Abstract
In beetles, luciferase enzymes catalyse the conversion of chemical energy into light through bioluminescence. The principles of this process have become a fundamental biotechnological tool that revolutionized biological research. Different beetle species can emit different colours of light, despite using the same substrate and highly homologous luciferases. The chemical reasons for these different colours are hotly debated yet remain unresolved. This Review summarizes the structural, biochemical and spectrochemical data on beetle bioluminescence reported over the past three decades. We identify the factors that govern what colour is emitted by wild-type and mutant luciferases. This topic is controversial, but, in general, we note that green emission requires cationic residues in a specific position near the benzothiazole fragment of the emitting molecule, oxyluciferin. The commonly emitted green–yellow light can be readily changed to red by introducing a variety of individual and multiple mutations. However, complete switching of the emitted light from red to green has not been accomplished and the synergistic effects of combined mutations remain unexplored. The minor colour shifts produced by most known mutations could be important in establishing a ‘mutational catalogue’ to fine-tune emission of beetle luciferases, thereby expanding the scope of their applications.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Newton, H. E. A History Lumin. Earliest 1900. Memoirs of the American Philosophical Society Vol. 44 (J. H. Furst Company, 1958).
Liu, Y.-J., De Vico, L. & Lindh, R. Ab initio investigation on the chemical origin of the firefly bioluminescence. J. Photochem. Photobiol. A 194, 261–267 (2008).
Liu, F., Liu, Y., De Vico, L. & Lindh, R. Theoretical study of the chemiluminescent decomposition of dioxetanone. J. Am. Chem. Soc. 131, 6181–6188 (2009).
Navizet, I. et al. Color-tuning mechanism of firefly investigated by multi-configurational perturbation method. J. Am. Chem. Soc. 132, 706–712 (2010).
Chen, S.-F. et al. Systematic theoretical investigation on the light emitter of firefly. J. Chem. Theory Comput. 7, 798–803 (2011).
Yue, L., Roca-Sanjuán, D., Lindh, R., Ferré, N. & Liu, Y.-J. Can the closed-shell DFT methods describe the thermolysis of 1,2-dioxetanone? J. Chem. Theory Comput. 8, 4359–4363 (2012).
Navizet, I. et al. Are the bio- and chemiluminescence states of the firefly oxyluciferin the same as the fluorescence state? Photochem. Photobiol. 89, 319–325 (2013).
Augusto, F. A. et al. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones. Phys. Chem. Chem. Phys. 19, 3955–3962 (2017).
Francés-Monerris, A., Galván, I. F., Lindh, R. & Roca-Sanjuán, D. Triplet versus singlet chemiexcitation mechanism in dioxetanone: a CASSCF/CASPT2 study. Theor. Chem. Acc. 136, 70 (2017).
Berraud-Pache, R., Lindh, R. & Navizet, I. QM/MM study of the formation of the dioxetanone ring in fireflies through a superoxide ion. J. Phys. Chem. B 122, 5173–5182 (2018).
Vacher, M. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 118, 6927–6974 (2018).
McElroy, W. D. The energy source for bioluminescence in an isolated system. Proc. Natl Acad. Sci. USA 33, 342–345 (1947).
Strehler, B. L. & Totter, J. R. in Methods of Biochemical Analysis (ed Glick, D.) 341–356 (Wiley, 1954).
Lundin, A. & Thore, A. Analytical information obtainable by evaluation of the time course of firefly bioluminescence in the assay of ATP. Anal. Biochem. 66, 47–63 (1975).
Hysert, D. W., Kovecses, F. & Morrison, N. M. A firefly bioluminescence ATP assay method for rapid detection and enumeration of brewery microorganisms. J. Am. Soc. Brew. Chem. 34, 145–150 (1976).
Beigi, R., Kobatake, E., Aizawa, M. & Dubyak, G. R. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am. J. Physiol. 276, C267–C278 (1999).
Mezzanotte, L., van ‘t Root, M., Karatas, H., Goun, E. A. & Löwik, C. W. G. M. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol. 35, 640–652 (2017).
Maric, T. et al. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat. Methods 16, 526–532 (2019).
Momota, H. & Holland, E. C. Bioluminescence technology for imaging cell proliferation. Curr. Opin. Biotechnol. 16, 681–686 (2005).
Contag, C. H. & Bachmann, M. H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
Steinberg, S. M., Poziomek, E. J., Engelmann, W. H. & Rogers, K. R. A review of environmental applications of bioluminescence measurements. Chemosphere 30, 2155–2197 (1995).
Fernández-Piñas, F., Rodea-Palomares, I., Leganés, F., González-Pleiter, M. & Muñoz-Martín, M. A. Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. Adv. Biochem. Eng. Biotechnol. 145, 65–135 (2014).
Alloush, H. M., Lewis, R. J. & Salisbury, V. C. Bacterial bioluminescent biosensors: applications in food and environmental monitoring. Anal. Lett. 39, 1517–1526 (2006).
Santos-Merino, M., Singh, A. K. & Ducat, D. C. New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front. Bioeng. Biotechnol. 7, 1–24 (2019).
Khakhar, A. et al. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 9, e52786 (2020).
Fisher, A. J., Rayment, I., Raushel, F. M. & Baldwin, T. O. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 Å resolution. Biochemistry 34, 6581–6586 (1995).
Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a super-family of adenylate-forming enzymes. Structure 4, 287–298 (1996).
Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372–376 (2006).
Naumov, P., Ozawa, Y., Ohkubo, K. & Fukuzumi, S. Structure and spectroscopy of oxyluciferin, the light emitter of the firefly bioluminescence. J. Am. Chem. Soc. 131, 11590–11605 (2009).
Maltsev, O. V., Nath, N. K., Naumov, P. & Hintermann, L. Why is firefly oxyluciferin a notoriously labile substance? Angew. Chem. Int. Ed. 53, 847–850 (2014).
Carrasco-López, C. et al. Beetle luciferases with naturally red- and blue-shifted emission. Life Sci. Alliance 1, 1–10 (2018).
DeLuca, M. & McElroy, W. D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry 13, 921–925 (1974).
Ugarova, N. N., Brovko, Y. L. & Berezin, I. V. Immobilized firefly luciferase and its use in analysis. Anal. Lett. 13, 881–892 (1980).
Said Alipour, B. et al. Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm, Lampyris turkestanicus. Biochem. Biophys. Res. Commun. 325, 215–222 (2004).
Ugarova, N. N., Maloshenok, L. G., Uporov, I. V. & Koksharov, M. I. Bioluminescence spectra of native and mutant firefly luciferases as a function of pH. Biochemistry 70, 1262–1267 (2005).
Viviani, V. R., Arnoldi, F. G. C., Brochetto-Braga, M. & Ohmiya, Y. Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and Asiatic Pyrocoelia luciferases. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 151–156 (2004).
Viviani, V. R., Oehlmeyer, T. L., Arnoldi, F. G. C. & Brochetto-Braga, M. R. A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases. Photochem. Photobiol. 81, 843–848 (2005).
Viviani, V. R., Amaral, D., Prado, R. & Arnoldi, F. G. C. A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties. Photochem. Photobiol. Sci. 10, 1879–1886 (2011).
Amaral, D. T., Oliveira, G., Silva, J. R. & Viviani, V. R. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations. Photochem. Photobiol. Sci. 15, 1148–1154 (2016).
Branchini, B. R. et al. Cloning of the orange light-producing luciferase from Photinus scintillans — a new proposal on how bioluminescence color is determined. Photochem. Photobiol. 93, 479–485 (2017).
Ugarova, N. N., Brovko, L. Y. & Beliaieva, E. I. Immobilization of luciferase from the firefly Luciola mingrelica: catalytic properties and thermostability of the enzyme immobilized on cellulose films. Enzyme Microb. Technol. 5, 60–64 (1983).
Brovko, L., Beliaeva, E. I. & Ugarova, N. N. Subunit interactions in luciferase from the firefly Luciola mingrelica. Their role in the manifestation of enzyme activity and during thermoinactivation. Biochemistry 47, 760–766 (1982).
Filippova, N. Y., Dukhovich, A. F. & Ugarova, N. N. New approaches to the preparation and application of firefly luciferase. J. Biolumin. Chemilumin. 4, 419–422 (1989).
Tatsumi, H., Masuda, T., Kajiyama, N. & Nakano, E. Luciferase cDNA from Japanese firefly, Luciola cruciata: cloning, structure and expression in Escherichia coli. J. Biolumin. Chemilumin. 3, 75–78 (1989).
Devine, J. H., Kutuzova, G. D., Green, V. A., Ugarova, N. N. & Baldwin, T. O. Luciferase from the East European firefly Luciola mingrelica: cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochim. Biophys. Acta Gene Struct. Expr. 1173, 121–132 (1993).
Viviani, V. R. & Bechara, E. J. H. Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases. Photochem. Photobiol. 62, 490–495 (1995).
Viviani, V. R., Bechara, E. J. H. & Ohmiya, Y. Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry 38, 8271–8279 (1999).
Viviani, V. R. et al. Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase. Photochem. Photobiol. 70, 254–260 (1999).
Branchini, B. R. et al. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry 43, 7255–7262 (2004).
Viviani, V. R. et al. Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases. J. Biochem. 140, 467–474 (2006).
Tafreshi, N. K. et al. The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J. Biol. Chem. 282, 8641–8647 (2007).
Viviani, V. R., Silva Neto, A. J., Arnoldi, F. G. C., Barbosa, J. A. R. G. & Ohmiya, Y. The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: A solvent gate for the active site of pH-sensitive luciferases. Photochem. Photobiol. 84, 138–144 (2008).
Koksharov, M. I. & Ugarova, N. N. Random mutagenesis of Luciola mingrelica firefly luciferase. Mutant enzymes with bioluminescence spectra showing low pH sensitivity. Biochemistry 73, 862–869 (2008).
Said Alipour, B., Hosseinkhani, S., Ardestani, S. K. & Moradi, A. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Photochem. Photobiol. Sci. 8, 847–855 (2009).
Hirano, T. et al. Spectroscopic studies of the color modulation mechanism of firefly (beetle) bioluminescence with amino-analogs of luciferin and oxyluciferin. Photochem. Photobiol. Sci. 11, 1281–1284 (2012).
Viviani, V. R. et al. Glu311 and Arg337 stabilize a closed active-site conformation and provide a critical catalytic base and countercation for green bioluminescence in beetle luciferases. Biochemistry 55, 4764–4776 (2016).
Bevilaqua, V. R. et al. Phrixotrix luciferase and 6′-aminoluciferins reveal a larger luciferin phenolate binding site and provide novel far-red combinations for bioimaging purposes. Sci. Rep. 9, 8998 (2019).
Modestova, Y. & Ugarova, N. N. Color-shifting mutations in the C-domain of L. mingrelica firefly luciferase provide new information about the domain alternation mechanism. Biochim. Biophys. Acta Proteins Proteom. 1864, 1818–1826 (2016).
Branchini, B. R. et al. Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry 38, 13223–13230 (1999).
Viviani, V. R. & Ohmiya, Y. Bioluminescence color determinants of Phrixothrix railroad-worm luciferases: chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect. Photochem. Photobiol. 72, 267–271 (2000).
Viviani, V., Uchida, A., Suenaga, N., Ryufuku, M. & Ohmiya, Y. Thr226 is a key residue for bioluminescence spectra determination in beetle luciferases. Biochem. Biophys. Res. Commun. 280, 1286–1291 (2001).
Viviani, V. R., Uchida, A., Viviani, W. & Ohmiya, Y. The influence of Ala243 (Gly247), Arg215 and Thr226 (Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases. Photochem. Photobiol. 76, 538–544 (2002).
Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H. & Fleet, S. E. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 42, 10429–10436 (2003).
Solntsev, K. M., Laptenok, S. P. & Naumov, P. Photoinduced dynamics of oxyluciferin analogues: Unusual enol “super” photoacidity and evidence for keto–enol isomerization. J. Am. Chem. Soc. 134, 16452–16455 (2012).
Naumov, P. & Kochunnoonny, M. Spectral–structural effects of the keto–enol–enolate and phenol–phenolate equilibria of oxyluciferin. J. Am. Chem. Soc. 132, 11566–11579 (2010).
Ghose, A. et al. Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence. J. Phys. Chem. B 119, 2638–2649 (2015).
Snellenburg, J. J., Laptenok, S. P., Desa, R. J., Naumov, P. & Solntsev, K. M. Excited-state dynamics of oxyluciferin in firefly luciferase. J. Am. Chem. Soc. 138, 16252–16258 (2016).
Saleh, N. et al. Bioinspired molecular lantern: tuning the firefly oxyluciferin emission with host–guest chemistry. J. Phys. Chem. B 120, 7671–7680 (2016).
Støchkel, K. et al. On the influence of water on the electronic structure of firefly oxyluciferin anions from absorption spectroscopy of bare and monohydrated ions in vacuo. J. Am. Chem. Soc. 135, 6485–6493 (2013).
Rebarz, M. et al. Deciphering the protonation and tautomeric equilibria of firefly oxyluciferin by molecular engineering and multivariate curve resolution. Chem. Sci. 4, 3803–3809 (2013).
Ando, Y. et al. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat. Photonics 2, 44–47 (2008).
Ando, Y. & Akiyama, H. pH-dependent fluorescence spectra, lifetimes, and quantum yields of firefly-luciferin aqueous solutions studied by selective-excitation fluorescence spectroscopy. Jpn. J. Appl. Phys. 49, 117002 (2010).
Hiyama, M., Akiyama, H., Yamada, K. & Koga, N. Theoretical study of firefly luciferin pKa values — relative absorption intensity in aqueous solutions. Photochem. Photobiol. 89, 571–578 (2013).
Wang, Y., Akiyama, H., Terakado, K. & Nakatsu, T. Impact of site-directed mutant luciferase on quantitative green and orange/red emission intensities in firefly bioluminescence. Sci. Rep. 3, 2490 (2013).
Wang, Y., Hayamizu, Y. & Akiyama, H. Spectroscopic study of firefly oxyluciferin in an enzymatic environment on the basis of stability monitoring. J. Phys. Chem. B 118, 2070–2076 (2014).
Mochizuki, T., Wang, Y., Hiyama, M. & Akiyama, H. Robust red-emission spectra and yields in firefly bioluminescence against temperature changes. Appl. Phys. Lett. 104, 213704 (2014).
Hirano, T. et al. Spectroscopic studies of the light-color modulation mechanism of firefly (beetle) bioluminescence. J. Am. Chem. Soc. 131, 2385–2396 (2009).
Song, C. I. & Rhee, Y. M. Dynamics on the electronically excited state surface of the bioluminescent firefly luciferase–oxyluciferin system. J. Am. Chem. Soc. 133, 12040–12049 (2011).
Kim, H. W. & Rhee, Y. M. On the pH dependent behavior of the firefly bioluminescence: protein dynamics and water content in the active pocket. J. Phys. Chem. B 117, 7260–7269 (2013).
da Silva, L. P. & Esteves da Silva, J. C. G. Computational studies of the luciferase light-emitting product: oxyluciferin. J. Chem. Theory Comput. 7, 809–817 (2011).
Pinto da Silva, L., Vieira, J. & Esteves da Silva, J. C. G. Comparative theoretical study of the binding of luciferyl-adenylate and dehydroluciferyl-adenylate to firefly luciferase. Chem. Phys. Lett. 543, 137–141 (2012).
da Silva, L., Simkovitch, R., Huppert, D. & da Silva, J. C. G. Theoretical photodynamic study of the photoprotolytic cycle of firefly oxyluciferin. ChemPhysChem 14, 2711–2716 (2013).
Yue, L., Lan, Z. & Liu, Y.-J. The theoretical estimation of the bioluminescent efficiency of the firefly via a nonadiabatic molecular dynamics simulation. J. Phys. Chem. Lett. 6, 540–548 (2015).
Cheng, Y.-Y. & Liu, Y.-J. Vibrationally resolved absorption and fluorescence spectra of firefly luciferin: a theoretical simulation in the gas phase and in solution. Photochem. Photobiol. 92, 552–560 (2016).
White, E. H., Rapaport, E., Hopkins, T. A. & Seliger, H. H. Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc. 91, 2178–2180 (1969).
White, E. H., Rapaport, E., Seliger, H. H. & Hopkins, T. A. The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg. Chem. 1, 92–122 (1971).
McCapra, F., Gilfoyle, D. J., Young, D. W., Church, N. J. & Spencer, P. in Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects Vol. 387 (eds Campbell, A., Kricka, L. J. & Stanley, P. E.) (Wiley, 1994).
Tianxiao, Y. & Goddard, J. D. Predictions of the geometries and fluorescence emission energies of oxyluciferins. J. Phys. Chem. A 111, 4489–4497 (2007).
Nakatani, N., Hasegawa, J.-y. & Nakatsuji, H. Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster–configuration interaction method. J. Am. Chem. Soc. 129, 8756–8765 (2007).
Ugarova, N. N. & Brovko, L. Y. Protein structure and bioluminescent spectra for firefly bioluminescence. Luminescence 17, 321–330 (2002).
Gandelman, O. A., Brovko, L. Y., Ugarova, N. N., Chikishev, A. Y. & Shkurimov, A. P. Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin–luciferase system. J. Photochem. Photobiol. B 19, 187–191 (1993).
Gandelman, O. A., Brovko, L. Y., Chikishev, A. Y., Shkurinov, A. P. & Ugarova, N. N. Investigation of the interaction between firefly luciferase and oxyluciferin or its analogues by steady state and subnanosecond time-resolved fluorescence. J. Photochem. Photobiol. B 22, 203–209 (1994).
Sandalova, T. P. & Ugarova, N. N. Model of the active site of firefly luciferase. Biochemistry 64, 962–967 (1999).
Ugarova, N. N. & Brovko, L. Y. Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase. Russ. Chem. Bull. 50, 1752–1761 (2001).
Branchini, B. R., Murtiashaw, M. H., Magyar, R. A. & Anderson, S. M. The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry 39, 5433–5440 (2000).
Sundlov, J. A., Fontaine, D. M., Southworth, T. L., Branchini, B. R. & Gulick, A. M. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51, 6493–6495 (2012).
Branchini, B. R. et al. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism. J. Am. Chem. Soc. 133, 11088–11091 (2011).
Zako, T. et al. Luminescent and substrate binding activities of firefly luciferase N-terminal domain. Biochim. Biophys. Acta Proteins Proteom. 1649, 183–189 (2003).
Ayabe, K., Zako, T. & Ueda, H. The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps. FEBS Lett. 579, 4389–4394 (2005).
Koksharov, M. I. & Ugarova, N. N. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence. Photochem. Photobiol. Sci. 12, 2016–2027 (2013).
Lee, J. in Bioluminescence, the Nature of the Light 107–121 (Univ. Georgia, 2015).
Seliger, H. H. & McElroy, W. D. The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc. Natl Acad. Sci. USA 52, 75–81 (1964).
Wood, K. V., Lam, Y. A. & McElroy, W. D. Introduction to beetle luciferases and their applications. J. Biolumin. Chemilumin. 4, 289–301 (1989).
Ueda, I., Shinoda, F. & Kamaya, H. Temperature-dependent effects of high pressure on the bioluminescence of firefly luciferase. Biophys. J. 66, 2107–2110 (1994).
Zhao, H. et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J. Biomed. Opt. 10, 041210 (2005).
Kajiyama, N. & Nakano, E. Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng. Des. Sel. 4, 691–693 (1991).
Cruz, P. G. et al. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors. Chem. Biol. 18, 1442–1452 (2011).
Auld, D. S. et al. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc. Natl Acad. Sci. USA 107, 4878–4883 (2010).
Franks, N. P., Jenkins, A., Conti, E., Lieb, W. R. & Brick, P. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys. J. 75, 2205–2211 (1998).
Zhang, H. et al. Inhibiting firefly bioluminescence by chalcones. Anal. Chem. 89, 6099–6105 (2017).
Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).
Thorne, N. et al. Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem. Biol. 19, 1060–1072 (2012).
Auld, D. S. & Inglese, J. in Assay Guidance Manual (eds Markossian, S. et al) (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004).
Mamaev, S. V., Laikhter, A. L., Arslan, T. & Hecht, S. M. Firefly luciferase: alteration of the color of emitted light resulting from substitutions at position 286. J. Am. Chem. Soc. 118, 7243–7244 (1996).
Maghami, P. et al. Relationship between stability and bioluminescence color of firefly luciferase. Photochem. Photobiol. Sci. 9, 376–383 (2010).
Kheirabadi, M. et al. Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift. Biochim. Biophys. Acta 1834, 2729–2735 (2013).
Nishiguchi, T. et al. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans. J. Biomed. Opt. 20, 101205 (2015).
Li, X., Nakajima, Y., Niwa, K., Viviani, V. R. & Ohmiya, Y. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci. 19, 26–33 (2010).
Koksharov, M. I. & Ugarova, N. N. Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng. Des. Sel. 24, 835–844 (2011).
Koksharov, M. I. & Ugarova, N. N. Approaches to engineer stability of beetle luciferases. Comput. Struct. Biotechnol. J. 2, e201204004 (2012).
Koksharov, M. I. & Ugarova, N. N. Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase. Photochem. Photobiol. Sci. 10, 931–938 (2011).
Oliveira, G. & Viviani, V. R. Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: relationship with kinetics and bioluminescence colours. Luminescence 33, 282–288 (2018).
Sarrion-Perdigones, A. et al. Examining multiple cellular pathways at once using multiplex hextuple luciferase assaying. Nat. Commun. 10, 5710 (2019).
Ohmiya, Y. Simultaneous multicolor luciferase reporter assays for monitoring of multiple genes expressions. Comb. Chem. High Throughput Screen. 18, 937–945 (2015).
Carrasco-López, C., García-Echauri, S. A., Kichuk, T. & Avalos, J. L. Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr. Opin. Biotechnol. 65, 296–309 (2020).
Cheng, Y.-Y. & Liu, Y.-J. What exactly is the light emitter of a firefly? J. Chem. Theory Comput. 11, 5360–5370 (2015).
Cheng, Y.-Y. & Liu, Y.-J. Theoretical development of near-infrared bioluminescent systems. Chem. Eur. J. 24, 9340–9352 (2018).
Wu, W. et al. cybLuc: an effective aminoluciferin derivative for deep bioluminescence imaging. Anal. Chem. 89, 4808–4816 (2017).
Branchini, B. R. et al. Mutagenesis and structural studies reveal the basis for the activity and stability properties that distinguish the Photinus luciferases scintillans and pyralis. Biochemistry 58, 4293–4303 (2019).
Stowe, C. L. et al. Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin. eLife 8, e45801 (2019).
Pelentir, G. F., Bevilaqua, V. R. & Viviani, V. R. A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays. Photochem. Photobiol. Sci. 18, 2061–2070 (2019).
Arnoldi, F. G. C., da Silva Neto, A. J. & Viviani, V. R. Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae). Photochem. Photobiol. Sci. 9, 87–92 (2010).
Branchini, B. R. et al. Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem. 361, 253–262 (2007).
Branchini, B. R. et al. Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal. Biochem. 396, 290–297 (2010).
Branchini, B. R. et al. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Biochemistry 44, 1385–1393 (2005).
Nazari, M., Hosseinkhani, S. & Hassani, L. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem. Photobiol. Sci. 12, 298–308 (2013).
White, P. J., Squirrell, D. J., Arnaud, P., Lowe, C. R. & Murray, J. A. H. Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. Biochem. J. 319, 343–350 (1996).
Caysa, H. et al. A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging. Photochem. Photobiol. Sci. 8, 52–56 (2009).
Shapiro, E., Lu, C. & Baneyx, F. A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng. Des. Sel. 18, 581–587 (2005).
Branchini, B. R., Southworth, T. L., Khattak, N. F., Murtiashaw, M. H. & Fleet, S. E. in Genetically Engineered and Optical Probes for Biomedical Applications II Vol. 5329 (eds Savitsky, A. P., Brovko, L. Y., Bornhop, D. J., Raghavachari, R. & Achilefu, S. I.) (International Society for Optics and Photonics, 2004).
Branchini, B. R., Southworth, T. L., Khattak, N. F., Michelini, E. & Roda, A. Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem. 345, 140–148 (2005).
Branchini, B. R., Magyar, R. A., Murtiashaw, M. H. & Portier, N. C. The role of active site residue arginine 218 in firefly luciferase bioluminescence. Biochemistry 40, 2410–2418 (2001).
Viviani, V. R., Arnoldi, F. G. C., Ogawa, F. T. & Brochetto-Braga, M. Few substitutions affect the bioluminescence spectra of Phrixotrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey. Luminescence 22, 362–369 (2007).
Modestova, Y., Koksharov, M. I. & Ugarova, N. N. Point mutations in firefly luciferase C-domain demonstrate its significance in green color of bioluminescence. Biochim. Biophys. Acta 1844, 1463–1471 (2014).
Acknowledgements
We thank New York University Abu Dhabi for financially supporting this work through the Research Enhancement Fund scheme (project “Red- and Green-Emitting Luciferases: Determination of the Color Emission Mechanism”). This work was also supported by the Human Frontier Science Program (project RGY0081/2011, “Excited-State Structure of the Emitter and Color-Tuning Mechanism of the Firefly Bioluminescence”).
Author information
Authors and Affiliations
Contributions
C.C.-L. and P.N. contributed to conceptualization, researching, analysis, discussions, writing the original draft and review/editing of the final draft. N.M.L. contributed to researching, analysis, discussions and review/editing of the final draft. S.S. contributed to analysis, discussions and review/editing of the final draft.
Corresponding author
Ethics declarations
Competing interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Carrasco-López, C., Lui, N.M., Schramm, S. et al. The elusive relationship between structure and colour emission in beetle luciferases. Nat Rev Chem 5, 4–20 (2021). https://doi.org/10.1038/s41570-020-00238-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-020-00238-1