Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The many flavours of mechanochemistry and its plausible conceptual underpinnings

Abstract

Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A proposed taxonomy of molecular mechanochemistry.
Fig. 2: Single-molecule force spectroscopy of a mechanochemically active copolymer of two isomeric macrocyclic cinnamate dimers.
Fig. 3: Acoustic cavitation in liquid.
Fig. 4: Examples of covalent reactions that are accelerated in stretched polymers.
Fig. 5: Mechanistic and structure–activity studies in polymer mechanochemistry.
Fig. 6: Mechanochemical reaction cascades for crosslinking and small-molecule release.
Fig. 7: Depolymerization and all-mechanochemical cascades.
Fig. 8: Reactions reported to proceed in milled solids but not in solution42,194,195,196,197.
Fig. 9: Small-molecule models reproduce effects observed in polymer mechanochemistry.

References

  1. 1.

    Kaupp, G. Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11, 388–403 (2009). A comprehensive and thoughtful review of powder mechanochemistry and certain aspects of tribochemistry.

    CAS  Google Scholar 

  2. 2.

    Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719–7738 (2013). A critical review of assumptions and misconceptions in powder mechanochemistry.

    CAS  PubMed  Google Scholar 

  3. 3.

    Horie, K. et al. Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003). Pure Appl. Chem. 76, 889–906 (2004).

    CAS  Google Scholar 

  4. 4.

    Baláž, P. et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013). A very detailed review of powder mechanochemistry with emphasis on extended solids and practical applications.

    PubMed  Google Scholar 

  5. 5.

    Cross, R. A. & McAinsh, A. Prime movers: the mechanochemistry of mitotic kinesins. Nat. Rev. Mol. Cell Biol. 15, 257–271 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    Cross, R. A. Review: mechanochemistry of the kinesin-1 ATPase. Biopolymers 105, 476–482 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hancock, W. O. The kinesin-1 chemomechanical cycle: stepping toward a consensus. Biophys. J. 110, 1216–1225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Vogel, V. Unraveling the mechanobiology of extracellular matrix. Annu. Rev. Physiol. 80, 353–387 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Mohapatra, S., Lin, C.-T., Feng, X. A., Basu, A. & Ha, T. Single-molecule analysis and engineering of DNA motors. Chem. Rev. 120, 36–78 (2020).

    CAS  PubMed  Google Scholar 

  10. 10.

    Butler, P. J., Dey, K. K. & Sen, A. Impulsive enzymes: a new force in mechanobiology. Cell. Mol. Bioeng. 8, 106–118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stratigaki, M. & Göstl, R. Methods for exerting and sensing force in polymer materials using mechanophores. ChemPlusChem 85, 1095–1103 (2020).

    CAS  PubMed  Google Scholar 

  12. 12.

    Izak-Nau, E., Campagna, D., Baumann, C. & Göstl, R. Polymer mechanochemistry-enabled pericyclic reactions. Polym. Chem. 11, 2274–2299 (2020). A summary of a subclass of mechanochemical reactions from a mechanistic standpoint.

    CAS  Google Scholar 

  13. 13.

    Bowser, B. H. & Craig, S. L. Empowering mechanochemistry with multi-mechanophore polymer architectures. Polym. Chem. 9, 3583–3593 (2018).

    CAS  Google Scholar 

  14. 14.

    Anderson, L. & Boulatov, R. Polymer mechanochemistry: a new frontier for physical organic chemistry. Adv. Phys. Org. Chem. 52, 87–143 (2018).

    CAS  Google Scholar 

  15. 15.

    Willis-Fox, N., Rognin, E., Aljohani, T. A. & Daly, R. Polymer mechanochemistry: manufacturing is now a force to be reckoned with. Chem 4, 2499–2537 (2018).

    CAS  Google Scholar 

  16. 16.

    De Bo, G. Mechanochemistry of the mechanical bond. Chem. Sci. 9, 15–21 (2018).

    PubMed  Google Scholar 

  17. 17.

    Akbulatov, S. & Boulatov, R. Experimental polymer mechanochemistry and its interpretational frameworks. ChemPhysChem 18, 1422–1450 (2017). A critical review of the common approaches to interpreting experimental observations in polymer mechanochemistry, with emphasis on sonication.

    CAS  PubMed  Google Scholar 

  18. 18.

    Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, 0083 (2017).

    CAS  Google Scholar 

  19. 19.

    Boulatov, R. (ed.) Polymer Mechanochemistry (Springer, 2015).

  20. 20.

    Schönfelder, J., Alonso-Caballero, A., De Sancho, D. & Perez-Jimenez, R. The life of proteins under mechanical force. Chem. Soc. Rev. 47, 3558–3573 (2018).

    PubMed  Google Scholar 

  21. 21.

    Lancellotti, S., Sacco, M., Basso, M. & De Cristofaro, R. Mechanochemistry of von Willebrand factor. Biomol. Concepts 10, 194–208 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Zhou, Y. et al. Controlling optical and catalytic activity of genetically engineered proteins by ultrasound. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202010324 (2020).

    Article  Google Scholar 

  23. 23.

    Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001). A comprehensive review of mechanochemistry of powders of metals and oxides.

    CAS  Google Scholar 

  24. 24.

    Šepelák, V., Duevel, A., Wilkening, M., Becker, K.-D. & Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 42, 7507–7520 (2013).

    PubMed  Google Scholar 

  25. 25.

    Intasa-ard, S., Imwiset, K., Bureekaew, S. & Ogawa, M. Mechanochemical methods for the preparation of intercalation compounds, from intercalation to the formation of layered double hydroxides. Dalton Trans. 47, 2896–2916 (2018).

    CAS  PubMed  Google Scholar 

  26. 26.

    Muñoz-Batista, M. J., Rodriguez-Padron, D., Puente-Santiago, A. R. & Luque, R. Mechanochemistry: toward sustainable design of advanced nanomaterials for electrochemical energy storage and catalytic applications. ACS Sustain. Chem. Eng. 6, 9530–9544 (2018).

    Google Scholar 

  27. 27.

    Prochowicz, D., Saski, M., Yadav, P., Grätzel, M. & Lewiński, J. Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication. Acc. Chem. Res. 52, 3233–3243 (2019).

    CAS  PubMed  Google Scholar 

  28. 28.

    Giannakoudakis, D. A., Chatel, G. & Colmenares, J. C. Mechanochemical forces as a synthetic tool for zero- and one-dimensional titanium oxide-based nano-photocatalysts. Top. Curr. Chem. 378, 2 (2020).

    CAS  Google Scholar 

  29. 29.

    Palazon, F., El Ajjouri, Y. & Bolink, H. J. Making by grinding: mechanochemistry boosts the development of halide perovskites and other multinary metal halides. Adv. Energy Mater. 10, 1902499 (2020).

    CAS  Google Scholar 

  30. 30.

    Beillard, A., Bantreil, X., Métro, T.-X., Martinez, J. & Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev. 119, 7529–7609 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Chen, D., Zhao, J., Zhang, P. & Dai, S. Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162, 59–64 (2019).

    CAS  Google Scholar 

  32. 32.

    Zhao, L.-Y., Dong, X.-L. & Lu, A.-H. Mechanochemical synthesis of porous carbons and their applications in catalysis. ChemPlusChem 85, 866–875 (2020).

    CAS  PubMed  Google Scholar 

  33. 33.

    Tan, D. & García, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 48, 2274–2292 (2019). A compilation of empirical observations in powder mechanochemistry, primarily of metal–organic molecules.

    CAS  PubMed  Google Scholar 

  34. 34.

    Hernández, J. G. & Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem. 82, 4007–4019 (2017).

    PubMed  Google Scholar 

  35. 35.

    Bolm, C. & Hernández, J. G. From synthesis of amino acids and peptides to enzymatic catalysis: a bottom-up approach in mechanochemistry. ChemSusChem 11, 1410–1420 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Leonardi, M., Villacampa, M. & Menéndez, J. C. Multicomponent mechanochemical synthesis. Chem. Sci. 9, 2042–2064 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zhao, S., Li, Y., Liu, C. & Zhao, Y. Recent advances in mechanochemical C–H functionalization reactions. Tetrahedron Lett. 59, 317–324 (2018).

    CAS  Google Scholar 

  39. 39.

    Avila-Ortiz, C. G., Pérez-Venegas, M., Vargas-Caporali, J. & Juaristi, E. Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Lett. 60, 1749–1757 (2019).

    CAS  Google Scholar 

  40. 40.

    Egorov, I. N. et al. Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chem. 22, 302–315 (2020).

    CAS  Google Scholar 

  41. 41.

    Friščić, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).

    Google Scholar 

  42. 42.

    Zhu, S.-E., Li, F. & Wang, G.-W. Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 42, 7535–7570 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Isayev, A. I. Recycling of Natural and Synthetic Isoprene Rubbers (Woodhead Publishing, 2014).

  44. 44.

    Yin, S. et al. Mechanical reprocessing of polyolefin waste: a review. Polym. Eng. Sci. 55, 2899–2909 (2015).

    CAS  Google Scholar 

  45. 45.

    Hsu, S. M., Zhang, J. & Yin, Z. The nature and origin of tribochemistry. Tribol. Lett. 13, 131–139 (2002).

    CAS  Google Scholar 

  46. 46.

    Lussis, P. et al. A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6, 553–557 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Eelkema, R. et al. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    Google Scholar 

  48. 48.

    Sluysmans, D. et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13, 209–213 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Zhang, Q. M. & Serpe, M. J. Stimuli-responsive polymers for actuation. ChemPhysChem 18, 1451–1465 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    CAS  PubMed  Google Scholar 

  51. 51.

    Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Felts, J. R. et al. Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Adams, H. L. et al. Shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119, 7115–7123 (2015).

    CAS  Google Scholar 

  54. 54.

    Zhang, Y., Wang, Y., Lü, J.-T., Brandbyge, M. & Berndt, R. Mechanochemistry induced using force exerted by a functionalized microscope tip. Angew. Chem. Int. Ed. 56, 11769–11773 (2017).

    CAS  Google Scholar 

  55. 55.

    Qi, J. et al. Force-activated isomerization of a single molecule. J. Am. Chem. Soc. 142, 10673–10680 (2020).

    CAS  PubMed  Google Scholar 

  56. 56.

    Yan, H. et al. Sterically controlled mechanochemistry under hydrostatic pressure. Nature 554, 505–510 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Li, Y. & Sheiko, S. S. Molecular mechanochemistry: engineering and implications of inherently strained architectures. Top. Curr. Chem. 369, 1–36 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018). A very rare example of a non-covalent molecular adduct with mechanochemical stability rivalling that of a covalent bond and an excellent illustration of the value of integrating computational and experimental approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chen, Z. et al. The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat. Chem. 12, 302–309 (2020).

    CAS  PubMed  Google Scholar 

  60. 60.

    Tian, Y. et al. A polymer with mechanochemically active hidden length. J. Am. Chem. Soc. 142, 18687–18697 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Dopieralski, P., Ribas-Arino, J., Anjukandi, P., Krupicka, M. & Marx, D. Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution. Nat. Chem. 9, 164–170 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Chakrabarti, S., Hinczewski, M. & Thirumalai, D. Phenomenological and microscopic theories for catch bonds. J. Struct. Biol. 197, 50–56 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ardila-Fierro, K. J. et al. Direct visualization of a mechanochemically induced molecular rearrangement. Angew. Chem. Int. Ed. 59, 13458–13462 (2020).

    CAS  Google Scholar 

  64. 64.

    Guo, Q. & Long, R. in Self-Healing and Self-Recovering Hydrogels (eds Creton, C. & Okay, O.) 127–164 (Springer, 2020).

  65. 65.

    Astumian, R. D. Huxley’s model for muscle contraction revisited: the importance of microscopic reversibility. Top. Curr. Chem. 369, 285–316 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Deneke, N., Rencheck, M. L. & Davis, C. S. An engineer’s introduction to mechanophores. Soft Matter 16, 6230–6252 (2020).

    CAS  PubMed  Google Scholar 

  67. 67.

    Binder, W. H. The “labile” chemical bond: a perspective on mechanochemistry in polymers. Polymer 202, 122639 (2020).

    CAS  Google Scholar 

  68. 68.

    Zhang, H., Lin, Y., Xu, Y. & Weng, W. Mechanochemistry of topological complex polymer systems. Top. Curr. Chem. 369, 135–207 (2015).

    CAS  PubMed  Google Scholar 

  69. 69.

    Cintas, P., Cravotto, G., Barge, A. & Martina, K. Interplay between mechanochemistry and sonochemistry. Top. Curr. Chem. 369, 239–284 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Stolle, A. in Ball Milling Towards Green Synthesis: Applications, Projects, Challenges (eds Stolle, A. & Ranu. B.) 241–276 (Royal Society of Chemistry, 2015).

  71. 71.

    Burmeister, C. F. & Kwade, A. Process engineering with planetary ball mills. Chem. Soc. Rev. 42, 7660–7667 (2013).

    CAS  PubMed  Google Scholar 

  72. 72.

    Yang, B., Liu, Z., Liu, H. & Nash, M. A. Next generation methods for single-molecule force spectroscopy on polyproteins and receptor–ligand complexes. Front. Mol. Biosci. 7, 85 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Li, H. & Zheng, P. Single molecule force spectroscopy: a new tool for bioinorganic chemistry. Curr. Opin. Chem. Biol. 43, 58–67 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Stauch, T. & Dreuw, A. Quantum chemical strain analysis for mechanochemical processes. Acc. Chem. Res. 50, 1041–1048 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Kulik, H. J. Modeling mechanochemistry from first principles. Rev. Comput. Chem. 31, 265–311 (2019).

    CAS  Google Scholar 

  76. 76.

    Kochhar, G. S., Heverly-Coulson, G. S. & Mosey, N. J. Theoretical approaches for understanding the interplay between stress and chemical reactivity. Top. Curr. Chem. 369, 37–96 (2015).

    CAS  PubMed  Google Scholar 

  77. 77.

    Bolm, C. & Hernández, J. G. Mechanochemistry of gaseous reactants. Angew. Chem. Int. Ed. 58, 3285–3299 (2019).

    CAS  Google Scholar 

  78. 78.

    Ardila-Fierro, K. J., Bolm, C. & Hernández, J. G. Mechanosynthesis of odd-numbered tetraaryl[n]cumulenes. Angew. Chem. Int. Ed. 58, 12945–12949 (2019).

    CAS  Google Scholar 

  79. 79.

    Crawford, D. E. & Casaban, J. Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater. 28, 5747–5754 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Huot, J. et al. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 58, 30–75 (2013).

    CAS  Google Scholar 

  81. 81.

    Ghanem, M. A. et al. The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat. Rev. Mater. https://doi.org/10.1038/s41578-020-00249-w (2020). The most up-to-date review of emerging applications of polymer mechanochemistry.

    Article  Google Scholar 

  82. 82.

    Traeger, H., Kiebala, D. J., Weder, C. & Schrettl, S. From molecules to polymers — harnessing inter- and intramolecular interactions to create mechanochromic materials. Macromol. Rapid Commun. https://doi.org/10.1002/marc.202000573 (2020).

    Article  PubMed  Google Scholar 

  83. 83.

    Stirling, C. J. M. Evaluation of the effect of strain upon reactivity. Tetrahedron 41, 1613–1666 (1985).

    CAS  Google Scholar 

  84. 84.

    Zhurkov, S. N. Kinetic concept of the strength of solids. Int. J. Fract. Mech. 1, 311–323 (1965).

    CAS  Google Scholar 

  85. 85.

    Kausch, H.-H. (ed.) Polymer Fracture 2nd edn (Mir, 1981).

  86. 86.

    Leffler, J. E. & Grunwald, E. Rates and Equilibria of Organic Reactions: As Treated by Statistical, Thermodynamic and Extrathermodynamic Methods (Dover Publications, 1989).

  87. 87.

    Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).

    CAS  PubMed  Google Scholar 

  88. 88.

    Boulatov, R. Reaction dynamics in the formidable gap. Pure Appl. Chem. 83, 25–41 (2010).

    Google Scholar 

  89. 89.

    Huang, Z. & Boulatov, R. Chemomechanics: chemical kinetics for multiscale phenomena. Chem. Soc. Rev. 40, 2359–2384 (2011).

    CAS  PubMed  Google Scholar 

  90. 90.

    Ahmed, E. et al. From mechanical effects to mechanochemistry: softening and depression of the melting point of deformed plastic crystals. J. Am. Chem. Soc. 142, 11219–11231 (2020).

    CAS  PubMed  Google Scholar 

  91. 91.

    Zimmerman, J. A. et al. Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 12, S319–S332 (2004).

    CAS  Google Scholar 

  92. 92.

    Murdoch, A. I. A critique of atomistic definitions of the stress tensor. J. Elast. 88, 113–140 (2007).

    Google Scholar 

  93. 93.

    Berry, R. S., Rice, S. A. & Ross, J. Physical and Chemical Kinetics 2nd edn Vol. 3 (Oxford Univ. Press, 2002).

  94. 94.

    Wilczek, F. Whence the force of F = ma? I: culture shock. Phys. Today 57, 11–12 (2004). An accessible and insightful summary of why force is an ambiguous construct.

    Google Scholar 

  95. 95.

    Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Suzuki, Y. & Dudko, O. K. Single-molecule rupture dynamics on multidimensional landscapes. Phys. Rev. Lett. 104, 048101 (2010).

    PubMed  Google Scholar 

  97. 97.

    Ribas-Arino, J. & Marx, D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112, 5412–5487 (2012). A review of computational methods in molecular mechanochemistry.

    CAS  PubMed  Google Scholar 

  98. 98.

    Kucharski, T. J. & Boulatov, R. The physical chemistry of mechanoresponsive polymers. J. Mater. Chem. 21, 8237–8255 (2011).

    CAS  Google Scholar 

  99. 99.

    Jencks, W. P. A primer for the Bema Hapothle. An empirical approach to the characterization of changing transition-state structures. Chem. Rev. 85, 511–527 (1985).

    CAS  Google Scholar 

  100. 100.

    Kucharski, T. J., Yang, Q.-Z., Tian, Y. & Boulatov, R. Strain-dependent acceleration of a paradigmatic SN2 reaction accurately predicted by the force formalism. J. Phys. Chem. Lett. 1, 2820–2825 (2010).

    CAS  Google Scholar 

  101. 101.

    Hermes, M. & Boulatov, R. The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. J. Am. Chem. Soc. 133, 20044–20047 (2011).

    CAS  PubMed  Google Scholar 

  102. 102.

    Akbulatov, S. et al. Experimentally realized mechanochemistry distinct from force-accelerated scission of loaded bonds. Science 357, 299–303 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Akbulatov, S., Tian, Y. C. & Boulatov, R. Force–reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J. Am. Chem. Soc. 134, 7620–7623 (2012).

    CAS  PubMed  Google Scholar 

  104. 104.

    Wang, J., Kouznetsova, T. B., Boulatov, R. & Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 7, 13433 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Zhang, H. et al. Multi-modal mechanophores based on cinnamate dimers. Nat. Commun. 8, 1147 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Tian, Y. & Boulatov, R. Quantum-chemical validation of the local assumption of chemomechanics for a unimolecular reaction. ChemPhysChem 13, 2277–2281 (2012).

    CAS  PubMed  Google Scholar 

  107. 107.

    Tian, Y. & Boulatov, R. Comparison of the predictive performance of the Bell–Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem. Commun. 49, 4187–4189 (2013).

    CAS  Google Scholar 

  108. 108.

    Raman, S., Utzig, T., Baimpos, T., Ratna Shrestha, B. & Valtiner, M. Deciphering the scaling of single-molecule interactions using Jarzynski’s equality. Nat. Commun. 5, 5539 (2014).

    CAS  PubMed  Google Scholar 

  109. 109.

    Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).

    CAS  PubMed  Google Scholar 

  110. 110.

    Lauterborn, W. & Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501 (2010). A detailed review of the state-of-the-knowledge of the physics underlying cavitation with relevance to polymer mechanochemistry in sonicated solutions.

    Google Scholar 

  111. 111.

    Larson, R. G. The rheology of dilute solutions of flexible polymers: progress and problems. J. Rheol. 49, 1–70 (2005). An illuminating review of the complexities of the behaviour of polymers in elongational flows.

    CAS  Google Scholar 

  112. 112.

    Moussatov, A., Granger, C. & Dubus, B. Cone-like bubble formation in ultrasonic cavitation field. Ultrason. Sonochem. 10, 191–195 (2003).

    CAS  PubMed  Google Scholar 

  113. 113.

    Fritze, U. F., Craig, S. L. & von Delius, M. Disulfide-centered poly(methyl acrylates): four different stimuli to cleave a polymer. J. Polym. Sci. A Polym. Chem. 56, 1404–1411 (2018).

    CAS  Google Scholar 

  114. 114.

    Price, G. J. The use of ultrasound for the controlled degradation of polymer solutions. Adv. Sonochem. 1, 231–287 (1990).

    CAS  Google Scholar 

  115. 115.

    Nguyen, T. Q. & Kausch, H.-H. Mechanochemical degradation in transient elongational flow. Adv. Polym. Sci. 100, 73–182 (1992).

    Google Scholar 

  116. 116.

    Tyler, D. R. Mechanistic aspects of the effects of stress on the rates of photochemical degradation reactions in polymers. J. Macromol. Sci. Polym. Rev. 44, 351–388 (2004).

    Google Scholar 

  117. 117.

    Vanapalli, S. A., Ceccio, S. L. & Solomon, M. J. Universal scaling for polymer chain scission in turbulence. Proc. Natl Acad. Sci. USA 103, 16660–16665 (2006).

    CAS  PubMed  Google Scholar 

  118. 118.

    Verstraeten, F., Göstl, R. & Sijbesma, R. P. Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals. Chem. Commun. 52, 8608–8611 (2016).

    CAS  Google Scholar 

  119. 119.

    Sumi, T., Goseki, R. & Otsuka, H. Tetraarylsuccinonitriles as mechanochromophores to generate highly stable luminescent carbon-centered radicals. Chem. Commun. 53, 11885–11888 (2017).

    CAS  Google Scholar 

  120. 120.

    Aoki, D., Yanagisawa, M. & Otsuka, H. Synthesis of well-defined mechanochromic polymers based on a radical-type mechanochromophore by RAFT polymerization: living radical polymerization from a polymerization inhibitor. Polym. Chem. 11, 4290–4296 (2020).

    CAS  Google Scholar 

  121. 121.

    Nixon, R. & De Bo, G. Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12, 826–831 (2020).

    CAS  PubMed  Google Scholar 

  122. 122.

    Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

    CAS  PubMed  Google Scholar 

  123. 123.

    Kersey, F. R., Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc. 128, 3886–3887 (2006).

    CAS  PubMed  Google Scholar 

  124. 124.

    Sha, Y. et al. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem. Sci. 10, 4959–4965 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Paulusse, J. M. J. & Sijbesma, R. P. Reversible mechanochemistry of a PdII coordination polymer. Angew. Chem. Int. Ed. 43, 4460–4462 (2004).

    CAS  Google Scholar 

  126. 126.

    Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 1, 133–137 (2009).

    CAS  PubMed  Google Scholar 

  127. 127.

    Karthikeyan, S., Potisek, S. L., Piermattei, A. & Sijbesma, R. P. Highly efficient mechanochemical scission of silver–carbene coordination polymers. J. Am. Chem. Soc. 130, 14968–14969 (2008).

    CAS  PubMed  Google Scholar 

  128. 128.

    Michael, P. & Binder, W. H. A mechanochemically triggered “click” catalyst. Angew. Chem. Int. Ed. 54, 13918–13922 (2015).

    CAS  Google Scholar 

  129. 129.

    Clough, J. M., Balan, A. & Sijbesma, R. P. Mechanochemical reactions reporting and repairing bond scission in polymers. Top. Curr. Chem. 369, 209–238 (2015).

    CAS  PubMed  Google Scholar 

  130. 130.

    Clough, J. M., Balan, A., van Daal, T. L. J. & Sijbesma, R. P. Probing force with mechanobase-induced chemiluminescence. Angew. Chem. Int. Ed. 55, 1445–1449 (2016).

    CAS  Google Scholar 

  131. 131.

    Lee, D. C., Kensy, V. K., Maroon, C. R., Long, B. K. & Boydston, A. J. The intrinsic mechanochemical reactivity of vinyl-addition polynorbornene. Angew. Chem. Int. Ed. 58, 5639–5642 (2019).

    CAS  Google Scholar 

  132. 132.

    Jung, S. & Yoon, H. J. Mechanical force induces ylide-free cycloaddition of nonscissible aziridines. Angew. Chem. Int. Ed. 59, 4883–4887 (2020).

    CAS  Google Scholar 

  133. 133.

    Wang, J., Kouznetsova, T. B. & Craig, S. L. Single-molecule observation of a mechanically activated cis-to-trans cyclopropane isomerization. J. Am. Chem. Soc. 138, 10410–10412 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Barbee, M. H., Wang, J., Kouznetsova, T., Lu, M. & Craig, S. L. Mechanochemical ring-opening of allylic epoxides. Macromolecules 52, 6234–6240 (2019).

    CAS  Google Scholar 

  135. 135.

    Lenhardt, J. M. et al. Reactive cross-talk between adjacent tension-trapped transition states. J. Am. Chem. Soc. 133, 3222–3225 (2011).

    CAS  PubMed  Google Scholar 

  136. 136.

    Haehnel, A. P., Sagara, Y., Simon, Y. C. & Weder, C. Mechanochemistry in polymers with supramolecular mechanophores. Top. Curr. Chem. 369, 345–375 (2015).

    CAS  PubMed  Google Scholar 

  137. 137.

    Balkenende, D. W. R. et al. Mechanochemistry with metallosupramolecular polymers. J. Am. Chem. Soc. 136, 10493–10498 (2014).

    CAS  PubMed  Google Scholar 

  138. 138.

    Wang, J., Kouznetsova, T. B. & Craig, S. L. Reactivity and mechanism of a mechanically activated anti-Woodward–Hoffmann–DePuy reaction. J. Am. Chem. Soc. 137, 11554–11557 (2015).

    CAS  PubMed  Google Scholar 

  139. 139.

    Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    CAS  PubMed  Google Scholar 

  140. 140.

    Wang, J. et al. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 7, 323–327 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Li, J. et al. Mechanophore activation at heterointerfaces. J. Am. Chem. Soc. 136, 15925–15928 (2014).

    CAS  PubMed  Google Scholar 

  142. 142.

    Stevenson, R. & De Bo, G. Controlling reactivity by geometry in retro-Diels–Alder reactions under tension. J. Am. Chem. Soc. 139, 16768–16771 (2017).

    CAS  PubMed  Google Scholar 

  143. 143.

    Kean, Z. S., Gossweiler, G. R., Kouznetsova, T. B., Hewage, G. B. & Craig, S. L. A coumarin dimer probe of mechanochemical scission efficiency in the sonochemical activation of chain-centered mechanophore polymers. Chem. Commun. 51, 9157–9160 (2015).

    CAS  Google Scholar 

  144. 144.

    Kan, L. et al. Anthracene dimer crosslinked polyurethanes as mechanoluminescent polymeric materials. New J. Chem. 43, 2658–2664 (2019).

    CAS  Google Scholar 

  145. 145.

    Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 4, 559–562 (2012).

    CAS  PubMed  Google Scholar 

  146. 146.

    Kean, Z. S., Niu, Z., Hewage, G. B., Rheingold, A. L. & Craig, S. L. Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J. Am. Chem. Soc. 135, 13598–13604 (2013).

    CAS  PubMed  Google Scholar 

  147. 147.

    Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization, and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

    CAS  PubMed  Google Scholar 

  148. 148.

    Yang, J. et al. Bicyclohexene-peri-naphthalenes: scalable synthesis, diverse functionalization, efficient polymerization, and facile mechanoactivation of their polymers. J. Am. Chem. Soc. 142, 14619–14626 (2020).

    CAS  PubMed  Google Scholar 

  149. 149.

    Thomas, III, S. W. Forcing ladderenes into plastic semiconductors with mechanochemistry. Angew. Chem. Int. Ed. 56, 15196–15198 (2017).

    CAS  Google Scholar 

  150. 150.

    Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    CAS  PubMed  Google Scholar 

  151. 151.

    Larsen, M. B. & Boydston, A. J. Successive mechanochemical activation and small molecule release in an elastomeric material. J. Am. Chem. Soc. 136, 1276–1279 (2014).

    CAS  PubMed  Google Scholar 

  152. 152.

    Klukovich, H. M., Kouznetsova, T. B., Kean, Z. S., Lenhardt, J. M. & Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 5, 110–114 (2013).

    CAS  PubMed  Google Scholar 

  153. 153.

    Wang, J. et al. A remote stereochemical lever arm effect in polymer mechanochemistry. J. Am. Chem. Soc. 136, 15162–15165 (2014).

    CAS  PubMed  Google Scholar 

  154. 154.

    Lin, Y., Kouznetsova, T. B. & Craig, S. L. A latent mechanoacid for time-stamped mechanochromism and chemical signaling in polymeric materials. J. Am. Chem. Soc. 142, 99–103 (2020).

    CAS  PubMed  Google Scholar 

  155. 155.

    Gossweiler, G. R., Kouznetsova, T. B. & Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 137, 6148–6151 (2015).

    CAS  PubMed  Google Scholar 

  156. 156.

    Barbee, M. H. et al. Substituent effects and mechanism in a mechanochemical reaction. J. Am. Chem. Soc. 140, 12746–12750 (2018).

    CAS  PubMed  Google Scholar 

  157. 157.

    Zhang, H. et al. Mechanochromism and mechanical force-triggered cross-linking from a single reactive moiety incorporated into polymer chains. Angew. Chem. Int. Ed. 55, 3040–3044 (2016).

    CAS  Google Scholar 

  158. 158.

    Pan, Y. et al. A mechanochemical reaction cascade for controlling load-strengthening of a mechanochromic polymer. Angew. Chem. Int. Ed. 59, 21980–21985 (2020).

    CAS  Google Scholar 

  159. 159.

    Wollenhaupt, M., Krupička, M. & Marx, D. Should the Woodward–Hoffmann rules be applied to mechanochemical reactions? ChemPhysChem 16, 1593–1597 (2015).

    CAS  PubMed  Google Scholar 

  160. 160.

    Lee, C. K. et al. Force-induced redistribution of a chemical equilibrium. J. Am. Chem. Soc. 132, 16107–16111 (2010).

    CAS  PubMed  Google Scholar 

  161. 161.

    Sung, J., Robb, M. J., White, S. R., Moore, J. S. & Sottos, N. R. Interfacial mechanophore activation using laser-induced stress waves. J. Am. Chem. Soc. 140, 5000–5003 (2018).

    CAS  PubMed  Google Scholar 

  162. 162.

    Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).

    CAS  PubMed  Google Scholar 

  163. 163.

    Wang, Z. et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv. Mater. 27, 6469–6474 (2015).

    CAS  PubMed  Google Scholar 

  164. 164.

    Willis-Fox, N. et al. Going with the flow: tunable flow-induced polymer mechanochemistry. Adv. Funct. Mater. 30, 2002372 (2020).

    CAS  Google Scholar 

  165. 165.

    Peterson, G. I., Lee, J. & Choi, T.-L. Multimechanophore graft polymers: mechanochemical reactions at backbone–arm junctions. Macromolecules 52, 9561–9568 (2019).

    CAS  Google Scholar 

  166. 166.

    Yildiz, D. et al. Anti-Stokes stress sensing: mechanochemical activation of triplet–triplet annihilation photon upconversion. Angew. Chem. Int. Ed. 58, 12919–12923 (2019).

    CAS  Google Scholar 

  167. 167.

    Kida, J. et al. The photoregulation of a mechanochemical polymer scission. Nat. Commun. 9, 3504 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Zhang, M. & De Bo, G. Impact of a mechanical bond on the activation of a mechanophore. J. Am. Chem. Soc. 140, 12724–12727 (2018).

    CAS  PubMed  Google Scholar 

  169. 169.

    Hu, X., Zeng, T., Husic, C. C. & Robb, M. J. Mechanically triggered small molecule release from a masked furfuryl carbonate. J. Am. Chem. Soc. 141, 15018–15023 (2019).

    CAS  PubMed  Google Scholar 

  170. 170.

    Wang, Z. & Craig, S. L. Stereochemical effects on the mechanochemical scission of furan–maleimide Diels–Alder adducts. Chem. Commun. 55, 12263–12266 (2019).

    CAS  Google Scholar 

  171. 171.

    Lyu, B. et al. Surface confined retro Diels–Alder reaction driven by the swelling of weak polyelectrolytes. ACS Appl. Mater. Interfaces 7, 6254–6259 (2015).

    CAS  PubMed  Google Scholar 

  172. 172.

    Hu, X., McFadden, M. E., Barber, R. W. & Robb, M. J. Mechanochemical regulation of a photochemical reaction. J. Am. Chem. Soc. 140, 14073–14077 (2018).

    CAS  PubMed  Google Scholar 

  173. 173.

    Kryger, M. J. et al. Masked cyanoacrylates unveiled by mechanical force. J. Am. Chem. Soc. 132, 4558–4559 (2010).

    CAS  PubMed  Google Scholar 

  174. 174.

    Klukovich, H. M., Kean, Z. S., Iacono, S. T. & Craig, S. L. Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc. 133, 17882–17888 (2011).

    CAS  PubMed  Google Scholar 

  175. 175.

    Zhang, H. et al. Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers. Chem. Sci. 10, 8367–8373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Yang, F., Yuan, Y., Sijbesma, R. P. & Chen, Y. L. Sensitized mechanoluminescence design toward mechanically induced intense red emission from transparent polymer films. Macromolecules 53, 905–912 (2020).

    CAS  Google Scholar 

  177. 177.

    Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014).

    CAS  PubMed  Google Scholar 

  178. 178.

    Robb, M. J. & Moore, J. S. A retro-Staudinger cycloaddition: mechanochemical cycloelimination of a β-lactam mechanophore. J. Am. Chem. Soc. 137, 10946–10949 (2015).

    CAS  PubMed  Google Scholar 

  179. 179.

    Dopieralski, P., Ribas-Arino, J., Anjukandi, P., Krupicka, M. & Marx, D. Force-induced reversal of β-eliminations: stressed disulfide bonds in alkaline solution. Angew. Chem. Int. Ed. 55, 1304–1308 (2016).

    CAS  Google Scholar 

  180. 180.

    Oka, H. et al. Enhancing mechanochemical activation in the bulk state by designing polymer architectures. ACS Macro Lett. 5, 1124–1127 (2016).

    CAS  Google Scholar 

  181. 181.

    Lin, Y., Zhang, Y., Wang, Z. & Craig, S. L. Dynamic memory effects in the mechanochemistry of cyclic polymers. J. Am. Chem. Soc. 141, 10943–10947 (2019).

    CAS  PubMed  Google Scholar 

  182. 182.

    Peterson, G. I., Bang, K.-T. & Choi, T.-L. Mechanochemical degradation of denpols: synthesis and ultrasound-induced chain scission of polyphenylene-based dendronized polymers. J. Am. Chem. Soc. 140, 8599–8608 (2018).

    CAS  PubMed  Google Scholar 

  183. 183.

    Wang, J. & Klok, H.-A. Swelling-induced chain stretching enhances hydrolytic degrafting of hydrophobic polymer brushes in organic media. Angew. Chem. Int. Ed. 58, 9989–9993 (2019).

    CAS  Google Scholar 

  184. 184.

    Dopieralski, P., Ribas-Arino, J. & Marx, D. Force-transformed free-energy surfaces and trajectory-shooting simulations reveal the mechano-stereochemistry of cyclopropane ring-opening reactions. Angew. Chem. Int. Ed. 50, 7105–7108 (2011).

    CAS  Google Scholar 

  185. 185.

    Wang, J. P., Piskun, I. & Craig, S. L. Mechanochemical strengthening of a multi-mechanophore benzocyclobutene polymer. ACS Macro Lett. 4, 834–837 (2015).

    CAS  Google Scholar 

  186. 186.

    Shi, Z., Wu, J., Song, Q., Göstl, R. & Herrmann, A. Toward drug release using polymer mechanochemical disulfide scission. J. Am. Chem. Soc. 142, 14725–14732 (2020).

    CAS  PubMed  Google Scholar 

  187. 187.

    White, J. L. & Sasaki, A. Free radical graft polymerization. Polym. Plast. Technol. Eng. 42, 711–735 (2003).

    CAS  Google Scholar 

  188. 188.

    Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    CAS  PubMed  Google Scholar 

  189. 189.

    Wang, Z., Ayarza, J. & Esser-Kahn, A. P. Mechanically initiated bulk-scale free-radical polymerization. Angew. Chem. Int. Ed. 58, 12023–12026 (2019).

    CAS  Google Scholar 

  190. 190.

    Diesendruck, C. E. et al. Proton-coupled mechanochemical transduction: a mechanogenerated acid. J. Am. Chem. Soc. 134, 12446–12449 (2012).

    CAS  PubMed  Google Scholar 

  191. 191.

    Lin, Y., Kouznetsova, T. B. & Craig, S. L. Mechanically gated degradable polymers. J. Am. Chem. Soc. 142, 2105–2109 (2020).

    CAS  PubMed  Google Scholar 

  192. 192.

    Hsu, T.-G. et al. A polymer with “locked” degradability: superior backbone stability and accessible degradability enabled by mechanophore installation. J. Am. Chem. Soc. 142, 2100–2104 (2020).

    CAS  PubMed  Google Scholar 

  193. 193.

    Lin, Y., Kouznetsova, T. B., Chang, C.-C. & Craig, S. L. Enhanced polymer mechanical degradation through mechanochemically unveiled lactonization. Nat. Commun. 11, 4987 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Zhao, Y., Rocha, S. V. & Swager, T. M. Mechanochemical synthesis of extended iptycenes. J. Am. Chem. Soc. 138, 13834–13837 (2016).

    CAS  PubMed  Google Scholar 

  195. 195.

    Shi, Y. X. et al. The first synthesis of the sterically encumbered adamantoid phosphazane P4(NtBu)6: enabled by mechanochemistry. Angew. Chem. Int. Ed. 55, 12736–12740 (2016).

    CAS  Google Scholar 

  196. 196.

    Koby, R. F., Hanusa, T. P. & Schley, N. D. Mechanochemically driven transformations in organotin chemistry: stereochemical rearrangement, redox behavior, and dispersion-stabilized complexes. J. Am. Chem. Soc. 140, 15934–15942 (2018).

    CAS  PubMed  Google Scholar 

  197. 197.

    Štrukil, V., Gracin, D., Magdysyuk, O. V., Dinnebier, R. E. & Friščić, T. Trapping reactive intermediates by mechanochemistry: elusive aryl N-thiocarbamoylbenzotriazoles as bench-stable reagents. Angew. Chem. Int. Ed. 54, 8440–8443 (2015).

    Google Scholar 

  198. 198.

    Kulla, H. et al. In situ investigations of mechanochemical one-pot syntheses. Angew. Chem. Int. Ed. 57, 5930–5933 (2018).

    CAS  Google Scholar 

  199. 199.

    Hutchings, B. P., Crawford, D. E., Gao, L., Hu, P. & James, S. L. Feedback kinetics in mechanochemistry: the importance of cohesive states. Angew. Chem. Int. Ed. 56, 15252–15256 (2017).

    CAS  Google Scholar 

  200. 200.

    Rothenberg, G., Downie, A. P., Raston, C. L. & Scott, J. L. Understanding solid/solid organic reactions. J. Am. Chem. Soc. 123, 8701–8708 (2001).

    CAS  PubMed  Google Scholar 

  201. 201.

    Lukin, S. et al. Mechanochemical carbon–carbon bond formation that proceeds via a cocrystal intermediate. Chem. Commun. 54, 13216–13219 (2018).

    CAS  Google Scholar 

  202. 202.

    Tricker, A. W., Samaras, G., Hebisch, K. L., Realff, M. J. & Sievers, C. Hot spot generation, reactivity, and decay in mechanochemical reactors. Chem. Eng. J. 382, 122954 (2020).

    CAS  Google Scholar 

  203. 203.

    Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).

    CAS  PubMed  Google Scholar 

  204. 204.

    Michalchuk, A. A. L., Tumanov, I. A. & Boldyreva, E. V. Ball size or ball mass — what matters in organic mechanochemical synthesis? CrystEngComm 21, 2174–2179 (2019).

    CAS  Google Scholar 

  205. 205.

    Colacino, E. et al. Processing and investigation methods in mechanochemical kinetics. ACS Omega 3, 9196–9209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Delogu, F., Mulas, G., Schiffini, L. & Cocco, G. Mechanical work and conversion degree in mechanically induced processes. Mater. Sci. Eng. A 382, 280–287 (2004).

    Google Scholar 

  207. 207.

    Urakaev, F. K. & Boldyrev, V. V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol. 107, 93–107 (2000).

    CAS  Google Scholar 

  208. 208.

    Kucharski, T. J. et al. Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew. Chem. Int. Ed. 48, 7040–7043 (2009).

    CAS  Google Scholar 

  209. 209.

    Yang, Q.-Z. et al. A molecular force probe. Nat. Nanotechnol. 4, 302–306 (2009).

    CAS  PubMed  Google Scholar 

  210. 210.

    Huang, Z. & Boulatov, R. Chemomechanics with molecular force probes. Pure Appl. Chem. 82, 931–951 (2010).

    CAS  Google Scholar 

  211. 211.

    Akbulatov, S., Tian, Y., Kapustin, E. & Boulatov, R. Model studies of the kinetics of ester hydrolysis under stretching force. Angew. Chem. Int. Ed. 52, 6992–6995 (2013).

    CAS  Google Scholar 

  212. 212.

    Tian, Y., Kucharski, T. J., Yang, Q.-Y. & Boulatov, R. Model studies of force-dependent kinetics of multi-barrier reactions. Nat. Commun. 4, 2538 (2013).

    PubMed  Google Scholar 

  213. 213.

    Prezhdo, O. & Pereverzev, Y. Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42, 693–703 (2009).

    CAS  PubMed  Google Scholar 

  214. 214.

    Qiu, L. et al. High-pressure chemistry and the mechanochemical polymerization of [5]-cyclo-p-phenylene. Chem. Eur. J. 23, 16593–16604 (2017).

    CAS  PubMed  Google Scholar 

  215. 215.

    Van Quaethem, A., Lussis, P., Leigh, D. A., Duwez, A.-S. & Fustin, C.-A. Probing the mobility of catenane rings in single molecules. Chem. Sci. 5, 1449–1452 (2014).

    Google Scholar 

  216. 216.

    McCullagh, M., Franco, I., Ratner, M. A. & Schatz, G. C. DNA-based optomechanical molecular motor. J. Am. Chem. Soc. 133, 3452–3459 (2011).

    CAS  PubMed  Google Scholar 

  217. 217.

    Astumian, R. D. Thermodynamics and kinetics of molecular motors. Biophys. J. 98, 2401–2409 (2010). A brief review of the models of mechanotransduction in motor proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Fritch, B. et al. Origins of the mechanochemical coupling of peptide bond formation to protein synthesis. J. Am. Chem. Soc. 140, 5077–5087 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Rao, L., Berger, F., Nicholas, M. P. & Gennerich, A. Molecular mechanism of cytoplasmic dynein tension sensing. Nat. Commun. 10, 3332 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the funders that supported their work in mechanochemistry in the past decade, particularly the US National Science Foundation, the US Air Force, the Petroleum Research Fund of the American Chemical Society, the UK Engineering and Physical Sciences Research Council, the Royal Society, the Newton Fund, the University of Liverpool and Michelin. They also thank their collaborators in mechanochemistry, especially S. L. Craig, W. Weng and W. Zhang.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Roman Boulatov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Neill, R.T., Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 5, 148–167 (2021). https://doi.org/10.1038/s41570-020-00249-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing