Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renaissance of chemically generated bispecific antibodies

Abstract

Bispecific antibodies (bsAbs) target two different epitopes. These are an up-and-coming class of biologics, with two such therapeutics (emicizumab and blinatumomab) FDA approved and on the market, and many more in clinical trials. While the first reported bsAbs were constructed by chemical methods, this approach has fallen out of favour with the advent of modern genetic engineering techniques and, nowadays, the vast majority of bsAbs are produced by protein engineering. However, in recent years, relying on innovations in the fields of bioconjugation and bioorthogonal click chemistry, new chemical methods have appeared that have the potential to be competitive with protein engineering techniques and, indeed, hold some advantages. These approaches offer modularity, reproducibility and batch-to-batch consistency, as well as the integration of handles, whereby additional cargo molecules can be attached easily, e.g. to generate bispecific antibody–drug conjugates. The linker between the antibodies/antibody fragments can also be easily varied, and new formats (types, defined by structural properties or by construction methodology) can be generated rapidly. These attributes offer the potential to revolutionize the field. Here, we review chemical methods for the generation of bsAbs, showing that the newest examples of these techniques are worthy competitors to the industry-standard expression-based strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of the unique mechanisms of action of bsAbs.
Fig. 2: Summary of modern methods for the chemical generation of bsAbs.
Fig. 3: The maleimide stability problem.
Fig. 4: The first published method to chemically create bsAbs.
Fig. 5: Chemical methods for generating bsAbs.
Fig. 6: Combined protein engineering and chemical methods for the generation of bsAbs.
Fig. 7: Reagents used for the generation of homogeneous bispecific protein–protein conjugates via disulfide re-bridging.
Fig. 8: Pyridazinedione-based method for the generation of a dually functionalized bsAb.

Similar content being viewed by others

References

  1. Overland, R. et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol. Cancer Ther. 11, 582–593 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Schuurman, J. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor–resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Schanzer, J. M. et al. A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type I (IGF-1R) demonstrating unique molecular properties. J. Biol. Chem. 289, 18693–18706 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang, S. et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res. 73, 824–833 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Slaga, D. et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci. Transl. Med. 10, eaat5775 (2018).

    Article  PubMed  CAS  Google Scholar 

  6. Thom, G. et al. Isolation of blood-brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs 10, 304–314 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pardridge, W. M. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opin. Biol. Ther. 16, 1455–1468 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Andreev, J. et al. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 16, 681–693 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Shima, M. et al. Factor VIII–mimetic function of humanized bispecific antibody in hemophilia A. N. Engl. J. Med. 374, 2044–2053 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, N.-K. et al. Cell-type specific potent Wnt signaling blockade by bispecific antibody. Sci. Rep. 8, 766 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Efimov, G. A. et al. Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl Acad. Sci. USA 113, 3006–3011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rairdan, X. Y. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βKlotho complex. EBioMedicine 2, 730–743 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitazawa, T. et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat. Med. 18, 1570–1574 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Husain, B. & Ellerman, D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs 32, 441–464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blair, H. A. Emicizumab: A review in haemophilia A. Drugs 79, 1697–1707 (2019).

    Article  PubMed  Google Scholar 

  16. Topp, M. S. et al. Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493–2498 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. W. H. I. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Nisonoff, A. & Rivers, M. M. Recombination antibody of a mixture of univalent fragments of different specificity. Arch. Biochem. Biophys. 93, 460–462 (1961).

    Article  CAS  PubMed  Google Scholar 

  19. Milstein, C. & Cuello, A. C. Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Kufer, P., Lutterbüse, R. & Baeuerle, P. A. A revival of bispecific antibodies. Trends Biotechnol. 22, 238–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Maruani, A. Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discov. Today: Technol. 30, 55–61 (2018).

    Article  Google Scholar 

  22. Staerz, U. D., Kanagawa, O. & Bevan, M. J. Hybrid antibodies can target sites for attack by T cells. Nature 314, 628–631 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. MAbs 9, 182–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Holliger, P., Prospero, T. & Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA 90, 6444–6448 (2006).

    Article  Google Scholar 

  26. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    Article  CAS  Google Scholar 

  27. Badescu, G. et al. A new reagent for stable thiol-specific conjugation. Bioconjugate Chem. 25, 460–469 (2014).

    Article  CAS  Google Scholar 

  28. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson, D. Y. Processes for constructing homogeneous antibody drug conjugates. Org. Process Res. Dev. 20, 852–866 (2016).

    Article  CAS  Google Scholar 

  30. Sau, S., Alsaab, H. O., Kashaw, S. K., Tatiparti, K. & Iyer, A. K. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov. Today 22, 1547–1556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody–drug conjugates. Nat. Chem. 8, 114–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Perez, H. L. et al. Antibody–drug conjugates: current status and future directions. Drug Discov. Today 19, 869–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lamb, Y. N. Inotuzumab ozogamicin: first global approval. Drugs 77, 1603–1610 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Godwin, C. D., Gale, R. P. & Walter, R. B. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 31, 1855–1868 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Moura, A., Savageau, M. A. & Alves, R. Relative amino acid composition signatures of organisms and environments. PLoS ONE 8, e77319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van de Donk, N. W. C. J. & Dhimolea, E. Brentuximab vedotin. MAbs 4, 458–465 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Challita-Eid, P. M. et al. Enfortumab vedotin antibody–drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Nakada, T. et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg. Med. Chem. Lett. 26, 1542–1545 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Polson, A. G. et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood 110, 616–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Brotzel, F. & Mayr, H. Nucleophilicities of amino acids and peptides. Org. Biomol. Chem. 5, 3814–3820 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Moon, S. et al. Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) for targeted cancer chemotherapy. J. Med. Chem. 51, 6916–6926 (2009).

    Article  CAS  Google Scholar 

  42. Cardillo, T. M., Govindan, S. V., Sharkey, R. M., Trisal, P. & Goldenberg, D. M. Humanized anti-trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res. 17, 3157–3169 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Ogitani, Y. et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. LoRusso, P. M., Weiss, D., Guardino, E., Girish, S. & Sliwkowski, M. X. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2–positive cancer. Clin. Cancer Res. 17, 6437–6447 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Shen, B. Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Alley, S. C. et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjugate Chem. 19, 759–765 (2008).

    Article  CAS  Google Scholar 

  47. Baldwin, A. D. & Kiick, K. L. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjugate Chem. 22, 1946–1953 (2011).

    Article  CAS  Google Scholar 

  48. Badescu, G. et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjugate Chem. 25, 1124–1136 (2014).

    Article  CAS  Google Scholar 

  49. Bernardes, G. J. L., Steiner, M., Hartmann, I., Neri, D. & Casi, G. Site-specific chemical modification of antibody fragments using traceless cleavable linkers. Nat. Protoc. 8, 2079–2089 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Toda, N., Asano, S. & Barbas, C. F. Rapid, stable, chemoselective labeling of thiols with Julia–Kocieński-like reagents: a serum-stable alternative to maleimide-based protein conjugation. Angew. Chem. Int. Ed. 52, 12592–12596 (2013).

    Article  CAS  Google Scholar 

  51. Koniev, O. et al. Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles. Bioconjugate Chem. 25, 202–206 (2014).

    Article  CAS  Google Scholar 

  52. Smith, M. E. B. et al. A platform for efficient, thiol-stable conjugation to albumin’s native single accessible cysteine. Org. Biomol. Chem. 13, 7946–7949 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Kalia, D., Malekar, P. V. & Parthasarathy, M. Exocyclic olefinic maleimides: synthesis and application for stable and thiol-selective bioconjugation. Angew. Chem. Int. Ed. 55, 1432–1435 (2016).

    Article  CAS  Google Scholar 

  54. Zhang, Y. et al. Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones. Nat. Commun. 11, 1015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tumey, L. N. et al. Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjugate Chem. 25, 1871–1880 (2014).

    Article  CAS  Google Scholar 

  56. Lyon, R. P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat. Biotechnol. 32, 1059–1062 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Fontaine, S. D., Reid, R., Robinson, L., Ashley, G. W. & Santi, D. V. Long-term stabilization of maleimide–thiol conjugates. Bioconjugate Chem. 26, 145–152 (2015).

    Article  CAS  Google Scholar 

  58. Christie, R. J. et al. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J. Control. Rel. 220, 660–670 (2015).

    Article  CAS  Google Scholar 

  59. Kalia, D., Pawar, S. P. & Thopate, J. S. Stable and rapid thiol bioconjugation by light-triggered thiomaleimide ring hydrolysis. Angew. Chem. Int. Ed. 56, 1885–1889 (2017).

    Article  CAS  Google Scholar 

  60. Ponte, J. F. et al. Understanding how the stability of the thiol-maleimide linkage impacts the pharmacokinetics of lysine-linked antibody–maytansinoid conjugates. Bioconjugate Chem. 27, 1588–1598 (2016).

    Article  CAS  Google Scholar 

  61. Dovgan, I., Kolodych, S., Koniev, O. & Wagner, A. 2-(Maleimidomethyl)-1,3-dioxanes (MD): A serum-stable self-hydrolysable hydrophilic alternative to classical maleimide conjugation. Sci. Rep. 6, 30835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tobaldi, E., Dovgan, I., Mosser, M., Becht, J. M. & Wagner, A. Structural investigation of cyclo-dioxo maleimide cross-linkers for acid and serum stability. Org. Biomol. Chem. 15, 9305–9310 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Szijj, P. A., Bahou, C. & Chudasama, V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov. Today Technol. 30, 27–34 (2018).

    Article  PubMed  Google Scholar 

  64. Forte, N. et al. Tuning the hydrolytic stability of next generation maleimide cross-linkers enables access to albumin-antibody fragment conjugates and tri-scFvs. Bioconjugate Chem. 29, 486–492 (2018).

    Article  CAS  Google Scholar 

  65. Morais, M. et al. Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis. Org. Biomol. Chem. 15, 2947–2952 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, M. T. W., Maruani, A. & Chudasama, V. The use of 3,6-pyridazinediones in organic synthesis and chemical biology. J. Chem. Res. 40, 1–9 (2016).

    Article  CAS  Google Scholar 

  67. Bahou, C. et al. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org. Biomol. Chem. 16, 1359–1366 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robinson, E. et al. Pyridazinediones deliver potent, stable, targeted and efficacious antibody–drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC Adv. 7, 9073–9077 (2017).

    Article  CAS  Google Scholar 

  69. Lee, M. T. W., Maruani, A., Baker, J. R., Caddick, S. & Chudasama, V. Next-generation disulfide stapling: reduction and functional re-bridging all in one. Chem. Sci. 7, 799–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Maruani, A. et al. A mild TCEP-based para-azidobenzyl cleavage strategy to transform reversible cysteine thiol labelling reagents into irreversible conjugates. Chem. Commun. 51, 5279–5282 (2015).

    Article  CAS  Google Scholar 

  71. Brennan, M., Davison, P. F. & Paulus, H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229, 81–83 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Glennie, M. J., McBride, H. M., Worth, A. T. & Stevenson, G. T. Preparation and performance of bispecific F(ab′ gamma)2 antibody containing thioether-linked Fab′ gamma fragments. J. Immunol. 139, 2367–2375 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Shalaby, M. R. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J. Exp. Med. 175, 217–225 (2004).

    Article  Google Scholar 

  74. Patke, S. et al. bisFabs: Tools for rapidly screening hybridoma IgGs for their activities as bispecific antibodies. MAbs 9, 430–437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Segal, D. M. & Bast, B. J. E. G. Production of bispecific antibodies. Curr. Protoc. Immunol. 14, 2.13.1–2.13.16 (1995).

    Article  Google Scholar 

  76. Reusch, U. et al. Anti-CD3 × anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin. Cancer Res. 12, 183–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, R. J. et al. Antibody targeting of stem cells to infarcted myocardium. Stem Cell 25, 712–717 (2007).

    Article  CAS  Google Scholar 

  78. Barbas, C. F. III et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Rader, C., Lerner, R. A., Barbas, C. F., Popkov, M. & Sinha, S. C. Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst. Proc. Natl Acad. Sci. USA 100, 5396–5400 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gavrilyuk, J. I. et al. An efficient chemical approach to bispecific antibodies and antibodies of high valency. Bioorg. Med. Chem. Lett. 19, 3716–3720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walseng, E. et al. Chemically programmed bispecific antibodies in diabody format. J. Biol. Chem. 291, 19661–19673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Doppalapudi, V. R. et al. Chemical generation of bispecific antibodies. Proc. Natl Acad. Sci. USA 107, 22611–22616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Scheer, J. M. et al. Reorienting the Fab domains of trastuzumab results in potent HER2 activators. PLoS ONE 7, 51817 (2012).

    Article  CAS  Google Scholar 

  85. Bundy, B. C. & Swartz, J. R. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein–protein click conjugation. Bioconjugate Chem. 21, 255–263 (2010).

    Article  CAS  Google Scholar 

  86. Kim, C. H. et al. Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J. Am. Chem. Soc. 134, 9918–9921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cao, Y. et al. Multiformat T-cell-engaging bispecific antibodies targeting human breast cancers. Angew. Chem. Int. Ed. 54, 7022–7027 (2015).

    Article  CAS  Google Scholar 

  88. Kazane, S. A. et al. Self-assembled antibody multimers through peptide nucleic acid conjugation. J. Am. Chem. Soc. 135, 340–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Wagner, K. et al. Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc. Natl Acad. Sci. USA 111, 16820–16825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bartels, L., Ploegh, H. L., Spits, H. & Wagner, K. Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation. Methods 154, 93–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Baalmann, M. et al. A bioorthogonal click chemistry toolbox for targeted synthesis of branched and well-defined protein–protein conjugates. Angew. Chem. Int. Ed. 59, 12885–12893 (2020).

    Article  CAS  Google Scholar 

  92. Maruani, A. et al. A plug-and-play approach for the de novo generation of dually functionalized bispecifics. Bioconjugate Chem. 31, 520–529 (2020).

    Article  CAS  Google Scholar 

  93. Khalili, H. et al. Fab-PEG-Fab as a potential antibody mimetic. Bioconjugate Chem. 24, 1870–1882 (2013).

    Article  CAS  Google Scholar 

  94. Hull, E. A. et al. Homogeneous bispecifics by disulfide bridging. Bioconjugate Chem. 25, 1395–1401 (2014).

    Article  CAS  Google Scholar 

  95. Patterson, J. T. et al. PSMA-targeted bispecific Fab conjugates that engage T cells. Bioorg. Med. Chem. Lett. 27, 5490–5495 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Patterson, J. T. et al. Chemically generated IgG2 bispecific antibodies through disulfide bridging. Bioorg. Med. Chem. Lett. 27, 3647–3652 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswellt, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Autio, K. A., Boni, V., Humphrey, R. W. & Naing, A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin. Cancer Res. 26, 984–989 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Bahou, C. et al. Disulfide modified IgG1: an investigation of biophysical profile and clinically relevant Fc interactions. Bioconjugate Chem. 30, 1048–1054 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.S. would like to thank the Wellcome Trust for their generous funding.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and V.C. co-wrote the Review and co-analysed the literature.

Corresponding author

Correspondence to Vijay Chudasama.

Ethics declarations

Competing interests

V.C. is a co-founder and director of the company ThioLogics. P.S. has no competing interests to declare.

Additional information

Peer review information

Nature Reviews Chemistry thanks D. Neri, T. Pillow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szijj, P., Chudasama, V. The renaissance of chemically generated bispecific antibodies. Nat Rev Chem 5, 78–92 (2021). https://doi.org/10.1038/s41570-020-00241-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-00241-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing