS  Google Scholar 

  120. 120.

    Zhu, Z. et al. Facile synthesis of Co–B amorphous alloy in uniform spherical nanoparticles with enhanced catalytic properties. ACS Catal. 2, 2119–2125 (2012).

    CAS  Google Scholar 

  121. 121.

    Pei, Y. et al. Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chem. Soc. Rev. 41, 8140–8162 (2012).

    CAS  PubMed  Google Scholar 

  122. 122.

    Cheng, H. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 32, 1902964 (2020).

    CAS  Google Scholar 

  123. 123.

    Yan, S. et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 15, 1804371 (2019).

    Google Scholar 

  124. 124.

    Li, H. B. et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Indra, A. et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 136, 17530–17536 (2014).

    CAS  PubMed  Google Scholar 

  126. 126.

    Shi, M.-M. et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 8, 1800124 (2018).

    Google Scholar 

  127. 127.

    Li, S. J. et al. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017).

    Google Scholar 

  128. 128.

    Duan, Y. X. et al. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high Faradaic efficiencies. Adv. Mater. 30, 1706194 (2018).

    Google Scholar 

  129. 129.

    Yang, N. et al. Amorphous/crystalline hetero-phase Pd nanosheets: one-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 30, 1803234 (2018).

    Google Scholar 

  130. 130.

    Poon, K. C. et al. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 136, 5217–5220 (2014).

    CAS  PubMed  Google Scholar 

  131. 131.

    Ma, Y., Wang, R., Wang, H., Linkov, V. & Ji, S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Phys. Chem. Chem. Phys. 16, 3593–3602 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Huang, H., Wang, H., Hu, W., Lv, W. & Ye, W. Exploring the role of nickel in the formation of amorphous Pt-based metallic alloys for methanol electro-oxidation with significant enhancement. Electrochem. Commun. 82, 107–111 (2017).

    CAS  Google Scholar 

  133. 133.

    He, D. et al. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 7, 12362 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Nsanzimana, J. M. V. et al. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 8, 1701475 (2018).

    Google Scholar 

  135. 135.

    Cheng, H. et al. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Nat. Sci. Rev. 6, 955-961 (2019).

  136. 136.

    Bellus, M. Z., Yang, Z., Hao, J., Lau, S. P. & Zhao, H. Amorphous two-dimensional black phosphorus with exceptional photocarrier transport properties. 2D Mater. 4, 025063 (2017).

    Google Scholar 

  137. 137.

    Morigaki, K. & Ogihara, C. in Springer Handbook of Electronic and Photonic Materials (eds Kasap, S. & Capper, P.) (Springer, 2017).

  138. 138.

    Chianelli, R. R. Amorphous and poorly crystalline transition metal chalcogenides. Int. Rev. Phys. Chem. 2, 127–165 (1982).

    CAS  Google Scholar 

  139. 139.

    Lee, S. C. et al. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 10, 624–632 (2016).

    CAS  PubMed  Google Scholar 

  140. 140.

    Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).

    CAS  Google Scholar 

  141. 141.

    Staszak-Jirkovský, J. et al. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203 (2016).

    PubMed  Google Scholar 

  142. 142.

    Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    CAS  Google Scholar 

  143. 143.

    Ji, Z., Trickett, C., Pei, X. & Yaghi, O. M. Linking molybdenum–sulfur clusters for electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 140, 13618–13622 (2018).

    CAS  PubMed  Google Scholar 

  144. 144.

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 6, 248–253 (2014).

    CAS  PubMed  Google Scholar 

  145. 145.

    Huang, Z. et al. Dimeric [Mo2S12]2− cluster: A molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew. Chem. Int. Ed. 54, 15181–15185 (2015).

    CAS  Google Scholar 

  146. 146.

    Tran, P. D. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640–646 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Li, Y. et al. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 5, 448–455 (2015).

    CAS  Google Scholar 

  148. 148.

    Vrubel, H. & Hu, X. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 3, 2002–2011 (2013).

    CAS  Google Scholar 

  149. 149.

    Ting, L. R. L. et al. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 6, 861–867 (2016).

    CAS  Google Scholar 

  150. 150.

    Siegrist, T., Merkelbach, P. & Wuttig, M. Phase change materials: challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 3, 215–237 (2012).

    CAS  Google Scholar 

  151. 151.

    Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    CAS  PubMed  Google Scholar 

  152. 152.

    Zhang, X. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 1, 460–468 (2018).

    CAS  Google Scholar 

  153. 153.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    CAS  Google Scholar 

  154. 154.

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

    CAS  PubMed  Google Scholar 

  155. 155.

    Quan, Z. et al. Pressure-induced switching between amorphization and crystallization in PbTe nanoparticles. Nano Lett. 13, 3729–3735 (2013).

    CAS  PubMed  Google Scholar 

  156. 156.

    Corsini, N. R. C. et al. Pressure-induced amorphization and a new high density amorphous metallic phase in matrix-free Ge nanoparticles. Nano Lett. 15, 7334–7340 (2015).

    CAS  PubMed  Google Scholar 

  157. 157.

    Ambrosi, A. & Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47, 7213–7224 (2018).

    CAS  PubMed  Google Scholar 

  158. 158.

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    CAS  PubMed  Google Scholar 

  159. 159.

    Tanaka, K. & Shimakawa, K. Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011).

Download references


This work was supported by MOE under AcRF Tier 2 (MOE2016-T2-2-103; MOE2017-T2-1-162) and AcRF Tier 1 (2017-T1-001-150; 2017-T1-002-119), NTU under Start-Up Grant (M4081296.070.500000) and Agency for Science, Technology and Research (A*STAR) under its AME IRG (project no. A1783c0009) in Singapore. Z.F. and H.Z. thank the support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM). Z.F., Q.H. and H.Z. thank the support from the Start-Up Grant (Project No. 9610480, 7200651 and 9380100) and grants (Project No. 9610478 and 1886921) in City University of Hong Kong.

Author information




Y.C., Z.L., X.Z., Z.F. and Q.H. contributed equally to this work. H.Z. proposed the topic of the Review. All authors contributed to the drafting and editing of the manuscript.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lai, Z., Zhang, X. et al. Phase engineering of nanomaterials. Nat Rev Chem 4, 243–256 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing