Mass spectrometry as a tool to advance polymer science

Abstract

In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Influence of different pre-separations on the spectral complexity of a hypothetical mixture of polymers.
Fig. 2: Principles behind the three most widespread ionization techniques in polymer MS.
Fig. 3: The required resolving power and the optimum choice of mass analyser are highly sample dependent.
Fig. 4: Tandem mass spectrometry can be used to sequence polymers.
Fig. 5: Ion-mobility spectrometry exploits the m/z, size and shape dependence of ion diffusion to separate analytes.

References

  1. 1.

    Webster, J. & Oxley, D. in Chemical Genomics and Proteomics: Reviews and Protocols (ed. Zanders, E. D.) 227–240 (Springer, 2012).

  2. 2.

    Yamashita, M. & Fenn, J. B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984).

  3. 3.

    Fenn, J. B. Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 42, 3871–3894 (2003).

  4. 4.

    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

  5. 5.

    Tanaka, K. et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

  6. 6.

    Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).

  7. 7.

    Gruendling, T., Weidner, S., Falkenhagen, J. & Barner-Kowollik, C. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym. Chem. 1, 599–617 (2010).

  8. 8.

    Li, X., Guo, L., Casiano-Maldonado, M., Zhang, D. & Wesdemiotis, C. Top-down multidimensional mass spectrometry methods for synthetic polymer analysis. Macromolecules 44, 4555–4564 (2011).

  9. 9.

    Crotty, S., Gerişlioğlu, S., Endres, K. J., Wesdemiotis, C. & Schubert, U. S. Polymer architectures via mass spectrometry and hyphenated techniques: a review. Anal. Chim. Acta 932, 1–21 (2016).

  10. 10.

    Uliyanchenko, E. Applications of hyphenated liquid chromatography techniques for polymer analysis. Chromatographia 80, 731–750 (2017).

  11. 11.

    Steckel, A. & Schlosser, G. An organic chemist’s guide to electrospray mass spectrometric structure elucidation. Molecules 24, 611 (2019).

  12. 12.

    Raffaelli, A. & Saba, A. Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 22, 318–331 (2003).

  13. 13.

    Awad, H., Khamis, M. M. & El-Aneed, A. Mass spectrometry, review of the basics: ionization. Appl. Spectrosc. Rev. 50, 158–175 (2015).

  14. 14.

    Crecelius, A. C., Vitz, J. & Schubert, U. S. Mass spectrometric imaging of synthetic polymers. Anal. Chim. Acta 808, 10–17 (2014).

  15. 15.

    Harrisson, S. The downside of dispersity: why the standard deviation is a better measure of dispersion in precision polymerization. Polym. Chem. 9, 1366–1370 (2018).

  16. 16.

    Crecelius, A. C. & Schubert, U. S. in Mass Spectrometry in Polymer Chemistry (eds Barner-Kowollik, C., Gruendling, T., Falkenhagen, J. & Weidner, S.) 281–318 (Wiley-VCH, 2012).

  17. 17.

    De Bruycker, K., Krappitz, T. & Barner-Kowollik, C. High performance quantification of complex high resolution polymer mass spectra. ACS Macro Lett. 7, 1443–1447 (2018).

  18. 18.

    Jovic, K. et al. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis — a tutorial review. Polym. Chem. 10, 3241–3256 (2019).

  19. 19.

    Anastasaki, A., Willenbacher, J., Fleischmann, C., Gutekunst, W. R. & Hawker, C. J. End group modification of poly(acrylates) obtained via ATRP: a user guide. Polym. Chem. 8, 689–697 (2017).

  20. 20.

    Liarou, E. et al. Ultra-low volume oxygen tolerant photoinduced Cu-RDRP. Polym. Chem. 10, 963–971 (2019).

  21. 21.

    Blasco, E., Sims, M. B., Goldmann, A. S., Sumerlin, B. S. & Barner-Kowollik, C. 50th anniversary perspective: polymer functionalization. Macromolecules 50, 5215–5252 (2017).

  22. 22.

    Espeel, P. & Du Prez, F. E. “Click”-inspired chemistry in macromolecular science: matching recent progress and user expectations. Macromolecules 48, 2–14 (2015).

  23. 23.

    Das, A. & Theato, P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chem. Rev. 116, 1434–1495 (2016).

  24. 24.

    Kubo, T., Figg, C. A., Swartz, J. L., Brooks, W. L. A. & Sumerlin, B. S. Multifunctional homopolymers: postpolymerization modification via sequential nucleophilic aromatic substitution. Macromolecules 49, 2077–2084 (2016).

  25. 25.

    Malik, M. I. & Pasch, H. Novel developments in the multidimensional characterization of segmented copolymers. Prog. Polym. Sci. 39, 87–123 (2014).

  26. 26.

    Lang, C., Barner, L., Blinco, J. P., Barner-Kowollik, C. & Fairfull-Smith, K. E. Direct access to biocompatible nitroxide containing polymers. Polym. Chem. 9, 1348–1355 (2018).

  27. 27.

    Winkler, M., Montero de Espinosa, L., Barner-Kowollik, C. & Meier, M. A. R. A new approach for modular polymer–polymer conjugations via Heck coupling. Chem. Sci. 3, 2607–2615 (2012).

  28. 28.

    Hurrle, S. et al. Two-in-one: λ-orthogonal photochemistry on a radical photoinitiating system. Macromol. Rapid Commun. 38, 1600598 (2017).

  29. 29.

    Oehlenschlaeger, K. K. et al. Light-induced modular ligation of conventional raft polymers. Angew. Chem. Int. Ed. 52, 762–766 (2013).

  30. 30.

    Gruendling, T., Dietrich, M. & Barner-Kowollik, C. A novel one-pot procedure for the fast and efficient conversion of raft polymers into hydroxy-functional polymers. Aust. J. Chem. 62, 806–812 (2009).

  31. 31.

    Tischer, T. et al. Modular ligation of thioamide functional peptides onto solid cellulose substrates. Adv. Funct. Mater. 22, 3853–3864 (2012).

  32. 32.

    Jovic, K. J., Richter, T., Lang, C., Blinco, J. P. & Barner-Kowollik, C. Correlating in-depth mechanistic understanding with mechanical properties of high-temperature resistant cyclic imide copolymers. Macromolecules 51, 8712–8720 (2018).

  33. 33.

    Steinkoenig, J., Nitsche, T., Tuten, B. T. & Barner-Kowollik, C. Radical-induced single-chain collapse of Passerini sequence-regulated polymers assessed by high-resolution mass spectrometry. Macromolecules 51, 3967–3974 (2018).

  34. 34.

    Steinkoenig, J., Rothfuss, H., Lauer, A., Tuten, B. T. & Barner-Kowollik, C. Imaging single-chain nanoparticle folding via high-resolution mass spectrometry. J. Am. Chem. Soc. 139, 51–54 (2017).

  35. 35.

    Bennet, F. et al. Transfer reactions in phenyl carbamate ethyl acrylate polymerizations. Macromol. Chem. Phys. 214, 236–245 (2013).

  36. 36.

    Gruendling, T., Voll, D., Guilhaus, M. & Barner-Kowollik, C. A perfect couple: PLP/SEC/ESI-MS for the accurate determination of propagation rate coefficients in free radical polymerization. Macromol. Chem. Phys. 211, 80–90 (2010).

  37. 37.

    Frick, E. et al. Toward a quantitative description of radical photoinitiator structure–reactivity correlations. Macromolecules 49, 80–89 (2016).

  38. 38.

    Voll, D., Junkers, T. & Barner-Kowollik, C. Quantitative comparison of the mesitoyl vs the benzoyl fragment in photoinitiation: a question of origin. Macromolecules 44, 2542–2551 (2011).

  39. 39.

    Fast, D. E. et al. Wavelength-dependent photochemistry of oxime ester photoinitiators. Macromolecules 50, 1815–1823 (2017).

  40. 40.

    Lauer, A. et al. Wavelength-dependent photochemical stability of photoinitiator-derived macromolecular chain termini. ACS Macro Lett. 6, 952–958 (2017).

  41. 41.

    Nitsche, T. et al. Mapping the compaction of discrete polymer chains by size exclusion chromatography coupled to high-resolution mass spectrometry. Macromolecules 52, 2597–2606 (2019).

  42. 42.

    Aaserud, D. J., Prokai, L. & Simonsick, W. J. Gel permeation chromatography coupled to Fourier transform mass spectrometry for polymer characterization. Anal. Chem. 71, 4793–4799 (1999).

  43. 43.

    Gruendling, T., Guilhaus, M. & Barner-Kowollik, C. Quantitative LC–MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing. Anal. Chem. 80, 6915–6927 (2008).

  44. 44.

    Gruendling, T., Guilhaus, M. & Barner-Kowollik, C. Fast and accurate determination of absolute individual molecular weight distributions from mixtures of polymers via size exclusion chromatography–electrospray ionization mass spectrometry. Macromolecules 42, 6366–6374 (2009).

  45. 45.

    Viodé, A. et al. Coupling of size-exclusion chromatography with electrospray ionization charge-detection mass spectrometry for the characterization of synthetic polymers of ultra-high molar mass. Rapid Commun. Mass Spectrom. 30, 132–136 (2016).

  46. 46.

    Falkenhagen, J. & Weidner, S. Determination of critical conditions of adsorption for chromatography of polymers. Anal. Chem. 81, 282–287 (2009).

  47. 47.

    Peters, R. et al. Quantitation of functionality of poly(methyl methacrylate) by liquid chromatography under critical conditions followed by evaporative light-scattering detection: comparison with NMR and titration. J. Chromatogr. A 949, 327–335 (2002).

  48. 48.

    van Leeuwen, S. M., Tan, B., Grijpma, D. W., Feijen, J. & Karst, U. Characterization of the chemical composition of a block copolymer by liquid chromatography/mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization. Rapid Commun. Mass Spectrom. 21, 2629–2637 (2007).

  49. 49.

    Barner-Kowollik, C., Gruendling, T., Falkenhagen, J. & Weidner, S. (eds) Mass Spectrometry in Polymer Chemistry (Wiley-VCH, 2012).

  50. 50.

    Wesdemiotis, C. Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew. Chem. Int. Ed. 56, 1452–1464 (2017).

  51. 51.

    Hoteling, A. J. & Papagelis, P. T. Structural characterization of silicone polymers using compositional ultra-high performance liquid chromatography separation, electrospray ionization, and high resolution/accurate mass. Anal. Chim. Acta 808, 231–239 (2014).

  52. 52.

    Yin, C., Fu, J. & Lu, X. Characterization of polyethermethylsiloxanes using ultra-high performance liquid chromatography-electrospray ionization and time-of-flight mass spectrometry. Anal. Chim. Acta 1082, 194–201 (2019).

  53. 53.

    Weidner, S., Falkenhagen, J., Krueger, R.-P. & Just, U. Principle of two-dimensional characterization of copolymers. Anal. Chem. 79, 4814–4819 (2007).

  54. 54.

    Radke, W. & Falkenhagen, J. in Liquid Chromatography: Applications (eds Fanali, S., Haddad, P. R., Poole, C. F., Schoenmakers, P. & Lloyd, D.) 93–129 (Elsevier, 2013).

  55. 55.

    Girod, M., Phan, T. N. T. & Charles, L. Tuning block copolymer structural information by adjusting salt concentration in liquid chromatography at critical conditions coupled with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1476–1482 (2009).

  56. 56.

    Fandrich, N. et al. Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2 - chromatographic separation and analysis by MALDI-TOF and FT-IR coupling. Macromol. Chem. Phys. 211, 1678–1688 (2010).

  57. 57.

    Malke, M., Barqawi, H. & Binder, W. H. Synthesis of an amphiphilic β-turn mimetic polymer conjugate. ACS Macro Lett. 3, 393–397 (2014).

  58. 58.

    Lee, S., Lee, H., Chang, T. & Hirao, A. Synthesis and characterization of an exact polystyrene-graft-polyisoprene: a failure of size exclusion chromatography analysis. Macromolecules 50, 2768–2776 (2017).

  59. 59.

    Vandewalle, S., Billiet, S., Driessen, F. & Du Prez, F. E. Macromolecular coupling in seconds of triazolinedione end-functionalized polymers prepared by RAFT polymerization. ACS Macro Lett. 5, 766–771 (2016).

  60. 60.

    Julka, S. et al. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry. Anal. Chem. 81, 4271–4279 (2009).

  61. 61.

    Petton, L. et al. High molar mass segmented macromolecular architectures by nitroxide mediated polymerisation. Polym. Chem. 4, 4697–4709 (2013).

  62. 62.

    Viktor, Z. et al. Comprehensive two-dimensional liquid chromatography for the characterization of acrylate-modified hyaluronic acid. Anal. Bioanal. Chem. 411, 3321–3330 (2019).

  63. 63.

    Maiko, K., Hehn, M., Hiller, W. & Pasch, H. Comprehensive two-dimensional liquid chromatography of stereoregular poly(methyl methacrylates) for tacticity and molar mass analysis. Anal. Chem. 85, 9793–9798 (2013).

  64. 64.

    Lee, S., Choi, H., Chang, T. & Staal, B. Two-dimensional liquid chromatography analysis of polystyrene/polybutadiene block copolymers. Anal. Chem. 90, 6259–6266 (2018).

  65. 65.

    Pirok, B. W. J., Stoll, D. R. & Schoenmakers, P. J. Recent developments in two-dimensional liquid chromatography: fundamental improvements for practical applications. Anal. Chem. 91, 240–263 (2019).

  66. 66.

    Barqawi, H., Ostas, E., Liu, B., Carpentier, J.-F. & Binder, W. H. Multidimensional characterization of α,ω-telechelic poly(ε-caprolactone)s via online coupling of 2D chromatographic methods (LC/SEC) and ESI-TOF/MALDI-TOF-MS. Macromolecules 45, 9779–9790 (2012).

  67. 67.

    Barqawi, H., Schulz, M., Olubummo, A., Saurland, V. & Binder, W. H. 2D-LC/SEC-(MALDI-TOF)-MS characterization of symmetric and nonsymmetric biocompatible PEOm–PIB–PEOn block copolymers. Macromolecules 46, 7638–7649 (2013).

  68. 68.

    Pretorius, N. O., Rhode, K., Simpson, J. M. & Pasch, H. Characterization of complex phthalic acid/propylene glycol based polyesters by the combination of 2D chromatography and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 407, 217–230 (2015).

  69. 69.

    Malik, M. I., Trathnigg, B. & Saf, R. Characterization of ethylene oxide–propylene oxide block copolymers by combination of different chromatographic techniques and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. J. Chromatogr. A 1216, 6627–6635 (2009).

  70. 70.

    Ozeki, Y., Omae, M., Kitagawa, S. & Ohtani, H. Electrospray ionization-ion mobility spectrometry–high resolution tandem mass spectrometry with collision-induced charge stripping for the analysis of highly multiply charged intact polymers. Analyst 144, 3428–3435 (2019).

  71. 71.

    Crescentini, T. M., May, J. C., McLean, J. A. & Hercules, D. M. Alkali metal cation adduct effect on polybutylene adipate oligomers: ion mobility-mass spectrometry. Polymer 173, 58–65 (2019).

  72. 72.

    Gerislioglu, S., Adams, S. R. & Wesdemiotis, C. Characterization of singly and multiply pegylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry. Anal. Chim. Acta 1004, 58–66 (2018).

  73. 73.

    Shi, C., Gerişlioğlu, S. & Wesdemiotis, C. Ultrahigh performance liquid chromatography interfaced with mass spectrometry and orthogonal ion mobility separation for the microstructure characterization of amphiphilic block copolymers. Chromatographia 79, 961–969 (2016).

  74. 74.

    Foley, C. D., Zhang, B., Alb, A. M., Trimpin, S. & Grayson, S. M. Use of ion mobility spectrometry–mass spectrometry to elucidate architectural dispersity within star polymers. ACS Macro Lett. 4, 778–782 (2015).

  75. 75.

    Duez, Q. et al. One step further in the characterization of synthetic polymers by ion mobility mass spectrometry: evaluating the contribution of end-groups. Polymers 11, 688 (2019).

  76. 76.

    Duez, Q. et al. Correlation between the shape of the ion mobility signals and the stepwise folding process of polylactide ions. J. Mass Spectrom. 52, 133–138 (2017).

  77. 77.

    Haler, J. R. N. et al. Fundamental studies on poly(2-oxazoline) side chain isomers using tandem mass spectrometry and ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 1220–1228 (2019).

  78. 78.

    Haler, J. R. N. et al. Predicting ion mobility-mass spectrometry trends of polymers using the concept of apparent densities. Methods 144, 125–133 (2018).

  79. 79.

    Benninghoven, A., Hagenhoff, B. & Niehuis, E. Surface MS: probing real-world samples. Anal. Chem. 65, 630A–640A (1993).

  80. 80.

    Manicke, N. E., Dill, A. L., Ifa, D. R. & Cooks, R. G. High-resolution tissue imaging on an orbitrap mass spectrometer by desorption electrospray ionization mass spectrometry. J. Mass Spectrom. 45, 223–226 (2010).

  81. 81.

    Gross, J. H. Direct analysis in real time — a critical review on DART-MS. Anal. Bioanal. Chem. 406, 63–80 (2014).

  82. 82.

    Rondeau, D. in Direct Analysis in Real Time Mass Spectrometry (ed. Dong, Y.) 43–80 (Wiley-VCH, 2017).

  83. 83.

    Liigand, P. et al. Think negative: finding the best electrospray ionization/MS mode for your analyte. Anal. Chem. 89, 5665–5668 (2017).

  84. 84.

    Liigand, P. et al. The evolution of electrospray generated droplets is not affected by ionization mode. J. Am. Soc. Mass Spectrom. 28, 2124–2131 (2017).

  85. 85.

    Kebarle, P. & Peschke, M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta 406, 11–35 (2000).

  86. 86.

    Crotti, S., Seraglia, R. & Traldi, P. Some thoughts on electrospray ionization mechanisms. Eur. J. Mass Spectrom. 17, 85–99 (2011).

  87. 87.

    Pasch, H. & Schrepp, W. MALDI-TOF Mass Spectrometry of Synthetic Polymers (Springer, 2003).

  88. 88.

    Swanson, K. D., Spencer, S. E. & Glish, G. L. Metal cationization extractive electrospray ionization mass spectrometry of compounds containing multiple oxygens. J. Am. Soc. Mass Spectrom. 28, 1030–1035 (2017).

  89. 89.

    Chen, R. & Li, L. Lithium and transition metal ions enable low energy collision-induced dissociation of polyglycols in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 832–839 (2001).

  90. 90.

    Steinkoenig, J., Cecchini, M. M., Reale, S., Goldmann, A. S. & Barner-Kowollik, C. Supercharging synthetic polymers: mass spectrometric access to nonpolar synthetic polymers. Macromolecules 50, 8033–8041 (2017).

  91. 91.

    Li, L. et al. Comprehensive comparison of ambient mass spectrometry with desorption electrospray ionization and direct analysis in real time for direct sample analysis. Talanta 203, 140–146 (2019).

  92. 92.

    Ifa, D. R., Wu, C. P., Ouyang, Z. & Cooks, R. G. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135, 669–681 (2010).

  93. 93.

    Harris, G. A., Galhena, A. S. & Fernández, F. M. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011).

  94. 94.

    Friia, M., Legros, V., Tortajada, J. & Buchmann, W. Desorption electrospray ionization-orbitrap mass spectrometry of synthetic polymers and copolymers. J. Mass Spectrom. 47, 1023–1033 (2012).

  95. 95.

    Soeriyadi, A. H., Whittaker, M. R., Boyer, C. & Davis, T. P. Soft ionization mass spectroscopy: insights into the polymerization mechanism. J. Polym. Sci. A Polym. Chem. 51, 1475–1505 (2013).

  96. 96.

    Paine, M. R. L., Barker, P. J. & Blanksby, S. J. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review. Anal. Chim. Acta 808, 70–82 (2014).

  97. 97.

    Bonnaire, N., Dannoux, A., Pernelle, C., Amekraz, B. & Moulin, C. On the use of electrospray ionization and desorption electrospray ionization mass spectrometry for bulk and surface polymer analysis. Appl. Spectrosc. 64, 810–818 (2010).

  98. 98.

    Drzeżdżon, J., Jacewicz, D., Sielicka, A. & Chmurzyński, L. MALDI-MS for polymer characterization — recent developments and future prospects. TrAC Trends Anal. Chem. 115, 121–128 (2019).

  99. 99.

    National Institute of Standards and Technology. NIST synthetic polymer MALDI recipes database. NIST https://maldi.nist.gov/ (2014).

  100. 100.

    Pasch, H. & Ghahary, R. Analysis of complex polymers by MALDI-TOF mass spectrometry. Macromol. Symp. 152, 267–278 (2000).

  101. 101.

    Navarrete, P., Pizzi, A., Pasch, H. & Delmotte, L. Study on lignin–glyoxal reaction by MALDI-TOF and CP-MAS 13C-NMR. J. Adhes. Sci. Technol. 26, 1069–1082 (2012).

  102. 102.

    Hoong, Y. B., Pizzi, A., Tahir, P. M. & Pasch, H. Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS 13C NMR. Eur. Polym. J. 46, 1268–1277 (2010).

  103. 103.

    Liu, C., Fei, Y.-y., Zhang, H.-l., Pan, C.-y. & Hong, C.-y. Effective construction of hyperbranched multicyclic polymer by combination of ATRP, UV-induced cyclization, and self-accelerating click reaction. Macromolecules 52, 176–184 (2019).

  104. 104.

    Nakamura, S., Fouquet, T. & Sato, H. Molecular characterization of high molecular weight polyesters by matrix-assisted laser desorption/ionization high-resolution time-of-flight mass spectrometry combined with on-plate alkaline degradation and mass defect analysis. J. Am. Soc. Mass Spectrom. 30, 355–367 (2019).

  105. 105.

    Endres, K. J., Hill, J. A., Lu, K., Foster, M. D. & Wesdemiotis, C. Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging: a surface imaging technique for the molecular-level analysis of synthetic material surfaces. Anal. Chem. 90, 13427–13433 (2018).

  106. 106.

    Zhou, D. et al. High-quality conjugated polymers via one-pot Suzuki–Miyaura homopolymerization. RSC Adv. 7, 27762–27769 (2017).

  107. 107.

    Payne, M. E. & Grayson, S. M. Characterization of synthetic polymers via matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. J. Vis. Exp. 136, e57174 (2018).

  108. 108.

    Crescentini, T. M., May, J. C., McLean, J. A. & Hercules, D. M. Mass spectrometry of polyurethanes. Polymer 181, 121624 (2019).

  109. 109.

    Montaudo, G., Samperi, F. & Montaudo, M. S. Characterization of synthetic polymers by MALDI-MS. Prog. Polym. Sci. 31, 277–357 (2006).

  110. 110.

    Laskin, J., Laskin, A. & Nizkorodov, S. A. New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. Int. Rev. Phys. Chem. 32, 128–170 (2013).

  111. 111.

    Huang, D. et al. Secondary ion mass spectrometry: the application in the analysis of atmospheric particulate matter. Anal. Chim. Acta 989, 1–14 (2017).

  112. 112.

    Arlinghaus, H. F. in Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications 2nd edn (eds Friedbacher, G. & Bubert, H.) 179–189 (Wiley-VCH, 2011).

  113. 113.

    Henkel, T. & Gilmour, J. in Treatise on Geochemistry 2nd edn Vol. 15 (eds Holland, H. D. & Turekian, K. K.) 411–424 (Elsevier, 2013).

  114. 114.

    Kopnarski, M. & Jenett, H. in Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications 2nd edn (eds Friedbacher, G. & Bubert, H.) 161–177 (Wiley-VCH, 2011).

  115. 115.

    Oechsner, H. in Encyclopedia of analytical science 2nd edn (eds Worsfold, P., Townshend, P., Poole, A. & Amsterdam, C.) 514–526 (Elsevier, 2004).

  116. 116.

    Bhardwaj, C. & Hanley, L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat. Prod. Rep. 31, 756–767 (2014).

  117. 117.

    Getty, S. A., Brinckerhoff, W. B., Cornish, T., Ecelberger, S. & Floyd, M. Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26, 2786–2790 (2012).

  118. 118.

    Barré, F. P. Y. et al. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal. Chem. 91, 10840–10848 (2019).

  119. 119.

    Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A. & Laprévote, O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 16, 1608–1618 (2005).

  120. 120.

    Shard, A. G. et al. Argon cluster ion beams for organic depth profiling: results from a VAMAS interlaboratory study. Anal. Chem. 84, 7865–7873 (2012).

  121. 121.

    Niehuis, E., Möllers, R., Rading, D., Cramer, H.-G. & Kersting, R. Analysis of organic multilayers and 3D structures using Ar cluster ions. Surf. Interface Anal. 45, 158–162 (2013).

  122. 122.

    Passarelli, M. K. et al. The 3D orbisims — label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017).

  123. 123.

    Kotowska, A. M. et al. In situ protein identification and mapping using secondary ion mass spectrometry. Preprint at bioRxiv https://doi.org/10.1101/803940 (2019).

  124. 124.

    Lub, J., van Vroonhoven, F. C. B. M., van Leyen, D. & Benninghoven, A. Static secondary ion mass spectrometry analysis of polycarbonate surfaces. Effect of structure and of surface modification on the spectra. Polymer 29, 998–1003 (1988).

  125. 125.

    Gardella Jr, J. A. & Pireaux, J.-J. Analysis of polymer surfaces using electron and ion beams. Anal. Chem. 62, 645A–661A (1990).

  126. 126.

    Garrison, B. J., Delcorte, A. & Krantzman, K. D. Molecule liftoff from surfaces. Acc. Chem. Res. 33, 69–77 (2000).

  127. 127.

    Wojciechowski, I., Delcorte, A., Gonze, X. & Bertrand, P. Mechanism of metal cationization in organic SIMS. Chem. Phys. Lett. 346, 1–8 (2001).

  128. 128.

    Bertrand, P., Delcorte, A. & Garrison, B. J. Molecular SIMS for organic layers: new insights. Appl. Surf. Sci. 203–204, 160–165 (2003).

  129. 129.

    Delcorte, A., Bour, J., Aubriet, F., Muller, J.-F. & Bertrand, P. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal. Chem. 75, 6875–6885 (2003).

  130. 130.

    Wehbe, N., Heile, A., Arlinghaus, H. F., Bertrand, P. & Delcorte, A. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry. Anal. Chem. 80, 6235–6244 (2008).

  131. 131.

    Bletsos, I. V., Hercules, D. M., VanLeyen, D. & Benninghoven, A. Time-of-flight secondary ion mass spectrometry of polymers in the mass range 500–10000. Macromolecules 20, 407–413 (1987).

  132. 132.

    Mezger, S. T. P., Mingels, A. M. A., Bekers, O., Cillero-Pastor, B. & Heeren, R. M. A. Trends in mass spectrometry imaging for cardiovascular diseases. Anal. Bioanal. Chem. 411, 3709–3720 (2019).

  133. 133.

    He, J. M. et al. A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology. Adv. Sci. 5, 1802201 (2018).

  134. 134.

    Zandanel, C. et al. Biodistribution of polycyanoacrylate nanoparticles encapsulating doxorubicin by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). J. Drug Delivery Sci. Technol. 47, 55–61 (2018).

  135. 135.

    Buck, A. et al. Round robin study of formalin-fixed paraffin-embedded tissues in mass spectrometry imaging. Anal. Bioanal. Chem. 410, 5969–5980 (2018).

  136. 136.

    Rivas, D. et al. Using MALDI-TOF MS imaging and LC-HRMS for the investigation of the degradation of polycaprolactone diol exposed to different wastewater treatments. Anal. Bioanal. Chem. 409, 5401–5411 (2017).

  137. 137.

    Crecelius, A. C., Schubert, U. S. & von Eggeling, F. MALDI mass spectrometric imaging meets “omics”: Recent advances in the fruitful marriage. Analyst 140, 5806–5820 (2015).

  138. 138.

    Trindade, G. F., Abel, M.-L., Lowe, C., Tshulu, R. & Watts, J. F. A time-of-flight secondary ion mass spectrometry/multivariate analysis (TOF-SIMS/MVA) approach to identify phase segregation in blends of incompatible but extremely similar resins. Anal. Chem. 90, 3936–3941 (2018).

  139. 139.

    Taylor, M. J. et al. Time of flight secondary ion mass spectrometry — a method to evaluate plasma-modified three-dimensional scaffold chemistry. Biointerphases 13, 03B415 (2018).

  140. 140.

    Hook, A. L., Williams, P. M., Alexander, M. R. & Scurr, D. J. Multivariate TOF-SIMS image analysis of polymer microarrays and protein adsorption. Biointerphases 10, 019005 (2015).

  141. 141.

    Bailey, J. et al. 3D TOF-SIMS imaging of polymer multi layer films using argon cluster sputter depth profiling. ACS Appl. Mater. Interfaces 7, 2654–2659 (2015).

  142. 142.

    Kollmer, F., Paul, W., Krehl, M. & Niehuis, E. Ultra high spatial resolution SIMS with cluster ions — approaching the physical limits. Surf. Interface Anal. 45, 312–314 (2013).

  143. 143.

    Dubey, M. et al. Surface analysis of photolithographic patterns using ToF-SIMS and PAC. Surf. Interface Anal. 41, 645–652 (2009).

  144. 144.

    Wood, A. R., Smith, P. A. & Watts, J. F. The forensic study of single fibre pull-out specimens using TOF-SIMS. Compos. Interfaces 14, 387–402 (2007).

  145. 145.

    Lee, C.-Y., Harbers, G. M., Grainger, D. W., Gamble, L. J. & Castner, D. G. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays. J. Am. Chem. Soc. 129, 9429–9438 (2007).

  146. 146.

    Kubicek, M. et al. A novel TOF-SIMS operation mode for sub 100 nm lateral resolution: application and performance. Appl. Surf. Sci. 289, 407–416 (2014).

  147. 147.

    Bernard, L. et al. Plasma polymer film designs through the eyes of TOF-SIMS. Biointerphases 13, 03B417 (2018).

  148. 148.

    Muir, B. W. et al. Effects of oxygen plasma treatment on the surface of bisphenol a polycarbonate: a study using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation. Surf. Interface Anal. 38, 1186–1197 (2006).

  149. 149.

    Trindade, G. F., Williams, D. F., Abel, M. L. & Watts, J. F. Analysis of atmospheric plasma-treated polypropylene by large area ToF-SIMS imaging and NMF. Surf. Interface Anal. 50, 1180–1186 (2018).

  150. 150.

    Ravati, S., Poulin, S., Piyakis, K. & Favis, B. D. Phase identification and interfacial transitions in ternary polymer blends by TOF-SIMS. Polymer 55, 6110–6123 (2014).

  151. 151.

    Gardella, Jr, J. A. & Mahoney, C. M. Determination of oligomeric chain length distributions at surfaces using ToF-SIMS: segregation effects and polymer properties. Appl. Surf. Sci. 231–232, 283–288 (2004).

  152. 152.

    Hook, A. L. & Scurr, D. J. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups. Surf. Interface Anal. 48, 226–236 (2016).

  153. 153.

    Brison, J., Muramoto, S. & Castner, D. G. ToF-SIMS depth profiling of organic films: a comparison between single-beam and dual-beam analysis. J. Phys. Chem. C 114, 5565–5573 (2010).

  154. 154.

    Graham, D. J., Wilson, J. T., Lai, J. J., Stayton, P. S. & Castner, D. G. Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases 11, 02A304 (2016).

  155. 155.

    Xian, F., Hendrickson, C. L. & Marshall, A. G. High resolution mass spectrometry. Anal. Chem. 84, 708–719 (2012).

  156. 156.

    Lössl, P., Snijder, J. & Heck, A. J. R. Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917 (2014).

  157. 157.

    Satoh, T., Tsuno, H., Iwanaga, M. & Kammei, Y. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory. J. Am. Soc. Mass Spectrom. 16, 1969–1975 (2005).

  158. 158.

    Makarov, A., Denisov, E. & Lange, O. Performance evaluation of a high-field orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1391–1396 (2009).

  159. 159.

    Murray, K. K. et al. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1515–1609 (2013).

  160. 160.

    Snijder, J., Rose, R. J., Veesler, D., Johnson, J. E. & Heck, A. J. R. Studying 18MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023 (2013).

  161. 161.

    Zenaidee, M. A., Leeming, M. G., Zhang, F., Funston, T. T. & Donald, W. A. Highly charged protein ions: the strongest organic acids to date. Angew. Chem. Int. Ed. 56, 8522–8526 (2017).

  162. 162.

    Stutzman, J. R., Crowe, M. C., Alexander, IV, J. N., Bell, B. M. & Dunkle, M. N. Coupling charge reduction mass spectrometry to liquid chromatography for complex mixture analysis. Anal. Chem. 88, 4130–4139 (2016).

  163. 163.

    Stutzman, J. R. et al. Microdroplet fusion chemistry for charge state reduction of synthetic polymers via bipolar dual spray with anionic reagents. J. Am. Soc. Mass Spectrom. 30, 1742–1749 (2019).

  164. 164.

    Mehmood, S., Allison, T. M. & Robinson, C. V. Mass spectrometry of protein complexes: from origins to applications. Annu. Rev. Phys. Chem. 66, 453–474 (2015).

  165. 165.

    McLuckey, S. A. & Goeringer, D. E. Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997).

  166. 166.

    Dongré, A. R., Jones, J. L., Somogyi, Á. & Wysocki, V. H. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency:  evidence for the mobile proton model. J. Am. Chem. Soc. 118, 8365–8374 (1996).

  167. 167.

    Nilsson, T. et al. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat. Methods 7, 681–685 (2010).

  168. 168.

    Tuten, B. T. et al. Polyselenoureas via multicomponent polymerizations using elemental selenium as monomer. ACS Macro Lett. 7, 898–903 (2018).

  169. 169.

    Roy, R. K. et al. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat. Commun. 6, 7237 (2015).

  170. 170.

    Martens, S. et al. Multifunctional sequence-defined macromolecules for chemical data storage. Nat. Commun. 9, 4451 (2018).

  171. 171.

    Amalian, J.-A., Trinh, T. T., Lutz, J.-F. & Charles, L. MS/MS digital readout: analysis of binary information encoded in the monomer sequences of poly(triazole amide)s. Anal. Chem. 88, 3715–3722 (2016).

  172. 172.

    Fisher, G. L. et al. A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS. Anal. Chem. 88, 6433–6440 (2016).

  173. 173.

    Hoskins, J. N., Trimpin, S. & Grayson, S. M. Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules 44, 6915–6918 (2011).

  174. 174.

    Frisch, H., Mundsinger, K., Poad, B. L. J., Blanksby, S. J. & Barner-Kowollik, C. Wavelength-gated photoreversible polymerization and topology control. Chem. Sci. https://doi.org/10.1039/C9SC05381F (2020).

  175. 175.

    Giles, K. et al. A cyclic ion mobility-mass spectrometry system. Anal. Chem. 91, 8564–8573 (2019).

  176. 176.

    Ridgeway, M. E., Lubeck, M., Jordens, J., Mann, M. & Park, M. A. Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425, 22–35 (2018).

  177. 177.

    Webb, I. K. et al. Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal. Chem. 86, 9169–9176 (2014).

  178. 178.

    Haler, J. R. N. et al. Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2492–2499 (2017).

  179. 179.

    Inglese, P. et al. Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chem. Sci. 8, 3500–3511 (2017).

  180. 180.

    Ràfols, P. et al. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. Mass Spectrom. Rev. 37, 281–306 (2018).

  181. 181.

    Poté, N. et al. Identification of tissue microvascular invasion biomarkers in hepatocellular carcinomas by MALDI imaging mass spectrometry. Virchows Arch. 461, S9–S10 (2012).

  182. 182.

    Lagarrigue, M. et al. New analysis workflow for MALDI imaging mass spectrometry: application to the discovery and identification of potential markers of childhood absence epilepsy. J. Proteome Res. 11, 5453–5463 (2012).

  183. 183.

    Alexandrov, T. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 13, S11 (2012).

  184. 184.

    Wagner, M. S., Graham, D. J. & Castner, D. G. Simplifying the interpretation of ToF-SIMS spectra and images using careful application of multivariate analysis. Appl. Surf. Sci. 252, 6575–6581 (2006).

  185. 185.

    Graham, D. J., Wagner, M. S. & Castner, D. G. Information from complexity: challenges of TOF-SIMS data interpretation. Appl. Surf. Sci. 252, 6860–6868 (2006).

  186. 186.

    Graham, D. J. & Castner, D. G. Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 7, 49 (2012).

  187. 187.

    Trindade, G. F., Abel, M. L. & Watts, J. F. simsMVA: a tool for multivariate analysis of ToF-SIMS datasets. Chemometr. Intell. Lab. Syst. 182, 180–187 (2018).

  188. 188.

    Madiona, R. M. T., Winkler, D. A., Muir, B. W. & Pigram, P. J. Effect of mass segment size on polymer ToF-SIMS multivariate analysis using a universal data matrix. Appl. Surf. Sci. 478, 465–477 (2019).

  189. 189.

    Fischer, C. R., Ruebel, O. & Bowen, B. P. An accessible, scalable ecosystem for enabling and sharing diverse mass spectrometry imaging analyses. Arch. Biochem. Biophys. 589, 18–26 (2016).

  190. 190.

    Ucal, Y., Coskun, A. & Ozpinar, A. Quality will determine the future of mass spectrometry imaging in clinical laboratories: the need for standardization. Expert Rev. Proteomics 16, 521–532 (2019).

  191. 191.

    Kendrick, E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 35, 2146–2154 (1963).

  192. 192.

    Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G. & Qian, K. Kendrick mass defect spectrum:  a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73, 4676–4681 (2001).

  193. 193.

    Sato, H., Nakamura, S., Teramoto, K. & Sato, T. Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis. J. Am. Soc. Mass Spectrom. 25, 1346–1355 (2014).

  194. 194.

    Gaiffe, G., Cole, R. B., Lacpatia, S. & Bridoux, M. C. Characterization of fluorinated polymers by atmospheric-solid-analysis-probe high-resolution mass spectrometry (ASAP/HRMS) combined with Kendrick-mass-defect analysis. Anal. Chem. 90, 6035–6042 (2018).

  195. 195.

    Cody, R. B. & Fouquet, T. “Reverse Kendrick mass defect analysis”: rotating mass defect graphs to determine oligomer compositions for homopolymers. Anal. Chem. 90, 12854–12860 (2018).

  196. 196.

    Kehr, S. & Luftmann, H. Polymer characterization by electrospray-mass-spectrometry — shifting the upper mass limit. e-Polymers 7, 10 (2007).

  197. 197.

    Łącki, M. K., Startek, M., Valkenborg, D. & Gambin, A. Isospec: hyperfast fine structure calculator. Anal. Chem. 89, 3272–3277 (2017).

Download references

Acknowledgements

C.B.-K. acknowledges funding from the Australian Research Council (ARC) in the form of a Laureate Fellowship (FL170100014) enabling his photochemical research program, as well as key support from the Queensland University of Technology (QUT). The authors thank B. Poad and D. Marshall (Central Analytical Research Facility (CARF), QUT) for fruitful discussions.

Author information

All authors researched data for the article and contributed to discussion of content and writing. K.D.B. made the figures and reviewed/edited the manuscript before submission.

Correspondence to Stephen J. Blanksby or Christopher Barner-Kowollik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Bruycker, K., Welle, A., Hirth, S. et al. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem (2020). https://doi.org/10.1038/s41570-020-0168-1

Download citation