Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards chemistry at absolute zero

Abstract

The prospect of cooling matter down to temperatures that are close to absolute zero raises intriguing questions about how chemical reactivity changes under these extreme conditions. Although some types of chemical reaction still occur at 1 μK, they can no longer adhere to the conventional picture of reactants passing over an activation energy barrier to become products. Indeed, at ultracold temperatures, the system enters a fully quantum regime, and quantum mechanics replaces the classical picture of colliding particles. In this Review, we discuss recent experimental and theoretical developments that allow us to explore chemical reactions at temperatures that range from 100 K to 500 nK. Although the field is still in its infancy, exceptional control has already been demonstrated over reactivity at low temperatures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Exploring the reactivity of different isomers in ion–molecule reactions.
Fig. 2: A hybrid trap for ions and neutral atoms.
Fig. 3: An ultracold bimolecular reaction study.

References

  1. 1.

    Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Physik. Chem. 4, 226–248 (1889).

    Google Scholar 

  2. 2.

    Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C. & Wilkinson, D. T. Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512, 511–520 (1999).

    Article  Google Scholar 

  3. 3.

    The Nobel Prize in Physics 1997. NobelPrize.org https://www.nobelprize.org/prizes/physics/1997/summary/ (1997).

  4. 4.

    Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    McGuire, B. A. 2018 Census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 239, 17 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Bethlem, H. L., Crompvoets, F. M. H., Jongma, R. T., van de Meerakker, S. Y. T. & Meijer, G. Deceleration and trapping of ammonia using time-varying electric fields. Phys. Rev. A 65, 053416 (2002).

    Article  CAS  Google Scholar 

  7. 7.

    Bell, M. T. & Softley, T. P. Ultracold molecules and ultracold chemistry. Mol. Phys. 107, 99–132 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Clary, D. C. & Henshaw, J. P. Chemical reactions dominated by long-range intermolecular forces. Faraday Discuss. Chem. Soc. 84, 333–349 (1987).

    CAS  Article  Google Scholar 

  9. 9.

    Clary, D. C. Rate constants for the reactions of ions with dipolar polyatomic molecules. J. Chem. Soc. Faraday Trans. 2 83, 139–148 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    Troe, J. Statistical adiabatic channel model for ion-molecule capture processes. J. Chem. Phys. 87, 2773–2780 (1987).

    CAS  Article  Google Scholar 

  11. 11.

    Dashevskaya, E. I., Maergoiz, A. I., Troe, J., Litvin, I. & Nikitin, E. E. Low-temperature behavior of capture rate constants for inverse power potentials. J. Chem. Phys. 118, 7313–7320 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    Kosloff, R. & Kosloff, D. Absorbing boundaries for wave propagation problems. J. Comput. Phys. 63, 363–376 (1986).

    Article  Google Scholar 

  13. 13.

    Balakrishnan, N. Perspective: Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys. 145, 150901 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Croft, J. F. E. et al. Universality and chaoticity in ultracold K + KRb chemical reactions. Nat. Commun. 8, 15897 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Berteloite, C. et al. Kinetics and dynamics of the S(1D2) + H2 → SH + H reaction at very low temperatures and collision energies. Phys. Rev. Lett. 105, 203201 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Chefdeville, S. et al. Appearance of low energy resonances in CO–para-H2 inelastic collisions. Phys. Rev. Lett. 109, 023201 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Vogels, S. N. et al. Imaging resonances in low-energy NO-He inelastic collisions. Science 350, 787–790 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Vogels, S. N. et al. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nat. Chem. 10, 435–440 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Yang, T. et al. Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunnelling. Nat. Chem. 11, 774–781 (2019).

    Google Scholar 

  23. 23.

    Klein, A. et al. Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    de Jongh, T. et al. Imaging the onset of the resonance regime in low-energy NO-He collisions. Science 368, 626–630 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Herbst, E. & Millar, T. J. in Low Temperatures and Cold Molecules Ch. 1 (ed. Smith, I. W. M.) 1–54 (Imperial College Press, 2008).

  26. 26.

    Canosa, A., Goulay, F., Sims, I. R. & Rowe, B. R. in Low Temperatures and Cold Molecules Ch. 2 (ed. Smith I. W. M.) 55–120 (Imperial College Press, 2008).

  27. 27.

    Klippenstein, S. J. & Georgievskii, Y. in Low Temperatures and Cold Molecules Ch. 4 (ed. Smith I. W. M.) 175–229 (Imperial College Press, 2008).

  28. 28.

    Marquette, J., Rowe, B., Dupeyrat, G., Poissant, G. & Rebrion, C. Ion—polar-molecule reactions: A CRESU study of He+, C+, N+ + H2O, NH3 at 27, 68 and 163 K. Chem. Phys. Lett. 122, 431–435 (1985).

    CAS  Article  Google Scholar 

  29. 29.

    Rowe, B., Canosa, A. & Le Page, V. FALP and CRESU studies of ionic reactions. Int. J. Mass Spectrom. Ion Processes 149–150, 573–596 (1995).

    Article  Google Scholar 

  30. 30.

    Smith, I. W. M. Laboratory astrochemistry: gas-phase processes. Annu. Rev. Astron. Astrophys. 49, 29–66 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Shannon, R. J., Blitz, M. A., Goddard, A. & Heard, D. E. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 5, 745–749 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Tizniti, M. et al. The rate of the F + H2 reaction at very low temperatures. Nat. Chem. 6, 141–145 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Catani, K. J., Greenberg, J., Saarel, B. V. & Lewandowski, H. J. Reactions of translationally cold trapped CCl+ with acetylene (C2H2). J. Chem. Phys. 152, 234310 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Plasil, R. et al. Reactions of cold trapped CH+ ions with slow H atoms. Astrophys. J. 737, 60 (2011).

    Article  CAS  Google Scholar 

  35. 35.

    Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. Nat. Phys. 11, 467–470 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Tran, T. D. et al. Formation of H2O+ and H3O+ cations in reactions of OH+ and H2O+ with H2: experimental studies of the reaction rate coefficients from T = 15 to 300 K. Astrophys. J. 854, 25 (2018).

    Article  CAS  Google Scholar 

  37. 37.

    Mulin, D. et al. H/D exchange in reactions of OH with D2 and of OD with H2 at low temperatures. Phys. Chem. Chem. Phys. 17, 8732–8739 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Bergeat, A., Faure, A., Morales, S. B., Moudens, A. & Naulin, C. Low-energy water–hydrogen inelastic collisions. J. Phys. Chem. A 124, 259–264 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Millar, T. J. Deuterium fractionation in interstellar clouds. Space Sci. Rev. 106, 73–86 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Herbst, E. Isotopic fractionation by ion-molecule reactions. Space Sci. Rev. 106, 293–304 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Petralia, L. S., Tsikritea, A., Loreau, J., Softley, T. P. & Heazlewood, B. R. Strong inverse kinetic isotope effect observed in ammonia charge exchange reactions. Nat. Commun. 11, 173 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Chang, Y.-P. et al. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342, 98–101 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Kilaj, A. et al. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nat. Commun. 9, 2096 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Heazlewood, B. R. Cold ion chemistry within Coulomb crystals. Mol. Phys. 117, 1934–1941 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Willitsch, S., Bell, M. T., Gingell, A. D. & Softley, T. P. Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10, 7200–7210 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Bell, M. T., Gingell, A. D., Oldham, J. M., Softley, T. P. & Willitsch, S. Ion-molecule chemistry at very low temperatures: cold chemical reactions between Coulomb-crystallized ions and velocity-selected neutral molecules. Faraday Discuss. 142, 73–91 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Willitsch, S. Coulomb-crystallised molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 3, 175–199 (2012).

    Article  CAS  Google Scholar 

  48. 48.

    Thompson, R. C. Ion coulomb crystals. Contemp. Phys. 56, 63–79 (2015).

    CAS  Google Scholar 

  49. 49.

    Drewsen, M. Ion Coulomb crystals. Phys. B Condens. Matter 460, 105–113 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Zhang, D. & Willitsch, S. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (RSC Publishing, 2017).

  51. 51.

    Willitsch, S. Chemistry with controlled ions. Adv. Chem. Phys. 162, 307–340 (2017).

    CAS  Google Scholar 

  52. 52.

    Calvin, A. T. & Brown, K. R. Spectroscopy of molecular ions in Coulomb crystals. J. Phys. Chem. Lett. 9, 5797–5804 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Yang, T. et al. Optical control of reactions between water and laser-cooled Be+ ions. J. Phys. Chem. Lett. 9, 3555–3560 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Greenberg, J., Schmid, P. C., Miller, M., Stanton, J. F. & Lewandowski, H. J. Quantum-state-controlled reactions between molecular radicals and ions. Phys. Rev. A 98, 032702 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Schmid, P. C. et al. Quantum-state-specific reaction rate measurements for the photo-induced reaction Ca+ + O2 → CaO+ + O. Mol. Phys. 117, 3036–3042 (2019).

    CAS  Article  Google Scholar 

  56. 56.

    Lara, M. et al. Dynamics of the S(1D2) + HD (j = 0) reaction at collision energies approaching the cold regime: a stringent test for theory. Phys. Rev. Lett. 109, 133201 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  57. 57.

    Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6, 332–335 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Shagam, Y. et al. Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions. Nat. Chem. 7, 921–926 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Gordon, S. D. S. et al. Quantum-state-controlled channel branching in cold Ne(3P2)+Ar chemi-ionization. Nat. Chem. 10, 1190–1195 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Allmendinger, P. et al. New method to study ion–molecule reactions at low temperatures and application to the \({{\rm{H}}}_{2}^{+}\) + H2\({{\rm{H}}}_{3}^{+}\) + H reaction. Chem. Phys. Chem. 17, 3596–3608 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Allmendinger, P., Deiglmayr, J., Hoveler, K., Schullian, O. & Merkt, F. Observation of enhanced rate coefficients in the \({{\rm{H}}}_{2}^{+}\) + H2\({{\rm{H}}}_{3}^{+}\) + H reaction at low collision energies. J. Chem. Phys. 145, 244316 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  62. 62.

    Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    CAS  Article  Google Scholar 

  63. 63.

    Saito, R. et al. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions. Phys. Rev. A 95, 032709 (2017).

    Article  Google Scholar 

  64. 64.

    Puri, P. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Dörfler, A. D. et al. Long-range versus short-range effects in cold molecular ion-neutral collisions. Nat. Commun. 10, 5429 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Singh, V. et al. Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K. Phys. Rev. Lett. 108, 203201 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  67. 67.

    Stuhl, B. K., Hummon, M. T. & Ye, J. Cold state-selected molecular collisions and reactions. Annu. Rev. Phys. Chem. 65, 501–518 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Toscano, J., Lewandowski, H. & Heazlewood, B. R. Cold and controlled chemical reaction dynamics. Phys. Chem. Chem. Phys. 22, 9180–9194 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Kendrick, B. K. & Balakrishnan, N. Geometric phase effects in ultracold chemical reactions. Atoms 7, 65 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Hazra, J., Kendrick, B. K. & Balakrishnan, N. Importance of geometric phase effects in ultracold chemistry. J. Phys. Chem. A 119, 12291–12303 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413–416 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    De Marco, L. D. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2018).

    Article  CAS  Google Scholar 

  75. 75.

    Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Drews, B., Deiß, M., Jachymksi, K., Idziaszek, Z. & Hecker Denschlag, J. Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state. Nat. Commun. 8, 14854 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Hoffmann, D. K., Paintner, T., Limmer, W., Petrov, D. S. & Hecker Denschlag, J. Reaction kinetics of ultracold molecule-molecule collisions. Nat. Commun. 9, 5244 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87 Rb molecules with controlled chemical reactivities. Sci. Adv. 4, eaaq0083 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Guo, M. et al. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8, 041044 (2018).

    CAS  Google Scholar 

  80. 80.

    Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Yan, Z. Z. et al. Resonant dipolar collisions of ultracold molecules induced by microwave dressing. Phys. Rev. Lett. 125, 063401 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    CAS  Article  Google Scholar 

  84. 84.

    Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Liu, Y., Grimes, D. D., Hu, M.-G. & Ni, K.-K. Probing ultracold chemistry using ion spectrometry. Phys. Chem. Chem. Phys. 22, 4861–4874 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Hu, M.-G. et al. State-to-state control of ultracold molecular reactions. Preprint at arXiv https://arxiv.org/abs/2005.10820 (2020).

  87. 87.

    Quack, M. Detailed symmetry selection rules for reactive collisions. Mol. Phys. 34, 477–504 (1977).

    CAS  Article  Google Scholar 

  88. 88.

    Dulitz, K. et al. Suppression of Penning ionization by orbital angular momentum conservation. Phys. Rev. A 102, 022818 (2020).

    CAS  Article  Google Scholar 

  89. 89.

    Wolf, J. et al. State-to-state chemistry for three-body recombination in an ultracold rubidium gas. Science 358, 921–924 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article  CAS  Google Scholar 

  91. 91.

    Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 043401 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Karpov, M., Pitzer, M., Segev, Y., Narevicius, J. & Narevicius, E. Low-energy collisions between carbon atoms and oxygen molecules in a magnetic trap. New J Phys. 22, 103055 (2020).

    CAS  Article  Google Scholar 

  94. 94.

    Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2019).

    Article  CAS  Google Scholar 

  95. 95.

    Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Sias, C. Making ions cooler. Nat. Phys. 16, 378–379 (2020).

    CAS  Article  Google Scholar 

  98. 98.

    The Nobel Prize in Chemistry 1986. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/1986/summary/ (1986).

  99. 99.

    Amarasinghe, C. et al. State-to-state scattering of highly vibrationally excited NO at broadly tunable energies. Nat. Chem. 12, 528–534 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Jankunas, J., Bertsche, B., Jachymski, K., Hapka, M. & Osterwalder, A. Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140, 244302 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. 102.

    Even, U. The Even-Lavie valve as a source for high intensity supersonic beam. Eur. Phys. J. Tech. Instrum. 2, 17 (2015).

    Google Scholar 

  103. 103.

    Shagam, Y. & Narevicius, E. Sub-Kelvin collision temperatures in merged neutral beams by correlation in phase-space. J. Phys. Chem. C 117, 22454–22461 (2013).

    CAS  Article  Google Scholar 

  104. 104.

    Rowe, B. R. et al. The reaction \({{\rm{O}}}_{2}^{+}\) + CH4 → CH3\({{\rm{O}}}_{2}^{+}\) + H studied from 20 to 560 K in a supersonic jet and in a SIFT. J. Chem. Phys. 80, 241–245 (1984).

    CAS  Article  Google Scholar 

  105. 105.

    Amarasinghe, C. & Suits, A. G. Intrabeam scattering for ultracold collisions. J. Phys. Chem. Lett. 8, 5153–5159 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Perreault, W. E., Mukherjee, N. & Zare, R. N. HD (v = 1, j = 2, m) orientation controls HD–He rotationally inelastic scattering near 1 K. J. Chem. Phys. 150, 174301 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  107. 107.

    Gawlas, K. & Hogan, S. D. Rydberg-state-resolved resonant energy transfer in cold electric-field-controlled intrabeam collisions of NH3 with Rydberg He atoms. J. Phys. Chem. Lett. 11, 83–87 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558 (1999).

    CAS  Article  Google Scholar 

  109. 109.

    Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H. & Merkt, F. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75, 031402(R) (2007).

    Article  CAS  Google Scholar 

  110. 110.

    Narevicius, E. et al. Stopping supersonic beams with a series of pulsed electromagnetic coils: An atomic coilgun. Phys. Rev. Lett. 100, 093003 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  111. 111.

    Hogan, S. D., Motsch, M. & Merkt, F. Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Phys. Chem. Chem. Phys. 13, 18705–18723 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    van de Meerakker, S. Y. T., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  113. 113.

    van de Meerakker, S. Y. T. & Meijer, G. Collision experiments with Stark-decelerated beams. Faraday Discuss. 142, 113–126 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  114. 114.

    Narevicius, E. & Raizen, M. G. Toward cold chemistry with magnetically decelerated supersonic beams. Chem. Rev. 112, 4879–4889 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Akerman, N. et al. Trapping of molecular oxygen together with lithium atoms. Phys. Rev. Lett. 119, 073204 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Segev, Y. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189–193 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Riedel, J. et al. Accumulation of stark-decelerated NH molecules in a magnetic trap. Eur. Phys. J. D 65, 161–166 (2011).

    CAS  Article  Google Scholar 

  119. 119.

    Caldwell, L. et al. Long rotational coherence times of molecules in a magnetic trap. Phys. Rev. Lett. 124, 063001 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Hummon, M. T. et al. Cold N + NH collisions in a magnetic trap. Phys. Rev. Lett. 106, 053201 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  122. 122.

    Toscano, J., Rennick, C. J., Softley, T. P. & Heazlewood, B. R. A magnetic guide to purify radical beams. J. Chem. Phys. 149, 174201 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  123. 123.

    Wester, R. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B 42, 154001 (2009).

    Article  CAS  Google Scholar 

  124. 124.

    Meyer, K. A. E. et al. Ejection of Coulomb crystals from a linear Paul ion trap for ion–molecule reaction studies. J. Phys. Chem. A 119, 12449–12456 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Rangwala, S. A., Junglen, T., Rieger, T., Pinkse, P. W. H. & Rempe, G. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67, 043406 (2003).

    Article  CAS  Google Scholar 

  126. 126.

    Chervenkov, S. et al. Continuous centrifuge decelerator for polar molecules. Phys. Rev. Lett. 112, 013001 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Tariq, N., Al Taisan, N., Singh, V. & Weinstein, J. D. Spectroscopic detection of the LiHe molecule. Phys. Rev. Lett. 110, 153201 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  129. 129.

    Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Wu, X., Gantner, T., Zeppenfeld, M., Chervenkov, S. & Rempe, G. Thermometry of guided molecular beams from a cryogenic buffer-gas cell. ChemPhysChem 17, 3631–3640 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Niman, J. W., Kamerin, B. S., Merthe, D. J., Kranabetter, L. & Kresin, V. V. Oriented polar molecules trapped in cold helium nanodropets: electrostatic deflection, size separation, and charge migration. Phys. Rev. Lett. 123, 043203 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Mauracher, A. et al. Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K. Phys. Rep. 751, 1–90 (2018).

    CAS  Article  Google Scholar 

  133. 133.

    Slenczka A. & Toennies, J. P. in Low Temperatures and Cold Molecules Ch. 7 (ed. Smith I. W. M.) 345–392 (Imperial College Press, 2008).

  134. 134.

    Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Lang, F., Winkler, K., Strauss, C., Grimm, R. & Hecker Denschlag, J. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  138. 138.

    Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  139. 139.

    Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  140. 140.

    Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na 87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  141. 141.

    Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1988).

    Article  Google Scholar 

  142. 142.

    Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Williams, H. J. et al. Characteristics of a magneto-optical trap of molecules. New J. Phys. 19, 113035 (2017).

    Article  CAS  Google Scholar 

  145. 145.

    Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    CAS  Article  Google Scholar 

  146. 146.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    CAS  Article  Google Scholar 

  147. 147.

    Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  148. 148.

    Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Zhelyazkova, V. et al. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89, 053416 (2014).

    Article  CAS  Google Scholar 

  150. 150.

    Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    CAS  Google Scholar 

  152. 152.

    Parazzoli, L. P., Fitch, N. J., Żuchowski, P. S., Hutson, J. M. & Lewandowski, H. J. Large effects of electric fields on atom-molecule collisions at millikelvin temperatures. Phys. Rev. Lett. 106, 193201 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Preprint at arXiv https://arxiv.org/abs/2007.12277 (2020).

Download references

Acknowledgements

We are grateful for financial support from the Engineering and Physical Sciences Research Council (B.R.H. and T.P.S.) and the Royal Society (B.R.H.), and for the careful reading of the reviewers of this manuscript.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Brianna R. Heazlewood or Timothy P. Softley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer-reviews information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heazlewood, B.R., Softley, T.P. Towards chemistry at absolute zero. Nat Rev Chem 5, 125–140 (2021). https://doi.org/10.1038/s41570-020-00239-0

Download citation

Further reading

  • Using isotopologues to probe the potential energy surface of reactions of C2H2++C3H4

    • James Greenberg
    • , Philipp C. Schmid
    • , James H. Thorpe
    • , Thanh L. Nguyen
    • , Katherine J. Catani
    • , Olivia A. Krohn
    • , Mikhail I. Miller
    • , John F. Stanton
    •  & H. J. Lewandowski

    The Journal of Chemical Physics (2021)

  • Roadmap on dynamics of molecules and clusters in the gas phase

    • Henning Zettergren
    • , Alicja Domaracka
    • , Thomas Schlathölter
    • , Paola Bolognesi
    • , Sergio Díaz-Tendero
    • , Marta Łabuda
    • , Sanja Tosic
    • , Sylvain Maclot
    • , Per Johnsson
    • , Amanda Steber
    • , Denis Tikhonov
    • , Mattea Carmen Castrovilli
    • , Lorenzo Avaldi
    • , Sadia Bari
    • , Aleksandar R. Milosavljević
    • , Alicia Palacios
    • , Shirin Faraji
    • , Dariusz G. Piekarski
    • , Patrick Rousseau
    • , Daniela Ascenzi
    • , Claire Romanzin
    • , Ewa Erdmann
    • , Manuel Alcamí
    • , Janina Kopyra
    • , Paulo Limão-Vieira
    • , Jaroslav Kočišek
    • , Juraj Fedor
    • , Simon Albertini
    • , Michael Gatchell
    • , Henrik Cederquist
    • , Henning T. Schmidt
    • , Elisabeth Gruber
    • , Lars H. Andersen
    • , Oded Heber
    • , Yoni Toker
    • , Klavs Hansen
    • , Jennifer A. Noble
    • , Christophe Jouvet
    • , Christina Kjær
    • , Steen Brøndsted Nielsen
    • , Eduardo Carrascosa
    • , James Bull
    • , Alessandra Candian
    •  & Annemieke Petrignani

    The European Physical Journal D (2021)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing