Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA nanostructures as templates for biomineralization

Abstract

Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biominerals form through nonclassical pathways, giving rise to a fine nanogranular structure.
Fig. 2: A fine nanogranular structure is apparent in many biominerals.
Fig. 3: Non-DNA scaffolds for hydroxyapatite nucleation and growth.
Fig. 4: Single-stranded DNA can self-assemble into precise DNA nanostructures.
Fig. 5: DNA nanostructures as scaffolds for calcium carbonate, calcium phosphate and silica mineralization.

References

  1. 1.

    Lowenstam, H. A. & Weiner, S. On Biomineralization (Oxford Univ. Press, 1989).

  2. 2.

    Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

  3. 3.

    Pasteris, J. D. A mineralogical view of apatitic biomaterials. Am. Mineral. 101, 2594–2610 (2016).

    Article  Google Scholar 

  4. 4.

    Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D. & Stupp, S. I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108, 4754–4783 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Athanasiadou, D. et al. Nanostructure of mouse otoconia. J. Struct. Biol. 210, 107489 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Walther, L. E. et al. The inner structure of human otoconia. Otol. Neurotol. 35, 686–694 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Boulos, R. A. et al. Spinning up the polymorphs of calcium carbonate. Sci. Rep. 4, 3616 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Frausto da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements: the Inorganic Chemistry of Life (Oxford Univ. Press, 2001).

  9. 9.

    Jo, B. H., Kim, C. S., Jo, Y. K., Cheong, H. & Cha, H. J. Recent developments and applications of bioinspired silicification. Korean J. Chem. Eng. 33, 1125–1133 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kroger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018). This study describes mineralcollagen assembly in bone and its hierarchical mineral structure on the nanoscale.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Wolf, S. E. et al. Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals. J. Struct. Biol. 196, 244–259 (2016). A review on biomineral nanogranularity and how it influences material properties.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Lenton, S., Wang, Q., Nylander, T., Teixeira, S. & Holt, C. Structural biology of calcium phosphate nanoclusters sequestered by phosphoproteins. Crystals 10, 755 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Naka, K. & Chujo, Y. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chem. Mater. 13, 3245–3259 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    Fan, D., Lakshminarayanan, R. & Moradian-Oldak, J. The 32 kDa enamelin undergoes conformational transitions upon calcium binding. J. Struct. Biol. 163, 109–115 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P. & Beniash, E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl Acad. Sci. USA 108, 14097–14102 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kaartinen, M. T., Sun, W., Kaipatur, N. & McKee, M. D. Transglutaminase crosslinking of SIBLING proteins in teeth. J. Dent. Res. 84, 607–612 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Berman, A. et al. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259, 776–779 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Natalio, F. et al. Flexible minerals: self-assembled calcite spicules with extreme bending strength. Science 339, 1298–1302 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Borukhin, S. et al. Screening the incorporation of amino acids into an inorganic crystalline host: the case of calcite. Adv. Funct. Mater. 22, 4216–4224 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Athanasiadou, D. et al. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Sci. Adv. 4, eaar3219 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Saito, M. & Marumo, K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif. Tissue Int. 97, 242–261 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Hincke, M. T. et al. The eggshell: structure, composition and mineralization. Front. Biosci. 17, 1266–1280 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    De Yoreo, J. J., Wierzbicki, A. & Dove, P. M. New insights into mechanisms of biomolecular control on growth of inorganic crystals. CrystEngComm 9, 1144–1152 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    Pro, J. W. & Barthelat, F. The fracture mechanics of biological and bioinspired materials. MRS Bull. 44, 46–52 (2019).

    Article  Google Scholar 

  25. 25.

    Reznikov, N., Steele, J. A. M., Fratzl, P. & Stevens, M. M. A materials science vision of extracellular matrix mineralization. Nat. Rev. Mater. 1, 16041 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Meldrum, F. C. & Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332–4432 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Nudelman, F. & Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 51, 6582–6596 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Ho-Shui-Ling, A. et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Wang, W. H. & Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2, 224–247 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Subirana, J. A. & Soler-López, M. Cations as hydrogen bond donors: a view of electrostatic interactions in DNA. Annu. Rev. Biophys. Biomol. Struct. 32, 27–45 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Duguid, J., Bloomfield, V. A., Benevides, J. & Thomas, G. J. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys. J. 65, 1916–1928 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Kostetsky, E. Y. The possibility of the formation of protocells and their structural components on the basis of the apatite matrix and cocrystallizing minerals. J. Biol. Phys. 31, 607–638 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Korolev, N., Lyubartsev, A. P., Rupprecht, A. & Nordenskiold, L. Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results. Biophys. J. 77, 2736–2749 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Murnen, H. K., Rosales, A. M., Dobrynin, A. V., Zuckermann, R. N. & Segalman, R. A. Persistence length of polyelectrolytes with precisely located charges. Soft Matter 9, 90–98 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y. et al. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter 16, 10029–10045 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Hench, L. L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991).

    CAS  Article  Google Scholar 

  39. 39.

    Coe, F. L., Evan, A. & Worcester, E. Kidney stone disease. J. Clin. Invest. 115, 2598–2608 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Bertazzo, S. et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 12, 576583 (2013).

    Article  CAS  Google Scholar 

  41. 41.

    Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015). This review describes nonclassical crystallization pathways.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. 44.

    Rodriguez-Navarro, C., Ruiz-Agudo, E., Harris, J. & Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 196, 260–287 (2016). This review describes the link between nonclassical crystallization and biomineral nanogranularity.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Cölfen, H. & Antonietti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

  46. 46.

    Gal, A. et al. Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase. Adv. Funct. Mater. 24, 5420–5426 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008). An important review that describes how a PILP can form films.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Gebauer, D. & Wolf, S. E. Designing solid materials from their solute state: a shift in paradigms toward a holistic approach in functional materials chemistry. J. Am. Chem. Soc. 141, 4490–4504 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Rodriguez-Navarro, C., Cara, A. B., Elert, K., Putnis, C. V. & Ruiz-Agudo, E. Direct nanoscale imaging reveals the growth of calcite crystals via amorphous nanoparticles. Cryst. Growth Des. 16, 1850–1860 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Mahamid, J., Sharir, A., Addadi, L. & Weiner, S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc. Natl Acad. Sci. USA 105, 12748–12753 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Mahamid, J. et al. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J. Struct. Biol. 174, 527–535 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Beniash, E., Metzler, R. A., Lam, R. S. K. & Gilbert, P. U. P. A. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 166, 133–143 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Hovden, R. et al. Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells. Nat. Commun. 6, 10097 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Gong, Y. U. T. et al. Phase transitions in biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 109, 6088–6093 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Rodriguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T. & Gautron, J. Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. J. Struct. Biol. 190, 291–303 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Beniash, E., Addadi, L. & Weiner, S. Cellular control over spicule formation in sea urchin embryos: A structural approach. J. Struct. Biol. 125, 50–62 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Kerschnitzki, M. et al. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. Bone 83, 65–72 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Kim, S., Inoue, S. & Akisaka, T. Ultrastructure of quick-frozen secretory ameloblasts of the rat molar tooth. Tissue Cell 26, 29–41 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Müller, W. E. G. et al. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS J. 275, 362–370 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. 60.

    Nudelman, F. et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 1004–1009 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210, 719–734 (2000).

    CAS  Article  Google Scholar 

  62. 62.

    Olszta, M. J. et al. Bone structure and formation: a new perspective. Mater. Sci. Eng. R Rep. 58, 77–116 (2007).

    Article  CAS  Google Scholar 

  63. 63.

    Yang, L., Killian, C. E., Kunz, M., Tamura, N. & Gilbert, P. U. P. A. Biomineral nanoparticles are space-filling. Nanoscale 3, 603–609 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Kim, Y.-Y., Douglas, E. P. & Gower, L. B. Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process. Langmuir 23, 4862–4870 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Gal, A., Weiner, S. & Addadi, L. A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion. CrystEngComm 17, 2606–2615 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    Patterson, J. P., Xu, Y. F., Moradi, M. A., Sommerdijk, N. A. J. M. & Friedrich, H. CryoTEM as an advanced analytical tool for materials chemists. Acc. Chem. Res. 50, 1495–1501 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Langelier, B., Wang, X. Y. & Grandfield, K. Atomic scale chemical tomography of human bone. Sci. Rep. 7, 39958 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Fang, P. A., Margolis, H. C., Conway, J. F., Simmer, J. P. & Beniash, E. CryoTEM study of effects of phosphorylation on the hierarchical assembly of porcine amelogenin and its regulation of mineralization in vitro. J. Struct. Biol. 183, 250–257 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Cuif, J.-P., Dauphin Y. & Sorauf, J. E. Biominerals and Fossils Through Time (Cambridge Univ. Press, 2011).

  71. 71.

    Mutvei, H. & Dunca, E. Crystalline structure, orientation and nucleation of the nacreous tablets in the cephalopod Nautilus. Paläontol. Z. 84, 457–465 (2010).

    Article  Google Scholar 

  72. 72.

    Cusack, M., Chung, P., Dauphin, Y. & Perez-Huerta, A. Brachiopod primary layer crystallography and nanostructure. Spec. Pap. Palaeontol. 84, 99–105 (2010).

    Google Scholar 

  73. 73.

    Barthelat, F., Li, C. M., Comi, C. & Espinosa, H. D. Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977–1986 (2006).

    CAS  Article  Google Scholar 

  74. 74.

    Tang, R. K. et al. Dissolution at the nanoscale: self-preservation of biominerals. Angew. Chem. Int. Ed. 43, 2697–2701 (2004).

    CAS  Article  Google Scholar 

  75. 75.

    Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Habelitz, S., Marshall, S. J., Marshall, G. W. Jr & Balooch, M. Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral. Biol. 46, 173–183 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Kutes, Y., Vyas, V. & Huey, B. D. Nano and micro scale analysis of dentin with in vitro and high speed atomic force microscopy. J. Mater. Res. 28, 2300–2307 (2013).

    CAS  Article  Google Scholar 

  78. 78.

    Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M. & Aizenberg, J. Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Weaver, J. C. et al. Nanostructural features of demosponge biosilica. J. Struct. Biol. 144, 271–281 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Mass, T. et al. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl Acad. Sci. USA 114, 7670–7678 (2017).

    Article  CAS  Google Scholar 

  81. 81.

    Sandersius, S. & Rez, P. Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol. Res. 35, 287–293 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Stolarski, J., Gorzelak, P., Mazur, M., Marrocchi, Y. & Meibom, A. Nanostructural and geochemical features of the Jurassic isocrinid columnal ossicles. Acta Palaeontol. Pol. 54, 69–75 (2009).

    Article  Google Scholar 

  83. 83.

    Stolarski, J., Meibom, A., Przenioslo, R. & Mazur, M. A Cretaceous scleractinian coral with a calcitic skeleton. Science 318, 92–94 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Seto, J. et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl Acad. Sci. USA 109, 3699–3704 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Baronnet, A., Cuif, J. P., Dauphin, Y., Farre, F. & Nouet, J. Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges. Mineral. Mag. 72, 617–626 (2008).

    CAS  Article  Google Scholar 

  86. 86.

    Alves, N. M., Leonor, I. B., Azevedo, H. S., Reis, R. L. & Mano, J. F. Designing biomaterials based on biomineralization of bone. J. Mater. Chem. 20, 2911–2921 (2010).

    CAS  Article  Google Scholar 

  87. 87.

    Verma, D., Katti, K. & Katti, D. Bioactivity in in situ hydroxyapatite–polycaprolactone composites. J. Biomed. Mater. Res. A 78A, 772–780 (2006).

    CAS  Article  Google Scholar 

  88. 88.

    Boduch-Lee, K. A., Chapman, T., Petricca, S. E., Marra, K. G. & Kumta, P. Design and synthesis of hydroxyapatite composites containing an mPEG–dendritic poly(l-lysine) star polycaprolactone. Macromolecules 37, 8959–8966 (2004).

    CAS  Article  Google Scholar 

  89. 89.

    Zhu, Z. H. et al. Studies on induction of l-aspartic acid modified chitosan to crystal growth of the calcium phosphate in supersaturated calcification solution by quartz crystal microbalance. Biosens. Bioelectron. 22, 291–297 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Leonor, I. B. et al. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomater. 4, 1349–1359 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Daculsi, G., Pilet, P., Cottrel, M. & Guicheux, G. Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization. J. Biomed. Mater. Res. 47, 228–233 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Qi, Y., Cheng, Z., Ye, Z., Zhu, H. & Aparicio, C. Bioinspired mineralization with hydroxyapatite and hierarchical naturally aligned nanofibrillar cellulose. ACS Appl. Mater. Interfaces 11, 27598–27604 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Cao, B. & Mao, C. Oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir 23, 10701–10705 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Kino, R. et al. Deposition of bone-like apatite on modified silk fibroin films from simulated body fluid. J. Appl. Polym. Sci. 99, 2822–2830 (2006).

    CAS  Article  Google Scholar 

  95. 95.

    Tanahashi, M. & Matsuda, T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. 34, 305–315 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Zhu, P. X., Masuda, Y., Yonezawa, T. & Koumoto, K. Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J. Am. Ceram. Soc. 86, 782–790 (2003).

    CAS  Article  Google Scholar 

  97. 97.

    Li, D., Newton, S. M. C., Klebba, P. E. & Mao, C. B. Flagellar display of bone-protein-derived peptides for studying peptide-mediated biomineralization. Langmuir 28, 16338–16346 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Behanna, H. A., Donners, J. J. J. M., Gordon, A. C. & Stupp, S. I. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J. Am. Chem. Soc. 127, 1193–1200 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    CAS  Article  Google Scholar 

  100. 100.

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Zhang, S. M. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Newcomb, C. J., Bitton, R., Velichko, Y. S., Snead, M. L. & Stupp, S. I. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 8, 2195–2202 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Wang, F. K., Cao, B. R. & Mao, C. B. Bacteriophage bundles with prealigned Ca2+ initiate the oriented nucleation and growth of hydroxylapatite. Chem. Mater. 22, 3630–3636 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Ruan, Q. C., Zhang, Y. Z., Yang, X. D., Nutt, S. & Moradian-Oldak, J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater. 9, 7289–7297 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Busch, S., Schwarz, U. & Kniep, R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite–gelatine composites. Chem. Mater. 13, 3260–3271 (2001).

    CAS  Article  Google Scholar 

  106. 106.

    Elsharkawy, S. et al. Protein disorder–order interplay to guide the growth of hierarchical mineralized structures. Nat. Commun. 9, 2145 (2018). This work uses elastin-like recombinamer membranes to template the formation of minerals that closely resemble the hierarchical structure of enamel over multiple length scales.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Rao, A. & Cölfen, H. in Biomineralization and Biomaterials: Fundamentals and Applications (eds Aparicio, C. & Ginebra, M.-P.) 51–93 (Woodhead Publishing, 2016).

  108. 108.

    Alexander, C. et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit. 19, 106–180 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Sommerdijk, N. A. J. M. & de With, G. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 108, 4499–4550 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Aizenberg, J., Muller, D. A., Grazul, J. L. & Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Liu, B., Cao, Y. Y., Huang, Z. H., Duan, Y. Y. & Che, S. N. Silica biomineralization via the self-assembly of helical biomolecules. Adv. Mater. 27, 479–497 (2015).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Knecht, M. R. & Wright, D. W. Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir 20, 4728–4732 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Carneiro, K. M. M., Avakyan, N. & Sleiman, H. F. Long-range assembly of DNA into nanofibers and highly ordered networks. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 266–285 (2013).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Kuhnle, A. Self-assembly of organic molecules at metal surfaces. Curr. Opin. Colloid Interface Sci. 14, 157–168 (2009).

    Article  CAS  Google Scholar 

  117. 117.

    Zhou, H. C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Antonietti, M. & Forster, S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003).

    CAS  Article  Google Scholar 

  119. 119.

    De Santis, E. & Ryadnov, M. G. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem. Soc. Rev. 44, 8288–8300 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    King, N. P. & Lai, Y. T. Practical approaches to designing novel protein assemblies. Curr. Opin. Struct. Biol. 23, 632–638 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  122. 122.

    Seeman, N. C. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Madsen, M. & Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 119, 6384–6458 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Roh, Y. H., Ruiz, R. C. H., Peng, S. M., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Zhao, Y. et al. Nanofabrication based on DNA nanotechnology. Nano Today 26, 123–148 (2019).

    CAS  Article  Google Scholar 

  126. 126.

    Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Kielar, C. et al. On the stability of DNA origami nanostructures in low-magnesium buffers. Angew. Chem. Int. Ed. 57, 9470–9474 (2018).

    CAS  Article  Google Scholar 

  128. 128.

    Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Xin, Y., Rivadeneira Martinez, S., Grundmeier, G., Castro, M. & Keller, A. Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange. Nano Res. 13, 3142–3150 (2020).

    CAS  Article  Google Scholar 

  130. 130.

    Wang, D. et al. Isothermal self-assembly of spermidine–DNA nanostructure complex as a functional platform for cancer therapy. ACS Appl. Mater. Interfaces 12, 30019 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982). The first report of DNA sequences that preferentially associate to form junctions and lattices, rather than linear duplex DNA.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Lin, C. X., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Ding, B. Q., Sha, R. J. & Seeman, N. C. Pseudohexagonal 2D DNA crystals from double crossover cohesion. J. Am. Chem. Soc. 126, 10230–10231 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    He, Y., Chen, Y., Liu, H. P., Ribbe, A. E. & Mao, C. D. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Zhang, C. et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl Acad. Sci. USA 105, 10665–10669 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    He, Y., Tian, Y., Ribbe, A. E. & Mao, C. D. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Hamada, S. & Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. 48, 6820–6823 (2009).

    CAS  Article  Google Scholar 

  140. 140.

    Seeman, N. C. The design and engineering of nucleic acid nanoscale assemblies. Curr. Opin. Struct. Biol. 6, 519–526 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Zhang, Y. W. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    CAS  Article  Google Scholar 

  143. 143.

    Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. https://doi.org/10.1039/B402293A (2004).

    Article  Google Scholar 

  144. 144.

    Erben, C. M., Goodman, R. P. & Turberfield, A. J. A self-assembled DNA bipyramid. J. Am. Chem. Soc. 129, 6992–6993 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Aldaye, F. A. et al. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. Nat. Nanotechnol. 4, 349–352 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Hu, Q. Q., Li, H., Wang, L. H., Gu, H. Z. & Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    McLaughlin, C. K., Hamblin, G. D. & Sleiman, H. F. Supramolecular DNA assembly. Chem. Soc. Rev. 40, 5647–5656 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Zheng, J. P. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). This pioneering study depicts the method of 2D DNA origami, where a circular ssDNA scaffold and staple strands fold into intricate shapes, such as squares, discs and five-pointed stars.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–139 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).

    Article  CAS  Google Scholar 

  157. 157.

    Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Yao, G. B. et al. Meta-DNA structures. Nat. Chem. 12, 1067–1075 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  161. 161.

    Tikhomirov, G., Petersen, P. & Qian, L. L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Ke, Y. G., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Fu, J. L., Liu, M. H., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Becerril, H. A. & Woolley, A. T. DNA-templated nanofabrication. Chem. Soc. Rev. 38, 329–337 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Vittala, S. K. DNA-guided assemblies toward nanoelectronic applications. ACS Appl. Bio Mater. 3, 2702–2722 (2020).

    CAS  Article  Google Scholar 

  169. 169.

    Samano, E. C. et al. Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter 7, 3240–3245 (2011).

    CAS  Article  Google Scholar 

  170. 170.

    Greschner, A. A., Bujold, K. E. & Sleiman, H. F. Intercalators as molecular chaperones in DNA self-assembly. J. Am. Chem. Soc. 135, 11283–11288 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Watson, S. M. D., Pike, A. R., Pate, J., Houlton, A. & Horrocks, B. R. DNA-templated nanowires: morphology and electrical conductivity. Nanoscale 6, 4027–4037 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Huang, F. H. & Anslyn, E. V. Introduction: supramolecular chemistry. Chem. Rev. 115, 6999–7000 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  173. 173.

    Amabilino, D. B., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Kim, F. et al. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem. Sci. 10, 10537–10542 (2019). This study describes the synthesis of DNApAsp conjugates that self-assemble into ordered nanostructures that template calcium phosphate mineralization.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Tintore, M., Eritja, R. & Fabrega, C. DNA nanoarchitectures: steps towards biological applications. ChemBioChem 15, 1374–1390 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Matsumoto, A. et al. Degradation rate of DNA scaffolds and bone regeneration. J. Biomed. Mater. Res. B 107, 122–128 (2014).

    Article  CAS  Google Scholar 

  178. 178.

    Chen, S., Zhao, D., Li, F., Zhuo, R. X. & Cheng, S. X. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv. 2, 1820–1826 (2012).

    CAS  Article  Google Scholar 

  179. 179.

    Kato, T., Suzuki, T., Amamiya, T., Irie, T. & Komiyama, N. Effects of macromolecules on the crystallization of CaCO3 the formation of organic/inorganic composites. Supramol. Sci. 5, 411–415 (1998).

    CAS  Article  Google Scholar 

  180. 180.

    Sommerdijk, N. A. J. M., van Leeuwen, E. N. M., Vos, M. R. J. & Jansen, J. A. Calcium carbonate thin films as biomaterial coatings using DNA as crystallization inhibitor. CrystEngComm 9, 1209–1214 (2007).

    CAS  Article  Google Scholar 

  181. 181.

    Lukeman, P. S., Stevenson, M. L. & Seeman, N. C. Morphology change of calcium carbonate in the presence of polynucleotides. Cryst. Growth Des. 8, 1200–1202 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    He, Y., Tian, Y., Chen, Y., Ye, T. & Mao, C. Cation-dependent switching of DNA nanostructures. Macromol. Biosci. 7, 1060–1064 (2007). This study highlights the guided formation of CaCO3 using DNA nanostructures as templates.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Minasov, G., Tereshko, V. & Egli, M. Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J. Mol. Biol. 291, 83–99 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Thorpe, J. H., Gale, B. C., Teixeira, S. C. M. & Cardin, C. J. Conformational and hydration effects of site-selective sodium, calcium and strontium ion binding to the DNA Holliday junction structure d(TCGGTACCGA)4. J. Mol. Biol. 327, 97–109 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Ngourn, S. C., Butts, H. A., Petty, A. R., Anderson, J. E. & Gerdon, A. E. Quartz crystal microbalance analysis of DNA-templated calcium phosphate mineralization. Langmuir 28, 12151–12158 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Galindo, T. G. P., Chai, Y. D. & Tagaya, M. Hydroxyapatite nanoparticle coating on polymer for constructing effective biointeractive interfaces. J. Nanomater. https://doi.org/10.1155/2019/6495239 (2019).

    Article  Google Scholar 

  187. 187.

    Takeshita, T., Matsuura, Y., Arakawa, S. & Okamoto, M. Biomineralization of hydroxyapatite on DNA molecules in SBF: morphological features and computer simulation. Langmuir 29, 11975–11981 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Revilla-López, G. et al. Modeling biominerals formed by apatites and DNA. Biointerphases 8, 10 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  189. 189.

    Baillargeon, K. R. et al. Precipitation SELEX: identification of DNA aptamers for calcium phosphate materials synthesis. Chem. Commun. 53, 1092–1095 (2017).

    CAS  Article  Google Scholar 

  190. 190.

    Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 9, 1010–1014 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191.

    Shlaferman, J., Paige, A., Meserve, K., Miech, J. A. & Gerdon, A. E. Selected DNA aptamers influence kinetics and morphology in calcium phosphate mineralization. ACS Biomater. Sci. Eng. 5, 3228–3236 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192.

    Duffy, E., Florek, J., Colon, S. & Gerdon, A. E. Selected DNA aptamers as hydroxyapatite affinity reagents. Anal. Chim. Acta 1110, 115–121 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Liu, H. P., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. D. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. 45, 1942–1945 (2006).

    CAS  Article  Google Scholar 

  194. 194.

    Liu, X. G. et al. DNA framework-encoded mineralization of calcium phosphate. Chem 6, 472–485 (2020). This work demonstrates calcium phosphate mineralization templated by DNA nanostructures.

    CAS  Article  Google Scholar 

  195. 195.

    Ding, H. C., Pan, H. H., Xu, X. R. & Tang, R. K. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 14, 763–769 (2014).

    CAS  Article  Google Scholar 

  196. 196.

    Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radular teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78–82 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197.

    Aizenberg, J. et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. 198.

    Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  199. 199.

    Jin, C. Y., Qiu, H. B., Han, L., Shu, M. H. & Che, S. A. DNA transcription into diverse porous silicas by a co-structure directing route: chiral, ring and ordered nanochannel arrays. Chem. Commun. https://doi.org/10.1039/B900614A (2009).

    Article  Google Scholar 

  200. 200.

    Numata, M., Sugiyasu, K., Hasegawa, T. & Shinkai, S. Sol–gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials. Angew. Chem. Int. Ed. 43, 3279–3283 (2004).

    CAS  Article  Google Scholar 

  201. 201.

    Shimojo, K., Mitamura, H., Mouri, T. & Naganawa, H. Fabrication of silica nanomaterials reflecting morphological transition of DNA mediated by a silane-appended ionic liquid. Chem. Lett. 40, 435–437 (2011).

    CAS  Article  Google Scholar 

  202. 202.

    Cao, Y. Y., Xie, J. J., Liu, B., Han, L. & Che, S. N. Synthesis and characterization of multi-helical DNA–silica fibers. Chem. Commun. 49, 1097–1099 (2013).

    CAS  Article  Google Scholar 

  203. 203.

    Han, L., Jin, C. Y., Liu, B. & Che, S. N. DNA–silica mineralization: the formation of exceptional two dimensional-square p4mm symmetry by a structural transformation. Chem. Mater. 24, 504–511 (2012).

    CAS  Article  Google Scholar 

  204. 204.

    Jin, C. Y., Han, L. & Che, S. A. Synthesis of a DNA–silica complex with rare two-dimensional square p4mm symmetry. Angew. Chem. Int. Ed. 48, 9268–9272 (2009).

    CAS  Article  Google Scholar 

  205. 205.

    Puddu, M., Paunescu, D., Stark, W. J. & Grass, R. N. Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. ACS Nano 8, 2677–2685 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  206. 206.

    Liu, B., Yao, Y. & Che, S. N. Template-assisted self-assembly: alignment, placement, and arrangement of two-dimensional mesostructured DNA–silica platelets. Angew. Chem. Int. Ed. 52, 14186–14190 (2013).

    CAS  Article  Google Scholar 

  207. 207.

    Liu, B., Han, L. & Che, S. Formation of enantiomeric impeller-like helical architectures by DNA self-assembly and silica mineralization. Angew. Chem. Int. Ed. 51, 923–927 (2012).

    CAS  Article  Google Scholar 

  208. 208.

    Liu, B. et al. Growth of optically active chiral inorganic films through DNA self-assembly and silica mineralisation. Sci. Rep. 4, 4866 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. 209.

    Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018). This work illustrates the use of DNA nanostructures to template silica biomineralization.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  210. 210.

    Nguyen, L., Doblinger, M., Liedl, T. & Heuer-Jungemann, A. DNA-origami-templated silica growth by sol–gel chemistry. Angew. Chem. Int. Ed. 58, 912–916 (2019).

    CAS  Article  Google Scholar 

  211. 211.

    Nguyen, M.-K. et al. Ultrathin silica coating of DNA origami nanostructures. Chem. Mater. 15, 6657–6665 (2020).

    Article  CAS  Google Scholar 

  212. 212.

    Shang, Y. et al. Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 32, 2000294 (2020).

    CAS  Article  Google Scholar 

  213. 213.

    He, Y. et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem. Int. Ed. 44, 6694–6696 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Rizis, A. Godelitsas, A. Greschner and I. Athanasiadou for critically reading the manuscript. K.M.M.C. acknowledges the Natural Sciences and Engineering Research Council of Canada (grant no. 2017-06885) for financial support.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Dimitra Athanasiadou or Karina M. M. Carneiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Athanasiadou, D., Carneiro, K.M.M. DNA nanostructures as templates for biomineralization. Nat Rev Chem 5, 93–108 (2021). https://doi.org/10.1038/s41570-020-00242-5

Download citation

Further reading

  • Bioinspired hydrogels build a bridge from bench to bedside

    • Khaled Seidi
    • , Mohammad Hosein Ayoubi-Joshaghani
    • , Mehdi Azizi
    • , Tahereh Javaheri
    • , Mehdi Jaymand
    • , Effat Alizadeh
    • , Thomas J. Webster
    • , Amirhossein Ahmadieh Yazdi
    • , Mostafa Niazi
    • , Michael R. Hamblin
    • , Zohreh Amoozgar
    •  & Rana Jahanban-Esfahlan

    Nano Today (2021)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing