Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions

Abstract

Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controlled crystallization for anisotropic nanoparticles.
Fig. 2: Seeded growth of well-defined anisotropic nanostructures by crystallization-driven self-assembly.
Fig. 3: Programmed assembly for the synthesis of anisotropic nanoparticles.
Fig. 4: Approaches to the templated assembly of anisotropic nanoparticles.
Fig. 5: Exploiting precise dimensional control to enable advanced therapeutic applications.
Fig. 6: Control of optical properties.
Fig. 7: Advanced electronic materials realized by controlled anisotropic nanoparticle growth.
Fig. 8: Catalytic and magnetic properties of anisotropic nanoparticles.
Fig. 9: Modulating fluid properties using anisotropic nanoparticles.
Fig. 10: The effects of particle anisotropy on biological processing.
Fig. 11: A road map for future research on the synthesis, properties and applications of precision anisotropic nanoparticles.

Similar content being viewed by others

References

  1. Roostalu, J. & Surrey, T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710 (2017).

    CAS  PubMed  Google Scholar 

  2. Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Srinivasarao, M. Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961 (1999).

    CAS  PubMed  Google Scholar 

  4. Garnett, E. C., Brongersma, M. L., Cui, Y. & Mcgehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011).

    CAS  Google Scholar 

  5. Litchfield, D. W. & Baird, D. G. The rheology of high aspect ratio nanoparticle filled liquids. Rheol. Rev. 2006, 1–60 (2006).

    Google Scholar 

  6. Meyer, R. A. & Green, J. J. Shaping the future of nanomedicine: Anisotropy in polymeric nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 191–207 (2016).

    CAS  PubMed  Google Scholar 

  7. Williams, D. S., Pijpers, I. A. B., Ridolfo, R. & van Hest, J. C. M. Controlling the morphology of copolymeric vectors for next generation nanomedicine. J. Control. Release 259, 29–39 (2017).

    CAS  PubMed  Google Scholar 

  8. Klug, A. The tobacco mosaic virus particle: structure and assembly. Philos. Trans. R. Soc. B Biol. Sci. 354, 531–535 (1999).

    CAS  Google Scholar 

  9. Namba, K. & Stubbs, G. Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science 231, 1401–1406 (1986).

    CAS  PubMed  Google Scholar 

  10. Warren, N. J. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 10174–10185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  PubMed  Google Scholar 

  12. Huang, P. S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    CAS  Google Scholar 

  14. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  15. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    CAS  Google Scholar 

  16. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    CAS  PubMed  Google Scholar 

  17. Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    CAS  PubMed  Google Scholar 

  18. Heine, D. R., Petersen, M. K. & Grest, G. S. Effect of particle shape and charge on bulk rheology of nanoparticle suspensions. J. Chem. Phys. 132, 184509 (2010).

    Google Scholar 

  19. Hinde, E. et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat. Nanotechnol. 12, 81–89 (2017).

    CAS  PubMed  Google Scholar 

  20. Smith, B. R. et al. Shape matters: Intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 12, 3369–3377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian, F., Bonnier, F., Casey, A., Shanahan, A. E. & Byrne, H. J. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods 6, 9116–9123 (2014).

    CAS  Google Scholar 

  22. Gerigk, M. et al. Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case. Nanoscale 7, 16969–16982 (2015).

    CAS  PubMed  Google Scholar 

  23. Ravaine, S. & Duguet, E. Synthesis and assembly of patchy particles: Recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 30, 45–53 (2017).

    CAS  Google Scholar 

  24. Pawar, A. B. & Kretzschmar, I. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31, 150–168 (2010).

    CAS  PubMed  Google Scholar 

  25. Du, J. & O’Reilly, R. K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem. Soc. Rev. 40, 2402–2416 (2011).

    CAS  PubMed  Google Scholar 

  26. Hu, J., Zhou, S., Sun, Y., Fang, X. & Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41, 4356–4378 (2012).

    CAS  PubMed  Google Scholar 

  27. Walther, A. & Müller, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    CAS  PubMed  Google Scholar 

  28. Zhang, J., Grzybowski, B. A. & Granick, S. Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017).

    CAS  PubMed  Google Scholar 

  29. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 72, 1525–1568 (1976).

    CAS  Google Scholar 

  30. Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    CAS  PubMed  Google Scholar 

  31. Israelachvili, J. N. Intermolecular and Surface Forces 535–576 (Academic Press, 2011).

  32. Merkel, T. J. et al. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26, 13086–13096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, Z. & Wei, A. Fabrication of anisotropic metal nanostructures using innovations in template-assisted lithography. ACS Nano 6, 998–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, H. D., Regulacio, M. D., Ye, E. & Han, M. Y. Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 42, 6006–6018 (2013).

    CAS  PubMed  Google Scholar 

  35. Thorkelsson, K., Bai, P. & Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 10, 48–66 (2015).

    CAS  Google Scholar 

  36. Xu, J. et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. Engl. 52, 6580–6589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu, X. et al. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 132, 169–187 (2018).

    CAS  PubMed  Google Scholar 

  38. Cushing, B. L., Kolesnichenko, V. L. & O’Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004).

    CAS  PubMed  Google Scholar 

  39. Wang, D. & Li, Y. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 23, 1044–1060 (2011).

    CAS  PubMed  Google Scholar 

  40. Jun, Y. W., Choi, J. S. & Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. Engl. 45, 3414–3439 (2006).

    CAS  PubMed  Google Scholar 

  41. Wang, S., McGuirk, C. M., D’Aquino, A., Mason, J. A. & Mirkin, C. A. Metal–organic framework nanoparticles. Adv. Mater. 30, 1800202 (2018).

    Google Scholar 

  42. Patzke, G. R., Zhou, Y., Kontic, R. & Conrad, F. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. Engl. 50, 826–859 (2011).

    CAS  PubMed  Google Scholar 

  43. Li, N., Zhao, P. & Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. Engl. 53, 1756–1789 (2014).

    CAS  PubMed  Google Scholar 

  44. Lisjak, D. & Mertelj, A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog. Mater. Sci. 95, 286–328 (2018).

    CAS  Google Scholar 

  45. Wu, Z., Yang, S. & Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 8, 1237–1259 (2016).

    CAS  PubMed  Google Scholar 

  46. Narayan, R., Nayak, U. Y., Raichur, A. M. & Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 10, 118 (2018).

    CAS  PubMed Central  Google Scholar 

  47. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    CAS  PubMed  Google Scholar 

  48. Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    CAS  PubMed  Google Scholar 

  49. Wall, M. A. et al. Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv. Mater. 29, 1605622 (2017).

    Google Scholar 

  50. Li, Y. & Shen, W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 43, 1543–1574 (2014).

    PubMed  Google Scholar 

  51. Soon, G. K. & Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 41, 1696–1709 (2008).

    Google Scholar 

  52. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  PubMed  Google Scholar 

  53. Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2064 (2001).

    CAS  PubMed  Google Scholar 

  54. Feng, L., Wang, K., Powell, J. & Zhou, H. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1, 801–824 (2019).

    Google Scholar 

  55. Kuijk, A., Van Blaaderen, A. & Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011).

    CAS  PubMed  Google Scholar 

  56. Wu, W. et al. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 23, 4898–4903 (2011).

    CAS  PubMed  Google Scholar 

  57. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

    CAS  PubMed  Google Scholar 

  58. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  59. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  PubMed  Google Scholar 

  60. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–648 (2007).

    CAS  PubMed  Google Scholar 

  61. Qian, J. et al. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 136, 4121–4124 (2014).

    CAS  PubMed  Google Scholar 

  62. Qian, J. et al. Self-seeding in one dimension: A route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 7, 3754–3766 (2013).

    CAS  PubMed  Google Scholar 

  63. Xu, J. et al. Synergistic self-seeding in one-dimension: a route to patchy and block comicelles with uniform and controllable length. Chem. Sci. 10, 2280–2284 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qian, J. et al. Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprene-polyferrocenylsilane block copolymer micelles. Angew. Chem. Int. Ed. Engl. 50, 1622–1625 (2011).

    CAS  PubMed  Google Scholar 

  65. Inam, M. et al. 1D: vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 8, 4223–4230 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. He, X. et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater. 16, 481–488 (2017).

    CAS  PubMed  Google Scholar 

  67. Qiu, H., Du, V. A., Winnik, M. A. & Manners, I. Branched cylindrical micelles via crystallization-driven self-assembly. J. Am. Chem. Soc. 135, 17739–17742 (2013).

    CAS  PubMed  Google Scholar 

  68. He, F., Gädt, T., Manners, I. & Winnik, M. A. Fluorescent ‘barcode’ multiblock co-micelles via the living self-assembly of di- and triblock copolymers with a crystalline core-forming metalloblock. J. Am. Chem. Soc. 133, 9095–9103 (2011).

    CAS  PubMed  Google Scholar 

  69. Wang, H. et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 129, 12924–12925 (2007).

    CAS  PubMed  Google Scholar 

  70. Arno, M. C. et al. Precision epitaxy for aqueous 1D and 2D poly(ϵ-caprolactone) assemblies. J. Am. Chem. Soc. 139, 16980–16985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qiu, H. et al. Tunable supermicelle architectures from the hierarchical self-assembly of amphiphilic cylindrical B–A–B triblock co-micelles. Angew. Chem. Int. Ed. Engl. 51, 11882–11885 (2012).

    CAS  PubMed  Google Scholar 

  72. Pal, D. S., Kar, H. & Ghosh, S. Controllable supramolecular polymerization via chain-growth mechanism. Chem. Commun. 54, 928–931 (2018).

    CAS  Google Scholar 

  73. Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 1–9 (2020).

    Google Scholar 

  74. Hecht, S. & Huc, I. (eds) Foldamers: Structure, Properties and Applications (Wiley, 2007).

  75. Frisch, H., Tuten, B. T. & Barner-Kowollik, C. Macromolecular superstructures: a future beyond single chain nanoparticles. Isr. J. Chem. 60, 86–99 (2020).

    CAS  Google Scholar 

  76. Hanlon, A. M., Lyon, C. K. & Berda, E. B. What is next in single-chain nanoparticles? Macromolecules 49, 2–14 (2016).

    CAS  Google Scholar 

  77. Gonzalez-Burgos, M., Latorre-Sanchez, A. & Pomposo, J. A. Advances in single chain technology. Chem. Soc. Rev. 44, 6122–6142 (2015).

    CAS  PubMed  Google Scholar 

  78. Altintas, O. & Barner-Kowollik, C. Single-chain folding of synthetic polymers: a critical update. Macromol. Rapid Commun. 37, 29–46 (2016).

    CAS  PubMed  Google Scholar 

  79. Rubio-Cervilla, J., Frisch, H., Barner-Kowollik, C. & Pomposo, J. A. Synthesis of single-ring nanoparticles mimicking natural cyclotides by a stepwise folding-activation-collapse process. Macromol. Rapid Commun. 40, 1800491 (2019).

    Google Scholar 

  80. Zhang, J. et al. Self-assembly and disassembly of stimuli responsive tadpole-like single chain nanoparticles using a switchable hydrophilic/hydrophobic boronic acid cross-linker. Polym. Chem. 8, 4079–4087 (2017).

    CAS  Google Scholar 

  81. Matsumoto, M., Sawamoto, M. & Terashima, T. Orthogonal folding of amphiphilic/fluorous random block copolymers for double and multicompartment micelles in water. ACS Macro Lett. 8, 320–325 (2019).

    CAS  Google Scholar 

  82. Roy, R. K. & Lutz, J. F. Compartmentalization of single polymer chains by stepwise intramolecular cross-linking of sequence-controlled macromolecules. J. Am. Chem. Soc. 136, 12888–12891 (2014).

    CAS  PubMed  Google Scholar 

  83. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J. F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).

    CAS  PubMed  Google Scholar 

  84. Heguri, H., Yamamoto, T. & Tezuka, Y. Folding construction of a pentacyclic quadruply fused polymer topology with tailored kyklo-telechelic precursors. Angew. Chem. Int. Ed. Engl. 54, 8688–8692 (2015).

    CAS  PubMed  Google Scholar 

  85. Devanand, K. & Selser, J. C. Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide). Macromolecules 24, 5943–5947 (1991).

    CAS  Google Scholar 

  86. Verduzco, R., Li, X., Pesek, S. L. & Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 44, 2405–2420 (2015).

    CAS  PubMed  Google Scholar 

  87. Xie, G., Martinez, M. R., Olszewski, M., Sheiko, S. S. & Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules 20, 27–54 (2019).

    CAS  PubMed  Google Scholar 

  88. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  89. Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  PubMed  Google Scholar 

  91. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    CAS  PubMed  Google Scholar 

  92. Praetorius, F. & Dietz, H. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    CAS  PubMed  Google Scholar 

  93. Chen, Y. J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    CAS  PubMed  Google Scholar 

  94. Luo, Q., Hou, C., Bai, Y., Wang, R. & Liu, J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571–13632 (2016).

    CAS  PubMed  Google Scholar 

  95. Park, K. et al. Control of repeat-protein curvature by computational protein design. Nat. Struct. Mol. Biol. 22, 167–174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bai, Y. et al. Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly. J. Am. Chem. Soc. 135, 10966–10969 (2013).

    CAS  PubMed  Google Scholar 

  97. King, N. P. et al. Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103–108 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gradišar, H. et al. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat. Chem. Biol. 9, 362–366 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

    CAS  PubMed  Google Scholar 

  100. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    CAS  PubMed  Google Scholar 

  101. Yokoi, N. et al. Construction of robust bio-nanotubes using the controlled self-assembly of component proteins of bacteriophage T4. Small 6, 1873–1879 (2010).

    CAS  PubMed  Google Scholar 

  102. Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    CAS  PubMed  Google Scholar 

  103. Wang, X. et al. Biomineralization state of viruses and their biological potential. Chem. Eur. J. 24, 11518–11529 (2018).

    CAS  PubMed  Google Scholar 

  104. Butler, P. J. G. Self-assembly of tobacco mosaic virus: The role of an intermediate aggregate in generating both specificity and speed. Philos. Trans. R. Soc. B Biol. Sci. 354, 537–550 (1999).

    CAS  Google Scholar 

  105. Shukla, S. et al. The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv. Healthc. Mater. 4, 874–882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N. & Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 3, 413–417 (2003).

    CAS  Google Scholar 

  107. Fowler, C. E., Shenton, W., Stubbs, G. & Mann, S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv. Mater. 13, 1266–1269 (2001).

    CAS  Google Scholar 

  108. Saunders, K. & Lomonossoff, G. P. In planta synthesis of designer-length tobacco mosaic virus-based nano-rods that can be used to fabricate nano-wires. Front. Plant. Sci. 8, 1–11 (2017).

    Google Scholar 

  109. Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    CAS  PubMed  Google Scholar 

  110. Nguyen, L., Döblinger, M., Liedl, T. & Heuer-Jungemann, A. DNA-origami-templated silica growth by sol–gel chemistry. Angew. Chem. Int. Ed. Engl. 58, 912–916 (2019).

    CAS  PubMed  Google Scholar 

  111. Liu, X. et al. DNA framework-encoded mineralization of calcium phosphate. Chem 6, 472–485 (2020).

    CAS  Google Scholar 

  112. Ma, N. et al. Directional assembly of nanoparticles by DNA shapes: towards designed architectures and functionality. Top. Curr. Chem. 378, 36 (2020).

    CAS  Google Scholar 

  113. Chen, Z., Liu, C., Cao, F., Ren, J. & Qu, X. DNA metallization: Principles, methods, structures, and applications. Chem. Soc. Rev. 47, 4017–4072 (2018).

    CAS  PubMed  Google Scholar 

  114. Li, N. et al. Fabrication of metal nanostructures on DNA templates. ACS Appl. Mater. Interfaces 11, 13835–13852 (2019).

    CAS  PubMed  Google Scholar 

  115. Dong, Y. et al. Cuboid vesicles formed by frame-guided assembly on DNA origami scaffolds. Angew. Chem. Int. Ed. Engl. 56, 1586–1589 (2017).

    CAS  PubMed  Google Scholar 

  116. Ji, H. et al. Improvement in crystallinity and porosity of poorly crystalline metal–organic frameworks (MOFs) through their induced growth on a well-crystalline MOF template. Inorg. Chem. 57, 9048–9054 (2018).

    CAS  PubMed  Google Scholar 

  117. Zhou, K. & Qiangbin, W. Nanowires and nanoparticle chains inside tubular viral templates. Methods Mol. Biol. 1776, 215–227 (2018).

    CAS  PubMed  Google Scholar 

  118. Helmi, S., Ziegler, C., Kauert, D. J. & Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 14, 6693–6698 (2014).

    CAS  PubMed  Google Scholar 

  119. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 2116 (2014).

    Google Scholar 

  120. Bayrak, T. et al. DNA-mold templated assembly of conductive gold nanowires. Nano Lett. 18, 2116–2123 (2018).

    CAS  PubMed  Google Scholar 

  121. Ye, J., Helmi, S., Teske, J. & Seidel, R. Fabrication of metal nanostructures with programmable length and patterns using a modular DNA platform. Nano Lett. 19, 2707–2714 (2019).

    CAS  PubMed  Google Scholar 

  122. Dong, Y. & Mao, Y. DNA origami as scaffolds for self-assembly of lipids and proteins. ChemBioChem 20, 2422–2431 (2019).

    CAS  PubMed  Google Scholar 

  123. Zhang, Z., Yang, Y., Pincet, F., Llaguno, M. C. & Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tokura, Y. et al. Polymer tube nanoreactors: Via DNA-origami templated synthesis. Chem. Commun. 54, 2808–2811 (2018).

    CAS  Google Scholar 

  125. Li, N. et al. Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami. J. Am. Chem. Soc. 141, 17968–17972 (2019).

    CAS  PubMed  Google Scholar 

  126. Shang, Y. et al. Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 32, 2000294 (2020).

    CAS  Google Scholar 

  127. Kim, F. et al. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem. Sci. 10, 10537–10542 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo, X., Lachance-Brais, C., Bantle, A. & Sleiman, H. F. The assemble, grow and lift-off (AGLO) strategy to construct complex gold nanostructures with pre-designed morphologies. Chem. Sci. 11, 4911–4921 (2020).

    CAS  Google Scholar 

  129. Tokura, Y. et al. Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization. Angew. Chem. Int. Ed. Engl. 57, 1587–1591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tokura, Y. et al. Bottom-up fabrication of nanopatterned polymers on DNA origami by in situ atom-transfer radical polymerization. Angew. Chem. Int. Ed. Engl. 55, 5692–5697 (2016).

    CAS  PubMed  Google Scholar 

  131. Burrows, N. D. et al. Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 7, 632–641 (2016).

    CAS  PubMed  Google Scholar 

  132. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    CAS  PubMed  Google Scholar 

  133. Van der Zande, B. M. I. Bo, M. R., Fokkink, L. G. J. & Schonenberger, C. Aqueous gold sols of rod-shaped particles. J. Phys. Chem. B 101, 852–854 (1997).

    Google Scholar 

  134. Yu, Y., Chang, S., Lee, C. & Wang, C. R. C. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).

    CAS  Google Scholar 

  135. Lee, K. & El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006).

    CAS  PubMed  Google Scholar 

  136. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    CAS  PubMed  Google Scholar 

  137. Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    CAS  PubMed  Google Scholar 

  138. Bedford, E. E., Spadavecchia, J., Pradier, C. & Gu, F. X. Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol. Biosci. 12, 724–739 (2012).

    CAS  PubMed  Google Scholar 

  139. Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012).

    CAS  PubMed  Google Scholar 

  140. Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    CAS  PubMed  Google Scholar 

  141. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    CAS  PubMed  Google Scholar 

  142. Mock, J. J., Barbic, M., Schultz, D. A. & Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2005).

    Google Scholar 

  143. Sau, T. K. & Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20, 6414–6420 (2004).

    CAS  PubMed  Google Scholar 

  144. Wu, H. L., Chen, C. H. & Huang, M. H. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem. Mater. 21, 110–114 (2009).

    CAS  Google Scholar 

  145. Yuan, H. et al. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    PubMed  PubMed Central  Google Scholar 

  146. Millstone, J. E. et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127, 5312–5313 (2005).

    CAS  PubMed  Google Scholar 

  147. Schatz, G. C. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res. 17, 370–376 (1984).

    CAS  Google Scholar 

  148. Reguera, J., Langer, J., Jiménez de Aberasturi, D. & Liz-Marzán, L. M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 46, 3866–3885 (2017).

    CAS  PubMed  Google Scholar 

  149. Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 7, 271ra7 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Dong, Y. et al. Controlling anisotropy of quantum-confined CsPbBr3 nanocrystals by combined use of equilibrium and kinetic anisotropy. Chem. Mater. 31, 5655–5662 (2019).

    CAS  Google Scholar 

  151. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    CAS  PubMed  Google Scholar 

  152. Ferry, D. K., Goodnick, S. M. & Bird, J. Transport in Nanostructures (Cambridge Univ. Press, 2009).

  153. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  PubMed  Google Scholar 

  154. Zhang, Q., Uchaker, E., Candelaria, S. L. & Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127–3171 (2013).

    CAS  PubMed  Google Scholar 

  155. Aricò, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    PubMed  Google Scholar 

  156. Quan, L. N., Kang, J., Ning, C. & Yang, P. Nanowires for photonics. Chem. Rev. 119, 9153–9169 (2019).

    CAS  PubMed  Google Scholar 

  157. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

    CAS  Google Scholar 

  158. Eaton, S. W., Fu, A., Wong, A. B., Ning, C.-Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

    CAS  Google Scholar 

  159. Zhou, Z. J. et al. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 4349–4353 (2011).

    CAS  PubMed  Google Scholar 

  160. Leschkies, K. S., Jacobs, A. G., Norris, D. J. & Aydil, E. S. Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Appl. Phys. Lett. 95, 2007–2010 (2009).

    Google Scholar 

  161. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005).

    CAS  PubMed  Google Scholar 

  162. Liu, J. et al. Length-independent charge transport of well-separated single-crystal TiO2 long nanowire arrays. Chem. Sci. 9, 7400–7404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jin, X. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018).

    CAS  PubMed  Google Scholar 

  164. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    CAS  Google Scholar 

  165. Rashid, M. H. & Mandal, T. K. Templateless synthesis of polygonal gold nanoparticles: An unsupported and reusable catalyst with superior activity. Adv. Funct. Mater. 18, 2261–2271 (2008).

    CAS  Google Scholar 

  166. Xu, R., Wang, D., Zhang, J. & Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 1, 888–893 (2006).

    CAS  PubMed  Google Scholar 

  167. Mahmoud, M. A., Tabor, C. E., El-Sayed, M. A., Ding, Y. & Zhong, L. W. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc. 130, 4590–4591 (2008).

    CAS  PubMed  Google Scholar 

  168. Lim, B. et al. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 8, 4043–4047 (2008).

    CAS  PubMed  Google Scholar 

  169. Gong, X. et al. Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity. J. Colloid Interface Sci. 352, 379–385 (2010).

    CAS  PubMed  Google Scholar 

  170. Li, X. et al. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance. Nanoscale 5, 4976–4985 (2013).

    CAS  PubMed  Google Scholar 

  171. Sanles-Sobrido, M. et al. Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes. Chem. Mater. 21, 1531–1535 (2009).

    CAS  Google Scholar 

  172. Fontaíña-Troitiño, N. et al. Room-temperature ferromagnetism in antiferromagnetic cobalt oxide nanooctahedra. Nano Lett. 14, 640–647 (2014).

    PubMed  Google Scholar 

  173. Murphy, C. J. & Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80–82 (2002).

    CAS  Google Scholar 

  174. Lee, S. M., Cho, S. N. & Cheon, J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 15, 441–444 (2003).

    CAS  Google Scholar 

  175. Park, S. J. et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000).

    CAS  Google Scholar 

  176. Wang, C., Hou, Y., Kim, J. & Sun, S. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. Engl. 46, 6333–6335 (2007).

    CAS  PubMed  Google Scholar 

  177. Chen, M. et al. Synthesis and self-assembly of fcc phase FePt nanorods. J. Am. Chem. Soc. 129, 6348–6349 (2007).

    CAS  PubMed  Google Scholar 

  178. Du, Y. P., Zhang, Y. W., Sun, L. D. & Yan, C. H. Self-assembled ferromagnetic monodisperse manganese oxide nanoplates synthesized by a modified nonhydrolytic approach. J. Phys. Chem. C 113, 6521–6528 (2009).

    CAS  Google Scholar 

  179. Dumestre, F. et al. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew. Chem. Int. Ed. Engl. 41, 4286–4289 (2002).

    CAS  PubMed  Google Scholar 

  180. Dumestre, F. et al. Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem. Int. Ed. Engl. 41, 4286–4289 (2002).

    CAS  PubMed  Google Scholar 

  181. Di Paola, C., D’Agosta, R. & Baletto, F. Geometrical effects on the magnetic properties of nanoparticles. Nano Lett. 16, 2885–2889 (2016).

    PubMed  Google Scholar 

  182. Zhang, H. T., Ding, J. & Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 24, 375–378 (2008).

    CAS  PubMed  Google Scholar 

  183. Yuan, J. et al. Synthesis of ZnO–Pt nanoflowers and their photocatalytic applications. Nanotechnology 21, 185606 (2010).

    PubMed  Google Scholar 

  184. Wei, Q. et al. Gyromagnetic imaging: Dynamic optical contrast using gold nanostars with magnetic cores. J. Am. Chem. Soc. 131, 9728–9734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, M. et al. Magnetic tuning of plasmonic excitation of gold nanorods. J. Am. Chem. Soc. 135, 15302–15305 (2013).

    CAS  PubMed  Google Scholar 

  186. Wang, M., He, L., Zorba, S. & Yin, Y. Magnetically actuated liquid crystals. Nano Lett. 14, 3966–3971 (2014).

    CAS  PubMed  Google Scholar 

  187. Wang, M., He, L., Xu, W., Wang, X. & Yin, Y. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem. Int. Ed. Engl. 54, 7077–7081 (2015).

    CAS  PubMed  Google Scholar 

  188. Kumar, A., Kumar, A. & Rai, A. Rheological behaviour of nanofluids: A review. Renew. Sustain. Energy Rev. 53, 779–791 (2016).

    Google Scholar 

  189. Murshed, S. M. S. & Estellé, P. A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 76, 1134–1152 (2017).

    CAS  Google Scholar 

  190. Abraham, J., Sharika, T., Mishra, R. K. & Thomas, S. in Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends (eds Mishra, R. K., Thomas, S. & Kalarikkal, N.) 327–350 (Elsevier, 2017).

  191. Cherkasova, A. S. & Shan, J. W. Particle aspect-ratio and agglomeration-state effects on the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes. J. Heat Transfer 132, 082402 (2010).

    Google Scholar 

  192. Jabbari-Farouji, S., Weis, J., Davidson, P., Levitz, P. & Trizac, E. Interplay of anisotropy in shape and interactions in charged platelet suspensions. J. Chem. Phys. 141, 224510 (2014).

    PubMed  Google Scholar 

  193. Brown, A. B. D., Clarke, S. M., Convert, P. & Rennie, A. R. Orientational order in concentrated dispersions of plate-like kaolinite particles under shear. J. Rheol. 44, 221–233 (2000).

    CAS  Google Scholar 

  194. Xu, J., Chatterjee, S., Koelling, K. W., Wang, Y. & Bechtel, S. E. Shear and extensional rheology of carbon nanofiber suspensions. Rheol. Acta 44, 537–562 (2005).

    CAS  Google Scholar 

  195. Boo, W. et al. Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer 48, 1075–1082 (2007).

    CAS  Google Scholar 

  196. White, K. L., Hawkins, S., Miyamoto, M., Takahara, A. & Sue, H.-J. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles. Phys. Fluids 27, 123306 (2015).

    Google Scholar 

  197. Ye, X., Kandlikar, S. G. & Li, C. Viscosity of nanofluids containing anisotropic particles: A critical review and a comprehensive model. Euro. Phys. J. E 42, 159 (2019).

    CAS  Google Scholar 

  198. Förster, S., Konrad, M. & Lindner, P. Shear thinning and orientational ordering of wormlike micelles. Phys. Rev. Lett. 94, 017803 (2005).

    PubMed  Google Scholar 

  199. Simon, K. A. et al. Disulfide-based diblock copolymer worm gels: a wholly-synthetic thermoreversible 3D matrix for sheet-based cultures. Biomacromolecules 16, 3952–3958 (2015).

    CAS  PubMed  Google Scholar 

  200. Warren, N. J., Rosselgong, J., Madsen, J. & Armes, S. P. Disulfide-functionalized diblock copolymer worm gels. Biomacromolecules 16, 2514–2521 (2015).

    CAS  PubMed  Google Scholar 

  201. Matter, F., Luna, A. L. & Niederberger, M. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 30, 100827 (2020).

    CAS  Google Scholar 

  202. Prince, E. et al. Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules 19, 1276–1284 (2018).

    CAS  PubMed  Google Scholar 

  203. Diba, M., Polini, A., Petre, D. G., Zhang, Y. & Leeuwenburgh, S. C. G. Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. Mater. Sci. Eng. C 92, 143–150 (2018).

    CAS  Google Scholar 

  204. Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005).

    CAS  PubMed  Google Scholar 

  205. Sacui, I. A. et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 6, 6127–6138 (2014).

    CAS  PubMed  Google Scholar 

  206. Yang, J., Han, C.-R., Zhang, X.-M., Xu, F. & Sun, R.-C. Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47, 4077–4086 (2014).

    CAS  Google Scholar 

  207. McKee, J. R. et al. Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett. 3, 266–270 (2014).

    CAS  Google Scholar 

  208. Chau, M. et al. Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem. Mater. 28, 3406–3415 (2016).

    CAS  Google Scholar 

  209. McKee, J. R. et al. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 24, 2706–2713 (2014).

    CAS  Google Scholar 

  210. Siqueira, G. et al. Cellulose nanocrystal Inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Google Scholar 

  211. Kam, D. et al. Direct cryo writing of aerogels via 3D printing of aligned cellulose nanocrystals inspired by the plant cell wall. Colloids Interfaces 3, 46 (2019).

    CAS  Google Scholar 

  212. Sultan, S. & Mathew, A. P. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale 10, 4421–4431 (2018).

    CAS  PubMed  Google Scholar 

  213. Yang, J. & Han, C. Mechanically viscoelastic properties of cellulose nanocrystals skeleton reinforced hierarchical composite hydrogels. ACS Appl. Mater. Interfaces 8, 25621–25630 (2016).

    CAS  PubMed  Google Scholar 

  214. De France, K. J. et al. 2.5D hierarchical structuring of nanocomposite hydrogel films containing cellulose nanocrystals. ACS Appl. Mater. Interfaces 11, 6325–6335 (2019).

    PubMed  Google Scholar 

  215. De France, K. J., Hoare, T. & Cranston, E. D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017).

    Google Scholar 

  216. De France, K. J., Cranston, E. D. & Hoare, T. Mechanically reinforced injectable hydrogels. ACS Appl. Polym. Mater. 2, 1016–1030 (2020).

    Google Scholar 

  217. Wang, K., Nune, K. C. & Misra, R. D. K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater. 36, 143–151 (2016).

    CAS  PubMed  Google Scholar 

  218. You, J. et al. Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforeced cationic cellulose injectable hydrogels. Biomacromolecules 17, 2839–2848 (2016).

    CAS  PubMed  Google Scholar 

  219. Cunningham, V. J. et al. Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels. Polym. Chem. 5, 6307–6317 (2014).

    CAS  Google Scholar 

  220. Arno, M. C. et al. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 11, 1420 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 45, 2114–2124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Hatti-Kaul, R. Aqueous Two-Phase Systems: Methods and Protocols 1–10 (Humana Press, 2003).

  223. Frith, W. J. Mixed biopolymer aqueous solutions - Phase behaviour and rheology. Adv. Colloid Interface Sci. 161, 48–60 (2010).

    CAS  PubMed  Google Scholar 

  224. Chen, J., Spear, S. K., Huddleston, J. G. & Rogers, R. D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 7, 64–82 (2005).

    CAS  Google Scholar 

  225. Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V. & Ramesh, V. Aqueous two phase systems for the recovery of biomolecules–a review. Sci. Technol. 1, 7–16 (2012).

    Google Scholar 

  226. Berton-Carabin, C. C. & Schroën, K. Pickering emulsions for food applications: background, trends, and challenges. Annu. Rev. Food Sci. Technol. 6, 263–297 (2015).

    CAS  PubMed  Google Scholar 

  227. Lagaly, G., Reese, M. & Abend, S. Smectites as colloidal stabilizers of emulsions: II. Rheological properties of smectite-laden emulsions. Appl. Clay Sci. 14, 279–298 (1999).

    CAS  Google Scholar 

  228. Lagaly, G., Reese, M. & Abend, S. Smectites as colloidal stabilizers of emulsions I. Preparation and properties of emulsions with smectites and nonionic surfactants. Appl. Clay Sci. 14, 83–103 (1999).

    CAS  Google Scholar 

  229. Liang, F. et al. Inorganic janus nanosheets. Angew. Chem. Int. Ed. 50, 2379–2382 (2011).

    CAS  Google Scholar 

  230. Mejia, A. F. et al. Pickering emulsions stabilized by amphiphilic nano-sheets. Soft Matter 8, 10245–10253 (2012).

    CAS  Google Scholar 

  231. Loudet, J. C., Alsayed, A. M., Zhang, J. & Yodh, A. G. Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 94, 18301 (2005).

    CAS  Google Scholar 

  232. Loudet, J. C., Yodh, A. G. & Pouligny, B. Wetting and contact lines of micrometer-sized ellipsoids. Phys. Rev. Lett. 97, 18304 (2006).

    CAS  Google Scholar 

  233. Lehle, H., Noruzifar, E. & Oettel, M. Ellipsoidal particles at fluid interfaces. Eur. Phys. J. E 26, 151–160 (2008).

    CAS  PubMed  Google Scholar 

  234. Madivala, B., Fransaer, J. & Vermant, J. Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir 25, 2718–2728 (2009).

    CAS  PubMed  Google Scholar 

  235. Madivala, B., Vandebril, S., Fransaer, J. & Vermant, J. Exploiting particle shape in solid stabilized emulsions. Soft Matter 5, 1717–1727 (2009).

    CAS  Google Scholar 

  236. Gomez-Flores, A., Bradford, S. A., Wu, L. & Kim, H. Interaction energies for hollow and solid cylinders: Role of aspect ratio and particle orientation. Colloids Surf. A 580, 123781 (2019).

    CAS  Google Scholar 

  237. Inam, M. et al. Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers. ACS Cent. Sci. 4, 63–70 (2018).

    CAS  PubMed  Google Scholar 

  238. Vis, M. et al. Water-in-water emulsions stabilized by nanoplates. ACS Macro Lett. 4, 965–968 (2015).

    CAS  Google Scholar 

  239. Peddireddy, K. R., Nicolai, T., Benyahia, L. & Capron, I. Stabilization of water-in-water emulsions by nanorods. ACS Macro Lett. 5, 283–286 (2016).

    CAS  Google Scholar 

  240. Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. & Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9, 952–959 (2013).

    CAS  Google Scholar 

  241. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    CAS  PubMed  Google Scholar 

  242. Kolhar, P. et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl Acad. Sci. USA 110, 10753–10758 (2013).

    CAS  PubMed  Google Scholar 

  243. Bidan, C. M. et al. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv. Healthc. Mater. 2, 186–194 (2013).

    CAS  PubMed  Google Scholar 

  244. Ruthardt, N., Lamb, D. C. & Bräuchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    CAS  PubMed  Google Scholar 

  246. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    CAS  PubMed  Google Scholar 

  247. Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. The effect of particle size and shape on the in vivo journey of nanoparticles. Futur. Med. 9, 121–134 (2014).

    CAS  Google Scholar 

  248. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Chauhan, V. P. et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. 50, 11417–11420 (2011).

    CAS  Google Scholar 

  250. Xiong, F. et al. Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo: Aa highly efficient drug delivery carrier for leukemia therapy. Nanoscale 8, 17085–17089 (2016).

    CAS  PubMed  Google Scholar 

  251. Agarwal, R. et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl Acad. Sci. USA 110, 17247–17252 (2013).

    CAS  PubMed  Google Scholar 

  252. Alhmoud, H. et al. Porous silicon nanodiscs for targeted drug delivery. Adv. Funct. Mater. 25, 1137–1145 (2015).

    CAS  Google Scholar 

  253. Lee, T. R. et al. On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better. Sci. Rep. 3, 2079 (2013).

    PubMed  PubMed Central  Google Scholar 

  254. Godin, B. et al. Discoidal porous silicon particles: Fabrication and biodistribution in breast cancer bearing mice. Adv. Funct. Mater. 22, 4225–4235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Alemdaroglu, F. E., Alemdaroglu, N. C., Langguth, P. & Herrmann, A. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol. Rapid Commun. 29, 326–329 (2008).

    CAS  Google Scholar 

  256. Xu, X. H. N., Chen, J., Jeffers, R. B. & Kyriacou, S. Direct measurement of sizes and dynamics of single living membrane transporters using nanooptics. Nano Lett. 2, 175–182 (2002).

    CAS  Google Scholar 

  257. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–702 (2016).

    CAS  PubMed  Google Scholar 

  258. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    CAS  PubMed  Google Scholar 

  259. He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of Poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).

    CAS  PubMed  Google Scholar 

  260. Nazemi, A. et al. Uniform ‘patchy’ platelets by seeded heteroepitaxial growth of crystallizable polymer blends in two dimensions. J. Am. Chem. Soc. 139, 4409–4417 (2017).

    CAS  PubMed  Google Scholar 

  261. Lunn, D. J., Finnegan, J. R. & Manners, I. Self-assembly of ‘patchy’ nanoparticles: A versatile approach to functional hierarchical materials. Chem. Sci. 6, 3663–3673 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Qiu, H., Hudson, Z. M., Winnik, M. A. & Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015).

    CAS  PubMed  Google Scholar 

  263. Li, Z. et al. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 5, 1059–1064 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Li, Z. et al. Glyco-platelets with controlled morphologies via crystallization-driven self-assembly and their shape-dependent interplay with macrophages. ACS Macro Lett. 8, 596–602 (2019).

    CAS  Google Scholar 

  265. Inam, M. et al. Size and shape affects the antimicrobial activity of quaternized nanoparticles. J. Polym. Sci. A Polym. Chem. 57, 255–259 (2019).

    CAS  Google Scholar 

  266. Decuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141, 320–327 (2010).

    CAS  PubMed  Google Scholar 

  267. Van De Ven, A. L. et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J. Control. Release 158, 148–155 (2012).

    PubMed  Google Scholar 

  268. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L. M. & Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10, 1256–1264 (2018).

    PubMed  Google Scholar 

  269. Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    CAS  PubMed  Google Scholar 

  270. Qin, W. et al. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Adv. Mater. 32, 1907833 (2020).

    CAS  Google Scholar 

  271. Nudelman, F. & Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. Engl. 51, 6582–6596 (2012).

    CAS  PubMed  Google Scholar 

  272. Rawlings, A. E. et al. Artificial coiled coil biomineralisation protein for the synthesis of magnetic nanoparticles. Nat. Commun. 10, 2873 (2019).

    PubMed  PubMed Central  Google Scholar 

  273. Chiu, C. Y. et al. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 3, 393–399 (2011).

    CAS  PubMed  Google Scholar 

  274. Rawlings, A. E. et al. Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis. Chem. Sci. 6, 5586–5594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Wu, J. et al. DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. J. Am. Chem. Soc. 136, 15195–15202 (2014).

    CAS  PubMed  Google Scholar 

  276. Wang, Z., Tang, L., Tan, L. H., Li, J. & Lu, Y. Discovery of the DNA ‘genetic code’ for abiological gold nanoparticle morphologies. Angew. Chem. Int. Ed. Engl. 51, 9078–9082 (2012).

    CAS  PubMed  Google Scholar 

  277. Zhou, Y., Huang, Z., Yang, R. & Liu, J. Selection and screening of DNA aptamers for inorganic nanomaterials. Chem. Eur. J. 24, 2525–2532 (2018).

    CAS  PubMed  Google Scholar 

  278. Satyavolu, N. S. R., Tan, L. H. & Lu, Y. DNA-mediated morphological control of Pd-Au bimetallic nanoparticles. J. Am. Chem. Soc. 138, 16542–16548 (2016).

    CAS  PubMed  Google Scholar 

  279. Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated control of metal nanoparticle shape. J. Am. Chem. Soc. 127, 17814–17818 (2005).

    CAS  PubMed  Google Scholar 

  280. Feldheim, D. L. & Eaton, B. E. Selection of biomolecules capable of mediating the formation of nanocrystals. ACS Nano 1, 154–159 (2007).

    CAS  PubMed  Google Scholar 

  281. Berti, L. & Burley, G. A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 3, 81–87 (2008).

    CAS  PubMed  Google Scholar 

  282. Bousmail, D., Chidchob, P. & Sleiman, H. F. Cyanine-mediated DNA nanofiber growth with controlled dimensionality. J. Am. Chem. Soc. 140, 9518–9530 (2018).

    CAS  PubMed  Google Scholar 

  283. Zhang, K., Yeung, M. C.-L., Leung, S. Y.-L. & Yam, V. W.-W. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. Proc. Natl Acad. Sci. USA 114, 11844–11849 (2017).

    CAS  PubMed  Google Scholar 

  284. Hua, Z. et al. Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nat. Commun. 10, 5406 (2019).

    PubMed  PubMed Central  Google Scholar 

  285. Glover, D. J., Giger, L., Kim, S. S., Naik, R. R. & Clark, D. S. Geometrical assembly of ultrastable protein templates for nanomaterials. Nat. Commun. 7, 11771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    CAS  PubMed  Google Scholar 

  287. Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    PubMed  Google Scholar 

  288. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. L. E. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    CAS  PubMed  Google Scholar 

  289. Kumar, S., Pearse, A., Liu, Y. & Taylor, R. E. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nat. Commun. 11, 2960 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Lutz, J.-F. F., Lehn, J.-M. M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    CAS  Google Scholar 

  291. Appukutti, N., Jones, J. R. & Serpell, C. J. Sequence isomerism in uniform polyphosphoesters programmes self-assembly and folding. Chem. Commun. 56, 5307–5310 (2020).

    CAS  Google Scholar 

  292. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Lutz, J. F., Lehn, J. M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    CAS  Google Scholar 

  294. Edwardson, T. G. W., Carneiro, K. M. M., Serpell, C. J. & Sleiman, H. F. An efficient and modular route to sequence-defined polymers appended to DNA. Angew. Chem. Int. Ed. Engl. 53, 4567–4571 (2014).

    CAS  PubMed  Google Scholar 

  295. Gunay, U. S. et al. Chemoselective synthesis of uniform sequence-coded polyurethanes and their use as molecular tags. Chem 1, 114–126 (2016).

    CAS  Google Scholar 

  296. Dong, R. et al. Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving. Nat. Chem. 11, 136–145 (2019).

    CAS  PubMed  Google Scholar 

  297. Wenz, N. L. et al. Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein. Nanoscale 10, 6496–6510 (2018).

    CAS  PubMed  Google Scholar 

  298. Wege, C. & Koch, C. From stars to stripes: RNA-directed shaping of plant viral protein templates — structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, 1–44 (2020).

    Google Scholar 

  299. Mukherjee, S., Pfeifer, C. M., Johnson, J. M., Liu, J. & Zlotnick, A. Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. J. Am. Chem. Soc. 128, 2538–2539 (2006).

    CAS  PubMed  Google Scholar 

  300. Mikkilä, J. et al. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett. 14, 2196–2200 (2014).

    PubMed  Google Scholar 

  301. Ng, B. C., Chan, S. T., Lin, J. & Tolbert, S. H. Using polymer conformation to control architecture in semiconducting polymer/viral capsid assemblies. ACS Nano 5, 7730–7738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Zeng, C., Rodriguez Lázaro, G., Tsvetkova, I. B., Hagan, M. F. & Dragnea, B. Defects and chirality in the nanoparticle-directed assembly of spherocylindrical shells of virus coat proteins. ACS Nano 12, 5323–5332 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Sinn, S. et al. Templated formation of luminescent virus-like particles by tailor-made Pt(II) amphiphiles. J. Am. Chem. Soc. 140, 2355–2362 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Hernandez-Garcia, A. et al. Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 9, 698–702 (2014).

    CAS  PubMed  Google Scholar 

  305. Hernandez-Garcia, A., Cohen Stuart, M. A. & De Vries, R. Templated co-assembly into nanorods of polyanions and artificial virus capsid proteins. Soft Matter 14, 132–139 (2017).

    CAS  PubMed  Google Scholar 

  306. Jiang, X. et al. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 25, 227–232 (2013).

    CAS  PubMed  Google Scholar 

  307. Wilks, T. R., Pitto-Barry, A., Kirby, N., Stulz, E. & O’Reilly, R. K. Construction of DNA–polymer hybrids using intercalation interactions. Chem. Commun. 50, 1338–1340 (2014).

    CAS  Google Scholar 

  308. Pang, X., He, Y., Jung, J. & Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353, 1268–1272 (2016).

    CAS  PubMed  Google Scholar 

  309. Yuan, J. et al. Water-soluble organo-silica hybrid nanowires. Nat. Mater. 7, 718–722 (2008).

    CAS  PubMed  Google Scholar 

  310. Lucon, J. et al. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat. Chem. 4, 781–788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Atsumi, H. & Belcher, A. M. DNA origami and G-quadruplex hybrid complexes induce size control of single-walled carbon nanotubes via biological activation. ACS Nano 12, 7986–7995 (2018).

    CAS  PubMed  Google Scholar 

  312. Cai, J. et al. Tailored multifunctional micellar brushes via crystallization-driven growth from a surface. Science 366, 1095–1098 (2019).

    CAS  PubMed  Google Scholar 

  313. Kinnear, C., Moore, T. L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B. & Petri-Fink, A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117, 11476–11521 (2017).

    CAS  PubMed  Google Scholar 

  314. Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9, 121–134 (2014).

    CAS  PubMed  Google Scholar 

  315. Li, X. Size and shape effects on receptor-mediated endocytosis of nanoparticles. J. Appl. Phys. 111, 024702 (2012).

    Google Scholar 

  316. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    CAS  PubMed  Google Scholar 

  317. Hultgren, A., Tanase, M., Chen, C. S. & Reich, D. H. High-yield cell separations using magnetic nanowires. IEEE Trans. Magn. 40, 2988–2990 (2004).

    Google Scholar 

  318. Prina-Mello, A., Diao, Z. & Coey, J. M. D. Internalization of ferromagnetic nanowires by different living cells. J. Nanobiotechnol. 4, 9 (2006).

    Google Scholar 

  319. Wilhelm, C., Gazeau, F. & Bacri, J. C. Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells. Phys. Rev. E 67, 061908 (2003).

    CAS  Google Scholar 

  320. Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 5, 3372 (2014).

    PubMed  Google Scholar 

  321. Li, A. et al. Synthesis and direct visualization of dumbbell-shaped molecular brushes. ACS Macro Lett. 1, 241–245 (2012).

    CAS  Google Scholar 

  322. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Knez, M. et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett. 3, 1079–1082 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

R.K.O.is supported by EU Framework Programme for Research and Innovation H2020 (grant 615142).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Rachel K. O’Reilly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks H. Qui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearce, A.K., Wilks, T.R., Arno, M.C. et al. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 5, 21–45 (2021). https://doi.org/10.1038/s41570-020-00232-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-00232-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing