Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methanogenesis involves direct hydride transfer from H2 to an organic substrate

Abstract

Certain anaerobic microorganisms evolved a mechanism to use H2 as a reductant in their energy metabolisms. For these purposes, the microorganisms developed H2-activating enzymes, which are aspirational catalysts in a sustainable hydrogen economy. In the case of the hydrogenotrophic pathway performed by methanogenic archaea, 8e are extracted from 4H2 and used as reducing equivalents to convert CO2 into CH4. Under standard cultivation conditions, these archaea express [NiFe]-hydrogenases, which are Ni-dependent and Fe-dependent enzymes and heterolytically cleave H2 into 2H+ and 2e, the latter being supplied into the central metabolism. Under Ni-limiting conditions, F420-reducing [NiFe]-hydrogenases are downregulated and their functions are predominantly taken over by an upregulated [Fe]-hydrogenase. Unique in biology, this Fe-dependent hydrogenase cleaves H2 and directly transfers H to an imidazolium-containing substrate. [Fe]-hydrogenase activates H2 at an Fe cofactor ligated by two CO molecules, an acyl group, a pyridinol N atom and a cysteine thiolate as the central constituent. This Fe centre has inspired chemists to not only design synthetic mimics to catalytically cleave H2 in solution but also for incorporation into apo-[Fe]-hydrogenase to give semi-synthetic proteins. This Perspective describes the enzymes involved in hydrogenotrophic methanogenesis, with a focus on those performing the reduction steps. Of these, we describe [Fe]-hydrogenases in detail and cover recent progress in their synthetic modelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Methanogenesis from H2 and CO2.
Fig. 2: The reductions catalysed by Fwd, Mtd, Frh and Mcr.
Fig. 3: [Fe]-hydrogenase and its FeGP cofactor.
Fig. 4: The proposed mechanism of [Fe]-hydrogenase and key intermediates of [NiFe]-hydrogenases and [FeFe]-hydrogenases.
Fig. 5: Synthetic FeGP mimics enable [Fe]-hydrogenase reconstitution.

References

  1. 1.

    Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    CAS  PubMed  Google Scholar 

  2. 2.

    Thauer, R. K. et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Welte, C. & Deppenmeier, U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim. Biophys. Acta 1837, 1130–1147 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    Shima, S. & Ermler, U. Structure and function of [Fe]-hydrogenase and its iron–guanylylpyridinol (FeGP) cofactor. Eur. J. Inorg. Chem. 2011, 963–972 (2011).

    Google Scholar 

  7. 7.

    Zirngibl, C. et al. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron–sulfur clusters in methanogenic archaea. Eur. J. Biochem. 208, 511–520 (1992).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354, 114–117 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Bertram, P. A. et al. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. Eur. J. Biochem. 220, 477–484 (1994).

    CAS  PubMed  Google Scholar 

  10. 10.

    Schmitz, R. A., Albracht, S. P. & Thauer, R. K. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur. J. Biochem. 209, 1013–1018 (1992).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bertram, P. A. & Thauer, R. K. Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 226, 811–818 (1994).

    CAS  PubMed  Google Scholar 

  12. 12.

    Niks, D. & Hille, R. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Sci. 28, 111–122 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    DiMarco, A. A., Bobik, T. A. & Wolfe, R. S. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem. 59, 355–394 (1990).

    CAS  PubMed  Google Scholar 

  14. 14.

    Donnelly, M. I. & Wolfe, R. S. The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J. Biol. Chem. 261, 16653–16659 (1986).

    CAS  PubMed  Google Scholar 

  15. 15.

    Ceh, K. et al. Structural basis of the hydride transfer mechanism in F420-dependent methylenetetrahydromethanopterin dehydrogenase. Biochemistry 48, 10098–10105 (2009).

    CAS  PubMed  Google Scholar 

  16. 16.

    Shima, S. et al. Structure of coenzyme F420 dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 300, 935–950 (2000).

    CAS  PubMed  Google Scholar 

  17. 17.

    Vitt, S. et al. The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. J. Mol. Biol. 426, 2813–2826 (2014).

    CAS  PubMed  Google Scholar 

  18. 18.

    Afting, C., Hochheimer, A. & Thauer, R. K. Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch. Microbiol. 169, 206–210 (1998).

    CAS  PubMed  Google Scholar 

  19. 19.

    Stojanowic, A., Mander, G. J., Duin, E. C. & Hedderich, R. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch. Microbiol. 180, 194–203 (2003).

    CAS  PubMed  Google Scholar 

  20. 20.

    Thauer, R. K. Methyl (alkyl)-coenzyme M reductases: nickel F430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gottschalk, G. & Thauer, R. K. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta 1505, 28–36 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Wagner, T., Ermler, U. & Shima, S. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode. Sci. Rep. 6, 28226 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wagner, T., Koch, J., Ermler, U. & Shima, S. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 357, 699–703 (2017).

    CAS  PubMed  Google Scholar 

  24. 24.

    Pelmenschikov, V., Blomberg, M. R. A., Siegbahn, P. E. M. & Crabtree, R. H. A mechanism from quantum chemical studies for methane formation in methanogenesis. J. Am. Chem. Soc. 124, 4039–4049 (2002).

    CAS  PubMed  Google Scholar 

  25. 25.

    Wongnate, T. et al. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kaster, A. K., Moll, J., Parey, K. & Thauer, R. K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl Acad. Sci. USA 108, 2981–2986 (2011).

    CAS  PubMed  Google Scholar 

  27. 27.

    Setzke, E., Hedderich, R., Heiden, S. & Thauer, R. K. H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur. J. Biochem. 220, 139–148 (1994).

    CAS  PubMed  Google Scholar 

  28. 28.

    Watanabe, T. et al. The bacterial [Fe]-hydrogenase paralog HmdII uses tetrahydrofolate derivatives as substrates. Angew. Chem. Int. Ed. 58, 3506–3510 (2019).

    CAS  Google Scholar 

  29. 29.

    Hiromoto, T. et al. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett. 583, 585–590 (2009).

    CAS  PubMed  Google Scholar 

  30. 30.

    Shima, S. et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321, 572–575 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Huang, G. F. et al. The atomic-resolution crystal structure of activated [Fe]-hydrogenase. Nat. Catal. 2, 537–543 (2019).

    CAS  Google Scholar 

  32. 32.

    Shima, S. et al. Evidence for acyl–iron ligation in the active site of [Fe]-hydrogenase provided by mass spectrometry and infrared spectroscopy. Dalton Trans. 41, 767–771 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Shima, S. et al. Reconstitution of [Fe]-hydrogenase using model complexes. Nat. Chem. 7, 995–1002 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lyon, E. J. et al. UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. The enzyme contains functional iron after all. Eur. J. Biochem. 271, 195–204 (2004).

    CAS  PubMed  Google Scholar 

  35. 35.

    Wagner, T., Huang, G. F., Ermler, U. & Shima, S. How [Fe]-hydrogenase from Methanothermobacter is protected against light and oxidative stress. Angew. Chem. Int. Ed. 130, 15276–15279 (2018).

    Google Scholar 

  36. 36.

    Hiromoto, T., Warkentin, E., Moll, J., Ermler, U. & Shima, S. The crystal structure of an [Fe]-hydrogenase–substrate complex reveals the framework for H2 activation. Angew. Chem. Int. Ed. 48, 6457–6460 (2009).

    CAS  Google Scholar 

  37. 37.

    Tamura, H. et al. Crystal structures of [Fe]-hydrogenase in complex with inhibitory isocyanides: implications for the H2-activation site. Angew. Chem. Int. Ed. 52, 9656–9659 (2013).

    CAS  Google Scholar 

  38. 38.

    Dey, A. Density functional theory calculations on the mononuclear non-heme iron active site of Hmd hydrogenase: role of the internal ligands in tuning external ligand binding and driving H2 heterolysis. J. Am. Chem. Soc. 132, 13892–13901 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Berkessel, A. Activation of dihydrogen without transition metals. Curr. Opin. Chem. Biol. 5, 486–490 (2001).

    CAS  PubMed  Google Scholar 

  40. 40.

    Berkessel, A. & Thauer, R. K. On the mechanism of catalysis by a metal-free hydrogenase from methanogenic archaea: enzymatic transformation of H2 without a metal and its analogy to the chemistry of alkanes in superacidic solution. Angew. Chem. Int. Ed. 34, 2247–2250 (1995).

    CAS  Google Scholar 

  41. 41.

    Shomura, Y. et al. Structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase. Science 357, 928–932 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Mills, D. J., Vitt, S., Strauss, M., Shima, S. & Vonck, J. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Elife 2, e00218 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Evans, R. M. et al. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat. Chem. Biol. 12, 46–50 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015).

    PubMed  Google Scholar 

  47. 47.

    Ogata, H. et al. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat. Commun. 6, 7890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Winkler, M. et al. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat. Commun. 8, 16115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Reijerse, E. J. et al. Direct observation of an iron-bound terminal hydride in [FeFe]-hydrogenase by nuclear resonance vibrational spectroscopy. J. Am. Chem. Soc. 139, 4306–4309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Huang, G. et al. Dioxygen sensitivity of [Fe]-hydrogenase in the presence of reducing substrates. Angew. Chem. Int. Ed. 57, 4917–4920 (2018).

    CAS  Google Scholar 

  51. 51.

    Korbas, M. et al. The iron–sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J. Biol. Chem. 281, 30804–30813 (2006).

    CAS  PubMed  Google Scholar 

  52. 52.

    Lyon, E. J. et al. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron–sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126, 14239–14248 (2004).

    CAS  PubMed  Google Scholar 

  53. 53.

    Shima, S., Lyon, E. J., Thauer, R. K., Mienert, B. & Bill, E. Mössbauer studies of the iron–sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J. Am. Chem. Soc. 127, 10430–10435 (2005).

    CAS  PubMed  Google Scholar 

  54. 54.

    Guo, Y. S. et al. Characterization of the Fe site in iron–sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg. Chem. 47, 3969–3977 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chen, D., Scopelliti, R. & Hu, X. [Fe]-hydrogenase models featuring acylmethylpyridinyl ligands. Angew. Chem. Int. Ed. 49, 7512–7515 (2010).

    CAS  Google Scholar 

  56. 56.

    Chen, D., Ahrens-Botzong, A., Schünemann, V., Scopelliti, R. & Hu, X. Synthesis and characterization of a series of model complexes of the active site of [Fe]-hydrogenase (Hmd). Inorg. Chem. 50, 5249–5257 (2011).

    CAS  PubMed  Google Scholar 

  57. 57.

    Chen, D., Scopelliti, R. & Hu, X. Synthesis and reactivity of iron acyl complexes modeling the active site of [Fe]-hydrogenase. J. Am. Chem. Soc. 132, 928–929 (2010).

    CAS  PubMed  Google Scholar 

  58. 58.

    Chen, D., Scopelliti, R. & Hu, X. A five-coordinate iron center in the active site of [Fe]-hydrogenase: hints from a model study. Angew. Chem. Int. Ed. 50, 5671–5673 (2011).

    CAS  Google Scholar 

  59. 59.

    Chen, D., Scopelliti, R. & Hu, X. Reversible protonation of a thiolate ligand in an [Fe]-hydrogenase model complex. Angew. Chem. Int. Ed. 51, 1919–1921 (2012).

    CAS  Google Scholar 

  60. 60.

    Hu, B., Chen, D. & Hu, X. A pyridinol acyl cofactor in the active site of [Fe]-hydrogenase evidenced by the reactivity of model complexes. Chem. Eur. J. 18, 11528–11530 (2012).

    CAS  PubMed  Google Scholar 

  61. 61.

    Obrist, B. V. et al. An iron carbonyl pyridonate complex related to the active site of the [Fe]-hydrogenase (Hmd). Inorg. Chem. 48, 3514–3516 (2009).

    CAS  PubMed  Google Scholar 

  62. 62.

    Schultz, K. M., Chen, D. & Hu, X. [Fe]-hydrogenase and models that contain iron–acyl ligation. Chem. Asian J. 8, 1068–1075 (2013).

    CAS  PubMed  Google Scholar 

  63. 63.

    Xu, T. et al. A functional model of [Fe]-hydrogenase. J. Am. Chem. Soc. 138, 3270–3273 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Liu, T. B. et al. Analysis of a pentacoordinate iron dicarbonyl as synthetic analogue of the Hmd or mono-iron hydrogenase active site. Chem. Eur. J. 16, 3083–3089 (2010).

    CAS  PubMed  Google Scholar 

  65. 65.

    Royer, A. M., Rauchfuss, T. B. & Gray, D. L. Oxidative addition of thioesters to iron(0): active-site models for Hmd, nature’s third hydrogenase. Organometallics 28, 3618–3620 (2009).

    CAS  Google Scholar 

  66. 66.

    Royer, A. M., Rauchfuss, T. B. & Wilson, S. R. Coordination chemistry of a model for the GP cofactor in the Hmd hydrogenase: hydrogen-bonding and hydrogen-transfer catalysis. Inorg. Chem. 47, 395–397 (2008).

    CAS  PubMed  Google Scholar 

  67. 67.

    Royer, A. M., Salomone-Stagni, M., Rauchfuss, T. B. & Meyer-Klaucke, W. Iron acyl thiolato carbonyls: structural models for the active site of the [Fe]-hydrogenase (Hmd). J. Am. Chem. Soc. 132, 16997–17003 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Turrell, P. J., Wright, J. A., Peck, J. N. T., Oganesyan, V. S. & Pickett, C. J. The third hydrogenase: a ferracyclic carbamoyl with close structural analogy to the active site of Hmd. Angew. Chem. Int. Ed. 49, 7508–7511 (2010).

    CAS  Google Scholar 

  69. 69.

    Wang, X. et al. The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chem. Commun. 30, 3555–3557 (2008).

    Google Scholar 

  70. 70.

    Durgaprasad, G., Xie, Z.-L. & Rose, M. J. Iron hydride detection and intramolecular hydride transfer in a synthetic model of mono-iron hydrogenase with a CNS chelate. Inorg. Chem. 55, 386–389 (2016).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kerns, S. A., Magtaan, A.-C., Vong, P. R. & Rose, M. J. Functional hydride transfer by a thiolate-containing model of mono-iron hydrogenase featuring an anthracene scaffold. Angew. Chem. Int. Ed. 57, 2855–2858 (2018).

    CAS  Google Scholar 

  72. 72.

    Manes, T. A. & Rose, M. J. Rigid scaffolds for the design of molecular catalysts and biomimetic active sites: a case study of anthracene-based ligands for modeling mono-iron hydrogenase (Hmd). Coord. Chem. Rev. 353, 295–308 (2017).

    CAS  Google Scholar 

  73. 73.

    Muthiah, K. A. T. et al. Mononuclear iron(II) dicarbonyls derived from NNS ligands — structural models related to a “pre-acyl” active site of mono-iron (Hmd) hydrogenase. Eur. J. Inorg. Chem. 2015, 1675–1691 (2015).

    CAS  Google Scholar 

  74. 74.

    Seo, J., Manes, T. A. & Rose, M. J. Structural and functional synthetic model of mono-iron hydrogenase featuring an anthracene scaffold. Nat. Chem. 9, 552–557 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Xie, Z.-L., Durgaprasad, G., Ali, A. K. & Rose, M. J. Substitution reactions of iron(II) carbamoyl–thioether complexes related to mono-iron hydrogenase. Dalton Trans. 46, 10814–10829 (2017).

    CAS  PubMed  Google Scholar 

  76. 76.

    Xie, Z.-L., Pennington, D. L., Boucher, D. G., Lo, J. & Rose, M. J. Effects of thiolate ligation in monoiron hydrogenase (Hmd): stability of the {Fe(CO)2}2+ core with NNS ligands. Inorg. Chem. 57, 10028–10039 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Song, L.-C. et al. Synthesis, structural characterization, and some properties of 2-acylmethyl-6-ester group-difunctionalized pyridine-containing iron complexes related to the active site of [Fe]-hydrogenase. Dalton Trans. 43, 8062–8071 (2014).

    CAS  PubMed  Google Scholar 

  78. 78.

    von der Höh, A. & Berkessel, A. Insight into the mechanism of dihydrogen heterolysis at cyclopentadienone iron complexes and subsequent C=X hydrogenation. ChemCatChem 3, 861–867 (2011).

    Google Scholar 

  79. 79.

    Casey, C. P. & Guan, H. An efficient and chemoselective iron catalyst for the hydrogenation of ketones. J. Am. Chem. Soc. 129, 5816–5817 (2007).

    CAS  PubMed  Google Scholar 

  80. 80.

    Barik, C. K., Ganguly, R., Li, Y. & Leong, W. K. Structural mimics of the [Fe]-hydrogenase: a complete set for group VIII metals. Inorg. Chem. 57, 7113–7120 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Pan, H.-J. et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11, 669–675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Max Planck Society (to S.S., T.W. and U.E.) and the Deutsche Forschungsgemeinschaft (Iron-Sulfur for Life: SH 87/1-1, to S.S.).

Author information

Affiliations

Authors

Contributions

S.S. contributed to writing a draft and editing of the manuscript. G.H. contributed to drawing the figures. All authors contributed to discussing, writing and reviewing the manuscript before submission.

Corresponding author

Correspondence to Seigo Shima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Wagner, T., Ermler, U. et al. Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nat Rev Chem 4, 213–221 (2020). https://doi.org/10.1038/s41570-020-0167-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing