Prospects of organic electrode materials for practical lithium batteries

Abstract

Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The development of organic electrode materials for batteries.
Fig. 2: Representative organic electrode materials for Li batteries.
Fig. 3: Configurations and key parameters for organic electrode materials in Li batteries.
Fig. 4: Energy density, power density and cycle life of selected organic and inorganic electrode materials in Li batteries.
Fig. 5: Gravimetric density and electronic conductivity of selected organic and inorganic electrode materials.
Fig. 6: Performance and cost estimation of Li batteries with selected organic and inorganic electrode materials.

References

  1. 1.

    Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018). This article introduces the development of the lithium-ion battery, the basis of the 2019 Nobel Prize in Chemistry.

    Article  Google Scholar 

  2. 2.

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012).

    Article  CAS  Google Scholar 

  4. 4.

    Van Noorden, R. The rechargeable revolution: a better battery. Nature 507, 26–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article  CAS  Google Scholar 

  6. 6.

    Ramström, O. Lithium-ion batteries. The Nobel Prize https://www.nobelprize.org/uploads/2019/10/advanced-chemistryprize2019.pdf (2019).

  7. 7.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhang, K. et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article  Google Scholar 

  10. 10.

    Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article  Google Scholar 

  12. 12.

    Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008). This article paints a bright future for organic electrode materials in rechargeable batteries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Friebe, C., Lex-Balducci, A. & Schubert, U. S. Sustainable energy storage: recent trends and developments toward fully organic batteries. ChemSusChem 12, 4093–4115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang, S., Li, F., Easley, A. D. & Lutkenhaus, J. L. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Xie, J. & Zhang, Q. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15, 1805061 (2019).

    Article  CAS  Google Scholar 

  16. 16.

    Kim, D. J. et al. Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2019).

    Article  CAS  Google Scholar 

  17. 17.

    Han, C. et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J. Mater. Chem. A 7, 23378–23415 (2019).

    Article  CAS  Google Scholar 

  18. 18.

    Sato, K. et al. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140, 1049–1056 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Miroshnikov, M. et al. Made from henna! A fast-charging, high-capacity, and recyclable tetrakislawsone cathode material for lithium ion batteries. ACS Sustain. Chem. Eng. 7, 13836–13844 (2019).

    Article  CAS  Google Scholar 

  20. 20.

    Kim, J. et al. Biological nicotinamide cofactor as a redox-active motif for reversible electrochemical energy storage. Angew. Chem. Int. Ed. 58, 16764–16769 (2019).

    Article  CAS  Google Scholar 

  21. 21.

    Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Williams, D. I., Byrne, J. J. & Driscoll, J. S. A high energy density lithium/dichloroisocyanuric acid battery system. J. Electrochem. Soc. 116, 2–4 (1969). The first report of carbonyl compounds applied to lithium batteries.

    Article  CAS  Google Scholar 

  23. 23.

    Alt, H., Binder, H., Köhling, A. & Sandstede, G. Investigation into the use of quinone compounds for battery cathodes. Electrochim. Acta 17, 873–887 (1972).

    Article  CAS  Google Scholar 

  24. 24.

    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).

    Article  Google Scholar 

  25. 25.

    Ivory, D. M. et al. Highly conducting charge-transfer complexes of poly(p-phenylene). J. Chem. Phys. 71, 1506–1507 (1979).

    Article  CAS  Google Scholar 

  26. 26.

    MacInnes, D. Jr. et al. Organic batteries: reversible n- and p-type electrochemical doping of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 7, 317–319 (1981).

    Article  Google Scholar 

  27. 27.

    Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jia, X., Ge, Y., Shao, L., Wang, C. & Wallace, G. G. Tunable conducting polymers: toward sustainable and versatile batteries. ACS Sustain. Chem. Eng. 7, 14321–14340 (2019).

    Article  CAS  Google Scholar 

  29. 29.

    Matsunaga, T., Daifuku, H., Nakajima, T. & Kawagoe, T. Development of polyaniline–lithium secondary battery. Polym. Adv. Technol. 1, 33–39 (1990).

    Article  CAS  Google Scholar 

  30. 30.

    Visco, S. J. & DeJonghe, L. C. Ionic conductivity of organosulfur melts for advanced storage electrodes. J. Electrochem. Soc. 135, 2905–2909 (1988).

    Article  CAS  Google Scholar 

  31. 31.

    Wang, D.-Y., Guo, W. & Fu, Y. Organosulfides: an emerging class of cathode materials for rechargeable lithium batteries. Acc. Chem. Res. 52, 2290–2300 (2019). A review of recent progress on developing organosulfur compounds for lithium batteries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tobishima, S.-i., Yamaki, J.-i. & Yamaji, A. Cathode characteristics of organic electron acceptors for lithium batteries. J. Electrochem. Soc. 131, 57–63 (1984).

    Article  CAS  Google Scholar 

  33. 33.

    Nakahara, K. et al. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351–354 (2002). The first report describing the feasibility of organic radicals as electrode materials for lithium batteries.

    Article  CAS  Google Scholar 

  34. 34.

    Suga, T., Pu, Y.-J., Oyaizu, K. & Nishide, H. Electron-transfer kinetics of nitroxide radicals as an electrode-active material. Bull. Chem. Soc. Jpn. 77, 2203–2204 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    Liu, M., Visco, S. J. & De Jonghe, L. C. Electrode kinetics of organodisulfide cathodes for storage batteries. J. Electrochem. Soc. 137, 750–759 (1990).

    Article  CAS  Google Scholar 

  36. 36.

    Xiang, J. et al. A novel coordination polymer as positive electrode material for lithium ion battery. Cryst. Growth Des. 8, 280–282 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    Armand, M. et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lu, Y. et al. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 58, 7020–7024 (2019).

    Article  CAS  Google Scholar 

  39. 39.

    Iordache, A. et al. Perylene-based all-organic redox battery with excellent cycling stability. ACS Appl. Mater. Interfaces 8, 22762–22767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bhargav, A., Bell, M. E., Karty, J., Cui, Y. & Fu, Y. A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries. ACS Appl. Mater. Interfaces 10, 21084–21090 (2018).

    Article  CAS  Google Scholar 

  41. 41.

    Hansen, K.-A. et al. New spin on organic radical batteries — an isoindoline nitroxide-based high-voltage cathode material. ACS Appl. Mater. Interfaces 10, 7982–7988 (2018).

    Article  CAS  Google Scholar 

  42. 42.

    Matsunaga, T., Kubota, T., Sugimoto, T. & Satoh, M. High-performance lithium secondary batteries using cathode active materials of triquinoxalinylenes exhibiting six electron migration. Chem. Lett. 40, 750–752 (2011).

    Article  CAS  Google Scholar 

  43. 43.

    Han, X., Qing, G., Sun, J. & Sun, T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem. Int. Ed. 51, 5147–5151 (2012).

    Article  CAS  Google Scholar 

  44. 44.

    Renault, S. et al. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem. Mater. 28, 1920–1926 (2016).

    Article  CAS  Google Scholar 

  45. 45.

    Luo, C. et al. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc. Natl Acad. Sci. USA 115, 2004–2009 (2018).

    Article  CAS  Google Scholar 

  46. 46.

    Wu, Y. et al. A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. Chem. Commun. 55, 10856–10859 (2019).

    Article  CAS  Google Scholar 

  47. 47.

    Lei, K. et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10, 552–557 (2017).

    Article  CAS  Google Scholar 

  48. 48.

    Rodríguez-Pérez, I. A. et al. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J. Am. Chem. Soc. 139, 13031–13037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dawut, G., Lu, Y., Miao, L. & Chen, J. High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorg. Chem. Front. 5, 1391–1396 (2018).

    Article  CAS  Google Scholar 

  50. 50.

    Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R. & Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30, 1705644 (2018).

    Article  CAS  Google Scholar 

  51. 51.

    Prabakar, S. J. R. et al. Graphite as a long-life Ca2+-intercalation anode and its implementation for rocking-chair type calcium-ion batteries. Adv. Sci. 6, 1902129 (2019).

    Article  CAS  Google Scholar 

  52. 52.

    Lei, Z. et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 9, 576 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Song, Z. & Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).

    Article  CAS  Google Scholar 

  54. 54.

    Wain, A. J. et al. Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes. J. Phys. Chem. B 109, 3971–3978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Acker, P., Rzesny, L., Marchiori, C. F. N., Araujo, C. M. & Esser, B. π-Conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials. Adv. Funct. Mater. 29, 1906436 (2019).

    Article  CAS  Google Scholar 

  56. 56.

    Huang, W. et al. Synthesis and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.11.020 (2019).

    Article  Google Scholar 

  57. 57.

    Han, X., Chang, C., Yuan, L., Sun, T. & Sun, J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007).

    Article  CAS  Google Scholar 

  58. 58.

    Luo, W., Allen, M., Raju, V. & Ji, X. An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 4, 1400554 (2014).

    Article  CAS  Google Scholar 

  59. 59.

    Chen, Y. et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015).

    Article  CAS  Google Scholar 

  60. 60.

    Meng, J. et al. Advances in structure and property optimizations of battery electrode materials. Joule 1, 522–547 (2017).

    Article  CAS  Google Scholar 

  61. 61.

    Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    Article  CAS  Google Scholar 

  62. 62.

    Vizintin, A. et al. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Commun. 9, 661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kim, H. et al. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 5, 3086–3092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wu, X. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 1, e1500330 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).

    Article  CAS  Google Scholar 

  66. 66.

    Wang, X. et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. Int. Ed. 56, 2909–2913 (2017).

    Article  CAS  Google Scholar 

  67. 67.

    Wu, X. et al. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026–13030 (2017).

    Article  CAS  Google Scholar 

  68. 68.

    Lin, Z., Liu, T., Ai, X. & Liang, C. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Cao, Y., Li, M., Lu, J., Liu, J. & Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    Article  Google Scholar 

  71. 71.

    Bresser, D. et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382, 176–178 (2018).

    Article  CAS  Google Scholar 

  72. 72.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  73. 73.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  CAS  Google Scholar 

  74. 74.

    Pacific Northwest National Laboratory. Battery500. Pacific Northwest National Laboratory https://energystorage.pnnl.gov/battery500.asp (2019).

  75. 75.

    Nagai, T. The Japanese policy and NEDO activity for future mobility. New Energy and Industrial Technology Development Organization https://www.nedo.go.jp/content/100873093.pdf (2017).

  76. 76.

    Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Jiang, S. et al. Nafion/titanium dioxide-coated lithium anode for stable lithium–sulfur batteries. Chem. Asian J. 13, 1379–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Luo, Z. et al. A microporous covalent–organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 9443–9446 (2018).

    Article  CAS  Google Scholar 

  79. 79.

    Lu, Y., Zhang, Q. & Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 62, 533–548 (2019).

    Article  CAS  Google Scholar 

  80. 80.

    Li, T. et al. A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29, 1901730 (2019).

    Article  CAS  Google Scholar 

  81. 81.

    Sanders, M. Lithium-ion battery raw material supply and demand 2016–2025. Presented at the 17th Annual Advanced Automotive Battery Conference (2017).

  82. 82.

    Jia, X. et al. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 10, 344–352 (2014).

    Article  CAS  Google Scholar 

  83. 83.

    Deng, T. & Zhou, X. Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries. Mater. Lett. 176, 151–154 (2016).

    Article  CAS  Google Scholar 

  84. 84.

    Li, G. et al. Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew. Chem. Int. Ed. 58, 8468–8473 (2019).

    Article  CAS  Google Scholar 

  85. 85.

    Wu, J. et al. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem. Int. Ed. 54, 7354–7358 (2015).

    Article  CAS  Google Scholar 

  86. 86.

    Sun, T. et al. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Qin, J. et al. A metal-free battery with pure ionic liquid electrolyte. iScience 15, 16–27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Jia, H. et al. Core-shell nanostructured organic redox polymer cathodes with superior performance. Nano Energy 64, 103949 (2019).

    Article  CAS  Google Scholar 

  89. 89.

    Otteny, F. et al. Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking. Adv. Energy Mater. 8, 1802151 (2018).

    Article  CAS  Google Scholar 

  90. 90.

    Häupler, B. et al. Poly(exTTF): a novel redox-active polymer as active material for Li-organic batteries. Macromol. Rapid Commun. 35, 1367–1371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Cai, Y. et al. Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J. Power Sources 278, 574–581 (2015).

    Article  CAS  Google Scholar 

  92. 92.

    Lee, S. et al. Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Mater. 20, 462–469 (2019).

    Article  Google Scholar 

  93. 93.

    Dai, G. et al. Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Mater. 16, 236–242 (2019).

    Article  Google Scholar 

  94. 94.

    Kato, M., Senoo, K.-i., Yao, M. & Misaki, Y. A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4-diylidenes: a new positive electrode material for rechargeable batteries utilizing ten electron redox. J. Mater. Chem. A 2, 6747–6754 (2014).

    Article  CAS  Google Scholar 

  95. 95.

    Huang, X., Yao, Y., Liang, F. & Dai, Y. Concentration-controlled morphology of LiFePO4 crystals with an exposed (100) facet and their enhanced performance for use in lithium-ion batteries. J. Alloy. Compd. 743, 763–772 (2018).

    Article  CAS  Google Scholar 

  96. 96.

    Cho, J., Kim, Y. J. & Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000).

    Article  CAS  Google Scholar 

  97. 97.

    Ju, S. H. et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl. Mater. Interfaces 6, 2546–2552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Peng, C. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).

    Article  CAS  Google Scholar 

  99. 99.

    Liang, Y., Zhang, P., Yang, S., Tao, Z. & Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013).

    Article  CAS  Google Scholar 

  100. 100.

    Yao, M., Senoh, H., Sakai, T. & Kiyobayashi, T. 5,7,12,14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries. Int. J. Electrochem. Sci. 6, 2905–2911 (2011).

    CAS  Google Scholar 

  101. 101.

    Hong, J. et al. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Lee, M. et al. Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 26, 2558–2565 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Jing, Y., Liang, Y., Gheytani, S. & Yao, Y. Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy 37, 46–52 (2017).

    Article  CAS  Google Scholar 

  104. 104.

    Luo, Z., Liu, L., Zhao, Q., Li, F. & Chen, J. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem. Int. Ed. 56, 12561–12565 (2017).

    Article  CAS  Google Scholar 

  105. 105.

    Lee, J. & Park, M. J. Tattooing dye as a green electrode material for lithium batteries. Adv. Energy Mater. 7, 1602279 (2017).

    Article  CAS  Google Scholar 

  106. 106.

    Lee, J., Kim, H. & Park, M. J. Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem. Mater. 28, 2408–2416 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    Zhao, Q., Wang, J., Chen, C., Ma, T. & Chen, J. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res. 10, 4245–4255 (2017).

    Article  CAS  Google Scholar 

  108. 108.

    Xie, J., Wang, Z., Xu, Z. J. & Zhang, Q. Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).

    Article  CAS  Google Scholar 

  109. 109.

    Song, Z., Qian, Y., Zhang, T., Otani, M. & Zhou, H. Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2, 1500124 (2015).

    Article  CAS  Google Scholar 

  110. 110.

    Song, Z., Qian, Y., Otani, M. & Zhou, H. Stable Li–organic batteries with Nafion-based sandwich-type separators. Adv. Energy Mater. 6, 1501780 (2016).

    Article  CAS  Google Scholar 

  111. 111.

    Song, Z. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Ma, T., Zhao, Q., Wang, J., Pan, Z. & Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem. Int. Ed. 55, 6428–6432 (2016).

    Article  CAS  Google Scholar 

  113. 113.

    Zhang, K., Guo, C., Zhao, Q., Niu, Z. & Chen, J. High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode. Adv. Sci. 2, 1500018 (2015).

    Article  CAS  Google Scholar 

  114. 114.

    Duan, J. et al. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating. Electrochim. Acta 221, 14–22 (2016).

    Article  CAS  Google Scholar 

  115. 115.

    Song, Z. et al. Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12, 2205–2211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Shi, Y. et al. Understanding the electrochemical properties of naphthalene diimide: implication for stable and high-rate lithium-ion battery electrodes. Chem. Mater. 30, 3508–3517 (2018).

    Article  CAS  Google Scholar 

  117. 117.

    Lakraychi, A. E. et al. An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. J. Mater. Chem. A 6, 19182–19189 (2018). This article reports an air-stable n-type organic cathode material with lithiated form.

    Article  CAS  Google Scholar 

  118. 118.

    Liang, Y., Zhang, P. & Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4, 1330–1337 (2013).

    Article  CAS  Google Scholar 

  119. 119.

    Kwon, J. E. et al. Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. J. Mater. Chem. A 6, 3134–3140 (2018).

    Article  CAS  Google Scholar 

  120. 120.

    Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Huang, W. et al. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. 52, 9162–9166 (2013).

    Article  CAS  Google Scholar 

  122. 122.

    Senoh, H., Yao, M., Sakaebe, H., Yasuda, K. & Siroma, Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries. Electrochim. Acta 56, 10145–10150 (2011).

    Article  CAS  Google Scholar 

  123. 123.

    Wu, M. et al. Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries. Angew. Chem. Int. Ed. 55, 10027–10031 (2016).

    Article  CAS  Google Scholar 

  124. 124.

    Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. & Nishide, H. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009).

    Article  CAS  Google Scholar 

  125. 125.

    Zhang, L. et al. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31, 1903955 (2019).

    Article  CAS  Google Scholar 

  126. 126.

    Lu, Y., Zhang, Q., Li, L., Niu, Z. & Chen, J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018). This article summarizes the material-level strategies to improve the performance of organic electrode materials in metal-ion batteries.

    Article  CAS  Google Scholar 

  127. 127.

    SAE. Standard J1772: SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler (Society of Automotive Engineers, 2017).

  128. 128.

    Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). This review highlights material properties required for incorporation into fast-charging batteries.

    Article  Google Scholar 

  129. 129.

    Low-cost/fast-charge EV goals. USCAR https://www.uscar.org/guest/article_view.php?articles_id=85.

  130. 130.

    Yang, A. et al. Core-shell structured 1,4-benzoquinone@TiO2 cathode for lithium batteries. J. Energy Chem. 27, 1644–1650 (2018).

    Article  Google Scholar 

  131. 131.

    Zhao, Q. et al. Oxocarbon salts for fast rechargeable batteries. Angew. Chem. Int. Ed. 55, 12528–12532 (2016).

    Article  CAS  Google Scholar 

  132. 132.

    Teranishi, T. et al. High-rate performance of ferroelectric BaTiO3-coated LiCoO2 for Li-ion batteries. Appl. Phys. Lett. 105, 143904 (2014).

    Article  CAS  Google Scholar 

  133. 133.

    Liang, Y. et al. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015).

    Article  CAS  Google Scholar 

  134. 134.

    Mulzer, C. R. et al. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2, 667–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Wang, Y. et al. Understanding the size-dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 16, 3329–3334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Luo, C., Fan, X., Ma, Z., Gao, T. & Wang, C. Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 3, 1050–1062 (2017).

    Article  CAS  Google Scholar 

  137. 137.

    Kundu, D. et al. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30, 3874–3881 (2018).

    Article  CAS  Google Scholar 

  138. 138.

    Gu, S. et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141, 9623–9628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Iordache, A. et al. From an enhanced understanding to commercially viable electrodes: the case of PTCLi4 as sustainable organic lithium-ion anode material. Adv. Sustain. Syst. 1, 1600032 (2017). This report describes a carboxylate electrode with high active material mass loading and high areal capacity.

    Article  CAS  Google Scholar 

  140. 140.

    Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Lu, X., Zhang, N., Jahn, M., Pfleging, W. & Seifert, H. J. Improved capacity retention of SiO2-coated LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. Appl. Sci. 9, 3671 (2019).

    Article  Google Scholar 

  142. 142.

    Visco, S. J., Liu, M., Armand, M. B. & de Jonghe, L. C. Solid redox polymerization electrodes and their use in all-solid-state batteries. Mol. Cryst. Liq. Cryst. 190, 185–195 (1990).

    CAS  Google Scholar 

  143. 143.

    Yao, M., Ando, H. & Kiyobayashi, T. Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries. Energy Procedia 89, 222–230 (2016).

    Article  CAS  Google Scholar 

  144. 144.

    Hanyu, Y., Sugimoto, T., Ganbe, Y., Masuda, A. & Honma, I. Multielectron redox compounds for organic cathode quasi-solid state lithium battery. J. Electrochem. Soc. 161, A6–A9 (2014).

    Article  CAS  Google Scholar 

  145. 145.

    Ma, C., Lv, Y. & Li, H. Fundamental scientific aspects of lithium batteries (VII) — positive electrode materials. Energy Storage Sci. Technol. 3, 53–65 (2014).

    Google Scholar 

  146. 146.

    Luo, F., Chu, G., Huang, J., Sun, Y. & Li, H. Fundamental scientific aspects of lithium batteries (VIII) — anode electrode materials. Energy Storage Sci. Technol. 3, 146–163 (2014).

    Google Scholar 

  147. 147.

    Gu, S., Bai, Z., Majumder, S., Huang, B. & Chen, G. Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. J. Power Sources 429, 22–29 (2019).

    Article  CAS  Google Scholar 

  148. 148.

    Zhang, L., Cheng, F., Shi, W., Chen, J. & Cheng, P. Transition-metal triggered high-efficiency lithium ion storage via coordination interactions with redox-active croconate in one-dimensional metal–organic anode materials. ACS Appl. Mater. Interfaces 10, 6398–6406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Lin, Y. et al. An exceptionally stable functionalized metal–organic framework for lithium storage. Chem. Commun. 51, 697–699 (2015).

    Article  CAS  Google Scholar 

  150. 150.

    Zhang, H. et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6, 20564–20620 (2018).

    Article  CAS  Google Scholar 

  151. 151.

    Feng, J. K., Cao, Y. L., Ai, X. P. & Yang, H. X. Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries. J. Power Sources 177, 199–204 (2008).

    Article  CAS  Google Scholar 

  152. 152.

    Ren, L., Su, L. & Chen, X. Influence of DC conductivity of PPy anode on Li/PPy secondary batteries. J. Appl. Polym. Sci. 109, 3458–3460 (2008).

    Article  CAS  Google Scholar 

  153. 153.

    Li, J., Zhan, H. & Zhou, Y. Synthesis and electrochemical properties of polypyrrole-coated poly(2,5-dimercapto-1,3,4-thiadiazole). Electrochem. Commun. 5, 555–560 (2003).

    Article  CAS  Google Scholar 

  154. 154.

    Zhang, Y. et al. Impact of the synthesis method on the solid-state charge transport of radical polymers. J. Mater. Chem. C 6, 111–118 (2018).

    Article  CAS  Google Scholar 

  155. 155.

    Chen, X. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 31, 1901640 (2019).

    Article  CAS  Google Scholar 

  156. 156.

    Lutsey, N. & Nicholas, M. Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation https://theicct.org/sites/default/files/publications/EV_cost_2020_2030_20190401.pdf (2019).

  157. 157.

    The Cobalt Institute. Rechargeable batteries. The Cobalt Institute https://www.cobaltinstitute.org/rechargeable-batteries.html (2018).

  158. 158.

    U.S. Department of the Interior & U.S. Geological Survey. Mineral commodity summaries 2019. U.S. Department of the Interior & U.S. Geological Survey https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf (2019).

  159. 159.

    Argonne National Laboratory. BatPaC: battery manufacturing cost estimation. Argonne National Laboratory https://www.anl.gov/tcp/batpac-battery-manufacturing-cost-estimation.

  160. 160.

    Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–20917 (2013).

    Article  CAS  Google Scholar 

  161. 161.

    Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

    Article  CAS  Google Scholar 

  162. 162.

    Park, M. et al. Organic-catholyte-containing flexible rechargeable lithium batteries. Adv. Mater. 27, 5141–5146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Amin, K. et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 30, 1703868 (2018).

    Article  CAS  Google Scholar 

  164. 164.

    Lu, Y. et al. Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries. J. Phys. Chem. C 121, 14498–14506 (2017).

    Article  CAS  Google Scholar 

  165. 165.

    Gottis, S., Barrès, A.-L., Dolhem, F. & Poizot, P. Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect. ACS Appl. Mater. Interfaces 6, 10870–10876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Jouhara, A. et al. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nat. Commun. 9, 4401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Banda, H. et al. Twisted perylene diimides with tunable redox properties for organic sodium-ion batteries. Adv. Energy Mater. 7, 1701316 (2017).

    Article  CAS  Google Scholar 

  168. 168.

    Wang, C. et al. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J. Am. Chem. Soc. 137, 3124–3130 (2015).

    Article  CAS  Google Scholar 

  169. 169.

    Zhu, Z. & Chen, J. Review — advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries. J. Electrochem. Soc. 162, A2393–A2405 (2015).

    Article  CAS  Google Scholar 

  170. 170.

    Sieuw, L. et al. A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chem. Sci. 10, 418–426 (2019).

    Article  CAS  Google Scholar 

  171. 171.

    Zhang, J. et al. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement. Adv. Mater. 31, 1901808 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Programs for Nano-Key Project (2017YFA0206700), the National Natural Science Foundation of China (21835004) and the 111 Project from the Ministry of Education of China (B12015).

Author information

Affiliations

Authors

Contributions

J.C. proposed the topic of the Review. Y.L. conducted the literature search. J.C. and Y.L. discussed, wrote and revised the manuscript.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9

Download citation

Further reading