Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour

Abstract

A hollow multishell structure (HoMS) is an assembly of multiple shells with voids between the individual shells. Accessible through nanopores, these voids represent separate reaction environments in the same assembly, such that HoMSs have unique properties that are applicable to diverse fields. These applications have mostly exploited the large specific surface area, high loading capacity and/or buffering effect of HoMSs, benefiting the mass/energy transmission and effective surface area. In comparison, the temporal–spatial ordering of reactions, as well as the dynamic smart behaviour of HoMSs, have been less explored but are also emphasized in this Perspective. We first describe the synthesis of HoMSs and the thermodynamic and kinetic aspects of their formation. We then consider the composition and structural functionalization of each shell within a HoMS and then highlight how these enable applications based on temporal–spatial ordering and dynamic smart behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The key parameters of HoMSs and how they can be exploited in new applications.
Fig. 2: Targeted HoMS synthesis involves a template undergoing enrichment with a metal salt.
Fig. 3: A salt-enriched template can be degraded to afford a HoMS.
Fig. 4: Compositional and structural diversity of a HoMS.
Fig. 5: A HoMS can exact temporal–spatial control, a property that forms the basis of many applications.
Fig. 6: A dynamic smart HoMS in drug delivery and molecular separation.

References

  1. 1.

    Wang, J. Y., Wan, J. & Wang, D. Hollow multishelled structures for promising applications: understanding the structure–performance correlation. Acc. Chem. Res. 52, 2169–2178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lai, X., Halpert, J. E. & Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ. Sci. 5, 5604–5618 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    Wang, X., Feng, J., Bai, Y., Zhang, Q. & Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016).

    Article  CAS  Google Scholar 

  4. 4.

    Hu, F., Wu, S. & Sun, Y. Hollow-structured materials for thermal insulation. Adv. Mater. 31, 1801001 (2019).

    Article  CAS  Google Scholar 

  5. 5.

    Sano, N. Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Mater. Chem. Phys. 88, 235–238 (2004).

    Article  CAS  Google Scholar 

  6. 6.

    Xu, H. & Wang, W. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489–1492 (2007).

    Article  CAS  Google Scholar 

  7. 7.

    Shen, J. et al. Synthesis of multi-shell carbon microspheres. Carbon 44, 190–193 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    Zhang, H. et al. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766–2771 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Yang, H. X., Qian, J. F., Chen, Z. X., Ai, X. P. & Cao, Y. L. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J. Phys. Chem. C 111, 14067–14071 (2007).

    Article  CAS  Google Scholar 

  10. 10.

    Sun, X. & Li, Y. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 43, 3827–3831 (2004).

    Article  CAS  Google Scholar 

  11. 11.

    Cao, A.-M., Hu, J.-S., Liang, H.-P. & Wan, L.-J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44, 4391–4395 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    Wu, C., Zhang, X., Ning, B., Yang, J. & Xie, Y. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy. Inorg. Chem. 48, 6044–6054 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    Li, Z. et al. General synthesis of homogeneous hollow core–shell ferrite microspheres. J. Phys. Chem. C 113, 2792–2797 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    Mao, D., Wan, J. W., Wang, J. Y. & Wang, D. Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures. Adv. Mater. 31, 1802874 (2019).

    Article  CAS  Google Scholar 

  15. 15.

    Wang, J. et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 1, 16050 (2016).

    Article  CAS  Google Scholar 

  16. 16.

    Li, D. et al. Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries. Inorg. Chem. Front. 5, 535–540 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Feng, J., Guo, H., Wang, S., Zhao, Y. & Ma, X. Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance. Chem. Eng. J. 321, 401–411 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Gao, M. Y., Zhao, Y. H., Zeng, S. H. & Su, H. Q. Multishell hollow CeO2/CuO microbox catalysts for preferential CO oxidation in H2-rich stream. Catal. Commun. 72, 105–110 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    Zong, L. B. et al. Composite yttrium-carbonaceous spheres templated multi-shell YVO4 hollow spheres with superior upconversion photoluminescence. Adv. Mater. 29, 1604377 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Ma, X. M. et al. Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium-ion batteries. Chem. Eng. J. 323, 252–259 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Zhang, G. Q. et al. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. Int. Ed. 52, 8643–8647 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Lin, H. B. et al. Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries. J. Mater. Chem. A 2, 14189–14194 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Jiao, C. et al. Triple-shelled manganese–cobalt oxide hollow dodecahedra with highly enhanced performance for rechargeable alkaline batteries. Angew. Chem. Int. Ed. 58, 996–1001 (2019).

    Article  CAS  Google Scholar 

  24. 24.

    Hoshina, Y., Lee, H. & Miura, Y. Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polym. J. 46, 537–545 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Layre, E., de Jong, A. & Moody, D. Human T cells use CD1 and MR1 to recognize lipids and small molecules. Curr. Opin. Chem. Biol. 23, 31–38 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li, Y. & Shi, J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26, 3176–3205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Laidler, K. J. The development of the Arrhenius equation. J. Chem. Educ. 61, 494–498 (1984).

    Article  CAS  Google Scholar 

  28. 28.

    Wang, J. et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52, 6417–6420 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Pyle, J. R. & Chen, J. Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging. Beilstein J. Nanotechnol. 8, 2296–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Xu, S. M. et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7, 632–637 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    Wang, J. et al. pH-Regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 1, 1400011 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    Ren, H. et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 14, 6679–6684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Dong, Z. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 26, 905–909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wang, Y., He, J., Liu, C., Chong, W. H. & Chen, H. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem. Int. Ed. 54, 2022–2051 (2015).

    Article  CAS  Google Scholar 

  35. 35.

    Kalikmanov V. I. in Nucleation Theory. Lecture Notes in Physics Vol. 860, 17–41 (Springer, 2013).

  36. 36.

    Smeets, P. J. M. et al. A classical view on nonclassical nucleation. Proc. Natl Acad. Sci. USA 114, E7882–E7890 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  CAS  Google Scholar 

  38. 38.

    Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Dong, Z. et al. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Herbst, J. F., Croat, J. J., Pinkerton, F. E. & Yelon, W. B. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys. Rev. B 29, 4176–4178 (1984).

    Article  CAS  Google Scholar 

  41. 41.

    Sinclair, D. C. & West, A. R. Electrical properties of a LiTaO3 single crystal. Phys. Rev. B 39, 13486 (1989).

    Article  CAS  Google Scholar 

  42. 42.

    Wang, L., Wan, J., Zhao, Y., Yang, N. & Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 141, 2238–2241 (2019).

    Article  CAS  Google Scholar 

  43. 43.

    Liu, X.-Y. et al. Using a multi-shelled hollow metal–organic framework as a host to switch the guest-to-host and guest-to-guest interactions. Angew. Chem. Int. Ed. 57, 2110–2114 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    Botterhuis, N. E., Sun, Q. Y., Magusin, P. C. M. M., van Santen, R. A. & Sommerdijk, N. A. J. M. Hollow silica spheres with an ordered pore structure and their application in controlled release studies. Chem. Eur. J. 12, 1448–1456 (2006).

    Article  CAS  Google Scholar 

  45. 45.

    Wang, C.-A., Li, S. & An, L. Hierarchically porous Co3O4 hollow spheres with tunable pore structure and enhanced catalytic activity. Chem. Commun. 49, 7427–7429 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1304–1307 (2006).

    Article  CAS  Google Scholar 

  47. 47.

    Li, Y. et al. Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett. 3, 609–612 (2003).

    Article  CAS  Google Scholar 

  48. 48.

    Li, Y., Sun, J., Yang, Y., Ruan, M. & Shi, J. Controlled synthesis of hollow mesoporous aluminosilicate spheres with ordered cubic (Ia \(\bar{3}\) d) symmetry. Stud. Surf. Sci. Catal. 170, 552–557 (2007).

    Article  Google Scholar 

  49. 49.

    Li, J. et al. Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures. Langmuir 26, 12267–12272 (2010).

    Article  CAS  Google Scholar 

  50. 50.

    Niu, D., Ma, Z., Li, Y. & Shi, J. Synthesis of core−shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 132, 15144–15147 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    Lee, K., Zhang, L., Yi, Y., Wang, X. & Yu, Y. Rupture of lipid membranes induced by amphiphilic Janus nanoparticles. ACS Nano 12, 3646–3657 (2018).

    Article  CAS  Google Scholar 

  52. 52.

    McCann, J. T., Li, D. & Xia, Y. Electrospinning of nanofibers with core–sheath, hollow, or porous structures. J. Mater. Chem. 15, 735–738 (2005).

    Article  CAS  Google Scholar 

  53. 53.

    Tan, X., Wang, Z., Liu, H. & Liu, S. Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membranes by surface modifications. J. Membr. Sci. 324, 128–135 (2008).

    Article  CAS  Google Scholar 

  54. 54.

    Low, J., Cheng, B. & Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Meng, H. & Hu, J. A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J. Intell. Mater. Syst. Struct. 21, 859–885 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    Cao, M., Shen, Y., Wang, Y., Wang., X. & Li, D. Self-assembly of short elastin-like amphiphilic peptides: effects of temperature, molecular hydrophobicity and charge distribution. Molecules 24, 202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Murugesu, M., Clerac, R., Wernsdorfer, W., Anson, C. E. & Powell, A. K. Hierarchical assembly of {Fe13} oxygen-bridged clusters into a close-packed superstructure. Angew. Chem. Int. Ed. 44, 6678–6682 (2005).

    Article  CAS  Google Scholar 

  58. 58.

    De Sousa, F. B. et al. Superstructure based on β-CD self-assembly induced by a small guest molecule. Phys. Chem. Chem. Phys. 14, 1934–1944 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lien, D.-H. et al. Resonance-enhanced absorption in hollow nanoshell spheres with omnidirectional detection and high responsivity and speed. Adv. Mater. 30, 1801972 (2018).

    Article  CAS  Google Scholar 

  60. 60.

    Gao, J., Zhang, B., Zhang, X. & Xu, B. Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew. Chem. Int. Ed. 45, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  61. 61.

    Gao, T., Jelle, B. P., Sandberg, L. I. C. & Gustavsen, A. Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment. ACS Appl. Mater. Interfaces 5, 761–767 (2013).

    Article  CAS  Google Scholar 

  62. 62.

    Hu, F., Wu, S. & Sun, Y. Hollow-structured materials for thermal insulation. Adv. Mater. 31, 1801001 (2019).

    Article  CAS  Google Scholar 

  63. 63.

    Li, S. et al. The Mn-promoted double-shelled CaCO3 hollow microspheres as high efficient CO2 adsorbents. Chem. Eng. J. 372, 53–64 (2019).

    Article  CAS  Google Scholar 

  64. 64.

    Enders, D., Hüttl, M., Grondal, C. & Raabe, G. Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441, 861–863 (2006).

    Article  CAS  Google Scholar 

  65. 65.

    Wang, H. et al. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 4, eaat2816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Limvorapitux, R., Chou, L., Young, A., Tsung, C.-K. & Nguyen, S. T. Coupling molecular and nanoparticle catalysts on single metal–organic framework microcrystals for the tandem reaction of H2O2 generation and selective alkene oxidation. ACS Catal. 7, 6691–6698 (2017).

    Article  CAS  Google Scholar 

  67. 67.

    Freakley, S. J. et al. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2 catalyst in a flow reactor. ACS Catal. 3, 487–501 (2013).

    Article  CAS  Google Scholar 

  68. 68.

    Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. & Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 248, 3–9 (2015).

    Article  CAS  Google Scholar 

  69. 69.

    Maayan, G. & Neumann, R. Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. Chem. Commun. 36, 4595–4597 (2005).

    Article  CAS  Google Scholar 

  70. 70.

    Grosso-Giordano, N. A. et al. Outer-sphere control of catalysis on surfaces: a comparative study of Ti(iv) single-sites grafted on amorphous versus crystalline silicates for alkene epoxidation. J. Am. Chem. Soc. 140, 4956–4960 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Grosso-Giordano, N. et al. Dynamic reorganization and confinement of TiIV active sites controls olefin epoxidation catalysis on two-dimensional zeotypes. J. Am. Chem. Soc. 141, 7090–7106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Zhang, K., Ma, M., Li, P., Wang, D. H. & Park, J. H. Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv. Energy Mater. 6, 1600602 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Boopathy, A. V. et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc. Natl Acad. Sci. USA 116, 16473–16478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Qiu, M. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl Acad. Sci. USA 115, 501–506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Liu, Y. et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat. Med. 17, 1594–1601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Schett, G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur. J. Clin. Invest. 41, 1361–1366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Verma, A. H. et al. Curcumin releasing eggshell derived carbonated apatite nanocarriers for combined anti-cancer, anti-inflammatory and bone regenerative therapy. J. Nanosci. Nanotechnol. 19, 6872–6880 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Jeżowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Li, B. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 (2018).

    Article  CAS  Google Scholar 

  81. 81.

    Fan, L., Jin, B., Zhang, S., Song, C. & Li, Q. Stimuli-free programmable drug release for combination chemo-therapy. Nanoscale 8, 12553–12559 (2016).

    Article  CAS  Google Scholar 

  82. 82.

    Zhu, X.-M. et al. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity. Nanoscale 4, 5744–5754 (2012).

    Article  CAS  Google Scholar 

  83. 83.

    Ma, L. Y., Wang, H. Y., Xie, H. & Xu, L. X. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 1865–1872 (2004).

    Article  CAS  Google Scholar 

  84. 84.

    Liu, L. et al. Fluorescent and colorimetric detection of pH by a rhodamine-based probe. Sensor. Actuat. B-Chem. 194, 498–502 (2014).

    Article  CAS  Google Scholar 

  85. 85.

    Yu, X., Wang, Z., Jiang, Y., Shi, F. & Zhang, X. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Adv. Mater. 17, 1289–1293 (2005).

    Article  CAS  Google Scholar 

  86. 86.

    Chen, X., Gao, J., Song, B., Smet, M. & Zhang, X. Stimuli-responsive wettability of nonplanar substrates: pH-controlled floatation and supporting force. Langmuir 26, 104–108 (2010).

    Article  CAS  Google Scholar 

  87. 87.

    Zhu, Y. et al. Chemical dual-responsive wettability of superhydrophobic PANI-PAN coaxial nanofibers. Macromol. Rapid Commun. 28, 1135–1141 (2007).

    Article  CAS  Google Scholar 

  88. 88.

    Wang, S., Liu, K., Yao, X. & Jiang, L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115, 8230–8293 (2015).

    Article  CAS  Google Scholar 

  89. 89.

    Tannock, I. F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–4384 (1989).

    CAS  PubMed  Google Scholar 

  90. 90.

    Fulda, S., Galluzzi, L. & Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Disc. 9, 447–464 (2010).

    Article  CAS  Google Scholar 

  91. 91.

    Chu, Z., Huang, Y., Tao, Q. & Li, Q. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3, 3291–3299 (2011).

    Article  CAS  Google Scholar 

  92. 92.

    Gogoi, A. et al. Enantiomeric recognition and separation by chiral nanoparticles. Molecules 24, 1007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wischerhoff, E., Zacher, T., Laschewsky, A. & Rekaï, E. D. Direct observation of the lower critical solution temperature of surface-attached thermo-responsive hydrogels by surface plasmon resonance. Angew. Chem. Int. Ed. 39, 4602–4604 (2000).

    Article  CAS  Google Scholar 

  94. 94.

    Fu, Q. et al. Reversible control of free energy and topography of nanostructured surface. J. Am. Chem. Soc. 126, 8904–8905 (2004).

    Article  CAS  Google Scholar 

  95. 95.

    Zhao, T., Nie, F. & Jiang, L. Precise control of wettability from LCST tunable surface. J. Mater. Chem. 20, 2176–2181 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 21590795, 21820102002 and 51802306) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant no. YZ201623).

Author information

Affiliations

Authors

Contributions

D.W. conceived the idea and supervised the research. Under the instruction of D.W., J.Y.W., J.W.W and N.Y. drafted the manuscript. Q.L. gave important advice about dynamic smart materials. D.W., J.Y.W., J.W.W., N.Y and Q.L. revised and fixed the manuscript.

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wan, J., Yang, N. et al. Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nat Rev Chem 4, 159–168 (2020). https://doi.org/10.1038/s41570-020-0161-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing