Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in the chemistry and applications of alkali-metal–gas batteries

Subjects

Abstract

Rechargeable metal–gas batteries have the promise of exceeding the energy densities of Li-ion batteries. An archetypal metal–gas system is the nonaqueous lithium–oxygen (Li–O2) battery, which was developed with a view to deploying it in electric vehicles. However, operating this battery comes with substantial challenges that include parasitic chemical reactivity and degrees of electrochemical irreversibility, which contribute to poor charging and cycling. To address these challenges, researchers began exploring new nonaqueous metal–gas battery paradigms by manipulating the underlying O2 redox behaviour through electrolyte and materials design, using non-Li-metal anodes to change the nature of the solid discharge phase and improve reversibility, and using other gaseous reactants as the cathode. This Review presents the new understanding of nonaqueous gas-to-solid electrochemistry that has emerged from these concerted efforts, along with new hurdles that have been revealed as cells have gradually been reformulated. The ultimate impact of new metal–gas batteries needs to be re-examined for applications beyond electric vehicles that are more amenable to the individual chemistries and performance characteristics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Promise and performance of nonaqueous alkali-metal–gas batteries.
Fig. 2: Effect of electrolyte and oxygen source on nonaqueous Li–oxygen electrochemistry.
Fig. 3: The role of the alkali-metal anode in unlocking reversibility.
Fig. 4: Changing the gas cathode: effects on morphology and electrochemistry.
Fig. 5: Motifs underlying molecular and solid-state reversibility.

References

  1. 1.

    US DRIVE. Electrochemical energy storage technical team roadmap. Office of Energy Efficiency and Renewable Energy https://www.energy.gov/eere/vehicles/downloads/us-drive-electrochemical-energy-storage-technical-team-roadmap (2017).

  2. 2.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    CAS  Google Scholar 

  3. 3.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    CAS  Google Scholar 

  4. 4.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    CAS  Google Scholar 

  5. 5.

    Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    CAS  Google Scholar 

  6. 6.

    Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    CAS  Google Scholar 

  7. 7.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  8. 8.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    CAS  Google Scholar 

  9. 9.

    Manthiram, A., Chung, S. H. & Zu, C. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    CAS  Google Scholar 

  10. 10.

    Blurton, K. F. & Sammells, A. F. Metal/air batteries: their status and potential — a review. J. Power Sources 4, 263–279 (1979).

    CAS  Google Scholar 

  11. 11.

    Meyers, W. F. & Simmons, J. W. Electric current-producing cell with anhydrous organic liquid electrolyte. US patent US3423242A (1969).

  12. 12.

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  13. 13.

    Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Google Scholar 

  14. 14.

    Débart, A., Paterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).

    Google Scholar 

  15. 15.

    Lu, Y.-C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    CAS  Google Scholar 

  16. 16.

    Kwak, W.-J. et al. Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020).

    CAS  Google Scholar 

  17. 17.

    Liu, T. et al. Current challenges and routes forward for nonaqueous lithium–air batteries. Chem. Rev. 120, 6558–6625 (2020). Kwak et al. (2020) and Liu et al. (2020) describe up-to-date advances in the reaction mechanisms and electrochemical performance of Li–O2 batteries.

    CAS  Google Scholar 

  18. 18.

    Lu, Y.-C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    CAS  Google Scholar 

  19. 19.

    Lu, Y.-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).

    CAS  Google Scholar 

  20. 20.

    Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351 (2003).

    CAS  Google Scholar 

  21. 21.

    Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    CAS  Google Scholar 

  22. 22.

    Mitchell, R. R., Gallant, B. M., Shao-Horn, Y. & Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060–1064 (2013).

    CAS  Google Scholar 

  23. 23.

    Lau, S. & Archer, L. A. Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015).

    CAS  Google Scholar 

  24. 24.

    Gallant, B. M. et al. in The Lithium Air Battery: Fundamentals (eds Imanishi, N., Luntz, A. C. & Bruce, P. G.) 121–158 (Springer, 2014).

  25. 25.

    Rabenau, A. Lithium nitride and related materials case study of the use of modern solid state research techniques. Solid State Ion. 6, 277–293 (1982).

    CAS  Google Scholar 

  26. 26.

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  27. 27.

    Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A. & Gasteiger, H. A. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem. Solid-State Lett. 15, A45 (2012).

    CAS  Google Scholar 

  28. 28.

    Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    CAS  Google Scholar 

  29. 29.

    Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    CAS  Google Scholar 

  30. 30.

    McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    CAS  Google Scholar 

  31. 31.

    McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    CAS  Google Scholar 

  32. 32.

    Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    CAS  Google Scholar 

  33. 33.

    Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    CAS  Google Scholar 

  34. 34.

    Yu, Q. & Ye, S. In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium–oxygen battery. J. Phys. Chem. C 119, 12236–12250 (2015).

    CAS  Google Scholar 

  35. 35.

    Galloway, T. A. & Hardwick, L. J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7, 2119–2124 (2016).

    CAS  Google Scholar 

  36. 36.

    Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

    CAS  Google Scholar 

  37. 37.

    Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ. Sci. 6, 2518–2528 (2013).

    CAS  Google Scholar 

  38. 38.

    Laoire, C. O., Mukerjee, S., Abraham, K., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    CAS  Google Scholar 

  39. 39.

    Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    CAS  Google Scholar 

  40. 40.

    Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    CAS  Google Scholar 

  41. 41.

    Schwenke, K. U., Metzger, M., Restle, T., Piana, M. & Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J. Electrochem. Soc. 162, A573–A584 (2015).

    CAS  Google Scholar 

  42. 42.

    Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    CAS  Google Scholar 

  43. 43.

    Lee, D. et al. Direct observation of redox mediator-assisted solution-phase discharging of Li–O2 battery by liquid-phase transmission electron microscopy. J. Am. Chem. Soc. 141, 8047–8052 (2019).

    CAS  Google Scholar 

  44. 44.

    Liu, T. et al. The effect of water on quinone redox mediators in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 140, 1428–1437 (2018).

    CAS  Google Scholar 

  45. 45.

    Peng, Z., Chen, Y., Bruce, P. G. & Xu, Y. Direct detection of the superoxide anion as a stable intermediate in the electroreduction of oxygen in a non-aqueous electrolyte containing phenol as a proton source. Angew. Chem. Int. Ed. 54, 8165–8168 (2015).

    CAS  Google Scholar 

  46. 46.

    Gao, X., Jovanov, Z. P., Chen, Y., Johnson, L. R. & Bruce, P. G. Phenol-catalyzed discharge in the aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 129, 6639–6643 (2017).

    Google Scholar 

  47. 47.

    Ko, Y. et al. Biological redox mediation in electron transport chain of bacteria for oxygen reduction reaction catalysts in lithium–oxygen batteries. Adv. Funct. Mater. 29, 1805623 (2019).

    Google Scholar 

  48. 48.

    Zhang, Y. et al. High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li–O2 battery. Adv. Mater. 30, 1705571 (2018).

    Google Scholar 

  49. 49.

    Park, J.-B., Lee, S. H., Jung, H.-G., Aurbach, D. & Sun, Y.-K. Redox mediators for Li–O2 batteries: status and perspectives. Adv. Mater. 30, 1704162 (2018). This paper reviews the recent developments of redox mediators for Li–O2 batteries.

    Google Scholar 

  50. 50.

    Liang, Z., Zhou, Y. & Lu, Y.-C. Dynamic oxygen shield eliminates cathode degradation in lithium–oxygen batteries. Energy Environ. Sci. 11, 3500–3510 (2018).

    CAS  Google Scholar 

  51. 51.

    Gallagher, K. G. et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163, A138 (2015).

    Google Scholar 

  52. 52.

    Chen, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3, 1094–1105 (2019).

    CAS  Google Scholar 

  53. 53.

    Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    CAS  Google Scholar 

  54. 54.

    Chang, Z., Xu, J. & Zhang, X. Recent progress in electrocatalyst for Li–O2 batteries. Adv. Energy Mater. 7, 1700875 (2017).

    Google Scholar 

  55. 55.

    Ko, Y., Park, H., Kim, B., Kim, J. S. & Kang, K. Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem. 1, 349–360 (2019).

    Google Scholar 

  56. 56.

    Khetan, A., Luntz, A. & Viswanathan, V. Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015).

    CAS  Google Scholar 

  57. 57.

    Wang, Y. et al. A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018).

    CAS  Google Scholar 

  58. 58.

    Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2012).

    Google Scholar 

  59. 59.

    Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    CAS  Google Scholar 

  60. 60.

    Zhang, X. et al. LiO2: cryosynthesis and chemical/electrochemical reactivities. J. Phys. Chem. Lett. 8, 2334–2338 (2017).

    CAS  Google Scholar 

  61. 61.

    Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A. & Eichel, R.-A. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).

    CAS  Google Scholar 

  62. 62.

    Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    CAS  Google Scholar 

  63. 63.

    Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci. 12, 2559–2568 (2019). This work discusses the effect of peroxide disproportionation on the formation of 1O2 in alkali-metal–O2 batteries.

    CAS  Google Scholar 

  64. 64.

    Mahne, N., Renfrew, S. E., McCloskey, B. D. & Freunberger, S. A. Electrochemical oxidation of lithium carbonate generates singlet oxygen. Angew. Chem. Int. Ed. 57, 5529–5533 (2018).

    CAS  Google Scholar 

  65. 65.

    Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    CAS  Google Scholar 

  66. 66.

    Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    CAS  Google Scholar 

  67. 67.

    McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    CAS  Google Scholar 

  68. 68.

    Lu, Y.-C. & Shao-Horn, Y. Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 93–99 (2013).

    CAS  Google Scholar 

  69. 69.

    Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    CAS  Google Scholar 

  70. 70.

    Thotiyl, M. M. O. et al. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).

    Google Scholar 

  71. 71.

    Adams, B. D. et al. The importance of nanometric passivating films on cathodes for Li–air batteries. ACS Nano 8, 12483–12493 (2014).

    CAS  Google Scholar 

  72. 72.

    Kundu, D., Black, R., Berg, E. J. & Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8, 1292–1298 (2015).

    CAS  Google Scholar 

  73. 73.

    Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Google Scholar 

  74. 74.

    Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

    CAS  Google Scholar 

  75. 75.

    Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

    Google Scholar 

  76. 76.

    McCloskey, B. D. & Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li–O2 batteries. ACS Catal. 7, 772–778 (2017).

    CAS  Google Scholar 

  77. 77.

    Wang, Y., Liang, Z., Zou, Q., Cong, G. & Lu, Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries. J. Phys. Chem. C 120, 6459–6466 (2016).

    CAS  Google Scholar 

  78. 78.

    Liang, Z. & Lu, Y.-C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).

    CAS  Google Scholar 

  79. 79.

    Lim, H.-D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    CAS  Google Scholar 

  80. 80.

    Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    CAS  Google Scholar 

  81. 81.

    Tułodziecki, M. et al. The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries. Energy Environ. Sci. 10, 1828–1842 (2017).

    Google Scholar 

  82. 82.

    Kwak, W.-J. et al. Deactivation of redox mediators in lithium–oxygen batteries by singlet oxygen. Nat. Commun. 10, 1380 (2019).

    Google Scholar 

  83. 83.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    CAS  Google Scholar 

  84. 84.

    Assary, R. S. et al. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51–55 (2013).

    CAS  Google Scholar 

  85. 85.

    Lopez, N. et al. Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Science 335, 450–453 (2012).

    CAS  Google Scholar 

  86. 86.

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Google Scholar 

  87. 87.

    Kwak, W.-J., Park, J.-B., Jung, H.-G. & Sun, Y.-K. Controversial topics on lithium superoxide in Li–O2 batteries. ACS Energy Lett. 2, 2756–2760 (2017).

    CAS  Google Scholar 

  88. 88.

    Papp, J. K. et al. Poly(vinylidene fluoride) (PVDF) binder degradation in Li–O2 batteries: a consideration for the characterization of lithium superoxide. J. Phys. Chem. Lett. 8, 1169–1174 (2017).

    CAS  Google Scholar 

  89. 89.

    Giordani, V. et al. A molten salt lithium–oxygen battery. J. Am. Chem. Soc. 138, 2656–2663 (2016).

    CAS  Google Scholar 

  90. 90.

    Xia, C., Kwok, C. & Nazar, L. F. A high-energy-density lithium–oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 361, 777–781 (2018). This paper discloses a Li–O2 battery operating with molten nitrate salt electrolyte, in which 4-electron redox between O2 and Li2O was reversibly demonstrated.

    CAS  Google Scholar 

  91. 91.

    Giordani, V. et al. Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nat. Chem. 11, 1133–1138 (2019). This article describes a novel molten nitrate salt system with NO3 as the electrochemically active O atom source, with gaseous O2 not required.

    CAS  Google Scholar 

  92. 92.

    Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    CAS  Google Scholar 

  93. 93.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    CAS  Google Scholar 

  94. 94.

    Zhu, Z. et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016). This work reported solid-state redox of oxygen beginning in the fully reduced Li2O state, reversibly yielding Li2O2 and LiO2 on charge.

    CAS  Google Scholar 

  95. 95.

    Qiao, Y., Jiang, K., Deng, H. & Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nat. Catal. 2, 1035–1044 (2019).

    CAS  Google Scholar 

  96. 96.

    Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013). This study reports the first Na–O2 battery, where dramatic improvements in O2 redox reversibility are achieved by changing the alkali metal from Li to Na.

    CAS  Google Scholar 

  97. 97.

    Hartmann, P. et al. Discharge and charge reaction paths in sodium–oxygen batteries: Does NaO2 form by direct electrochemical growth or by precipitation from solution? J. Phys. Chem. C 119, 22778–22786 (2015).

    CAS  Google Scholar 

  98. 98.

    Xia, C., Black, R., Fernandes, R., Adams, B. & Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 7, 496–501 (2015).

    CAS  Google Scholar 

  99. 99.

    Xia, C. et al. Direct evidence of solution-mediated superoxide transport and organic radical formation in sodium–oxygen batteries. J. Am. Chem. Soc. 138, 11219–11226 (2016).

    CAS  Google Scholar 

  100. 100.

    McCloskey, B. D., Garcia, J. M. & Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J. Phys. Chem. Lett. 5, 1230–1235 (2014).

    CAS  Google Scholar 

  101. 101.

    Bender, C. L., Schröder, D., Pinedo, R., Adelhelm, P. & Janek, J. One- or two-electron transfer? The ambiguous nature of the discharge products in sodium–oxygen batteries. Angew. Chem. Int. Ed. 55, 4640–4649 (2016).

    CAS  Google Scholar 

  102. 102.

    Ortiz-Vitoriano, N. et al. Rate-dependent nucleation and growth of NaO2 in Na–O2 batteries. J. Phys. Chem. Lett. 6, 2636–2643 (2015).

    CAS  Google Scholar 

  103. 103.

    Bender, C. L., Hartmann, P., Vračar, M., Adelhelm, P. & Janek, J. On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery. Adv. Energy Mater. 4, 1301863 (2014).

    Google Scholar 

  104. 104.

    Kim, J. et al. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nat. Commun. 7, 10670 (2016).

    CAS  Google Scholar 

  105. 105.

    Sayed, S. Y. et al. Revealing instability and irreversibility in nonaqueous sodium–O2 battery chemistry. Chem. Commun. 52, 9691–9694 (2016).

    CAS  Google Scholar 

  106. 106.

    Landa-Medrano, I. et al. Sodium–oxygen battery: steps toward reality. J. Phys. Chem. Lett. 7, 1161–1166 (2016).

    CAS  Google Scholar 

  107. 107.

    Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    CAS  Google Scholar 

  108. 108.

    Nichols, J. E. & McCloskey, B. D. The sudden death phenomena in nonaqueous Na–O2 batteries. J. Phys. Chem. C 121, 85–96 (2017).

    CAS  Google Scholar 

  109. 109.

    Black, R. et al. The nature and impact of side reactions in glyme-based sodium–oxygen batteries. ChemSusChem 9, 1795–1803 (2016).

    CAS  Google Scholar 

  110. 110.

    Schafzahl, L. et al. Singlet oxygen during cycling of the aprotic sodium–O2 battery. Angew. Chem. Int. Ed. 56, 15728–15732 (2017).

    CAS  Google Scholar 

  111. 111.

    Lutz, L. et al. Role of electrolyte anions in the Na–O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers. Chem. Mater. 29, 6066–6075 (2017).

    CAS  Google Scholar 

  112. 112.

    Ren, X. & Wu, Y. A low-overpotential potassium–oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 135, 2923–2926 (2013).

    CAS  Google Scholar 

  113. 113.

    Qin, L., Schkeryantz, L., Zheng, J., Xiao, N. & Wu, Y. Superoxide-based K–O2 batteries: highly reversible oxygen redox solves challenges in air electrodes. J. Am. Chem. Soc. 142, 11629–11640 (2020). This review includes recent advances in K–O2 battery chemistry.

    CAS  Google Scholar 

  114. 114.

    Wang, W., Lai, N.-C., Liang, Z., Wang, Y. & Lu, Y.-C. Superoxide stabilization and a universal KO2 growth mechanism in potassium–oxygen batteries. Angew. Chem. Int. Ed. 57, 5042–5046 (2018).

    CAS  Google Scholar 

  115. 115.

    Xiao, N., Rooney, R. T., Gewirth, A. A. & Wu, Y. The long-term stability of KO2 in K–O2 batteries. Angew. Chem. Int. Ed. 57, 1227–1231 (2018).

    CAS  Google Scholar 

  116. 116.

    Xiao, N., Gourdin, G. & Wu, Y. Simultaneous stabilization of potassium metal and superoxide in K–O2 batteries on the basis of electrolyte reactivity. Angew. Chem. Int. Ed. 57, 10864–10867 (2018).

    CAS  Google Scholar 

  117. 117.

    Ren, X., He, M., Xiao, N., McCulloch, W. D. & Wu, Y. Greatly enhanced anode stability in K-oxygen batteries with an in situ formed solvent- and oxygen-impermeable protection layer. Adv. Energy Mater. 7, 1601080 (2017).

    Google Scholar 

  118. 118.

    Qin, L., Xiao, N., Zhang, S., Chen, X. & Wu, Y. From K–O2 to K–air batteries: realizing superoxide batteries on the basis of dry ambient air. Angew. Chem. Int. Ed. 59, 10498–10501 (2020).

    CAS  Google Scholar 

  119. 119.

    Cong, G., Wang, W., Lai, N.-C., Liang, Z. & Lu, Y.-C. A high-rate and long-life organic–oxygen battery. Nat. Mater. 18, 390–396 (2019).

    CAS  Google Scholar 

  120. 120.

    Li, C. S., Sun, Y., Gebert, F. & Chou, S.-L. Current progress on rechargeable magnesium–air battery. Adv. Energy Mater. 7, 1700869 (2017).

    Google Scholar 

  121. 121.

    Reinsberg, P., Bondue, C. J. & Baltruschat, H. Calcium–oxygen batteries as a promising alternative to sodium–oxygen batteries. J. Phys. Chem. C 120, 22179–22185 (2016).

    CAS  Google Scholar 

  122. 122.

    Reddy, T. B. (ed.) Linden’s Handbook of Batteries 4th edn (McGraw-Hill, 2011).

  123. 123.

    Xing, H. et al. Ambient lithium–SO2 batteries with ionic liquids as electrolytes. Angew. Chem. Int. Ed. 53, 2099–2103 (2014).

    CAS  Google Scholar 

  124. 124.

    Maricle, D. L. & Mohns, J. P. Electrochemical cell containing sulfur dioxide as the cathode depolarizer. US Patent US3567515A (1971).

  125. 125.

    Dey, A., Kuo, H., Piliero, P. & Kallianidis, M. Inorganic electrolyte Li/SO2 rechargeable system: development of a prototype hermetic C cell and evaluation of its performance and safety characteristics. J. Electrochem. Soc. 135, 2115 (1988).

    CAS  Google Scholar 

  126. 126.

    Fey, G. T.-K. Li/SO2 rechargeable batteries. J. Power Sources 35, 153–162 (1991).

    CAS  Google Scholar 

  127. 127.

    Lim, H.-D. et al. A new perspective on Li–SO2 batteries for rechargeable systems. Angew. Chem. Int. Ed. 54, 9663–9667 (2015). This work describes a Li–SO2(g) battery exhibiting reversible formation and decomposition of Li2S2O4 solid.

    CAS  Google Scholar 

  128. 128.

    Park, H. et al. High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nat. Commun. 8, 14989 (2017).

    Google Scholar 

  129. 129.

    Qiao, Y. et al. Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017).

    CAS  Google Scholar 

  130. 130.

    Xu, S., Das, S. K. & Archer, L. A. The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3, 6656–6660 (2013).

    CAS  Google Scholar 

  131. 131.

    Xie, J. & Wang, Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 6, 1721–1729 (2019).

    Google Scholar 

  132. 132.

    Hou, Y. et al. Mo2C/CNT: an efficient catalyst for rechargeable Li–CO2 batteries. Adv. Funct. Mater. 27, 1700564 (2017).

    Google Scholar 

  133. 133.

    Khurram, A., Yin, Y., Yan, L., Zhao, L. & Gallant, B. M. Governing role of solvent on discharge activity in lithium–CO2 batteries. J. Phys. Chem. Lett. 10, 6679–6687 (2019).

    CAS  Google Scholar 

  134. 134.

    Gowda, S. R., Brunet, A., Wallraff, G. & McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 276–279 (2013).

    CAS  Google Scholar 

  135. 135.

    Takechi, K., Shiga, T. & Asaoka, T. A Li–O2/CO2 battery. Chem. Commun. 47, 3463–3465 (2011).

    CAS  Google Scholar 

  136. 136.

    Yin, W., Grimaud, A., Lepoivre, F., Yang, C. & Tarascon, J. M. Chemical vs electrochemical formation of Li2CO3 as a discharge product in Li–O2/CO2 batteries by controlling the superoxide intermediate. J. Phys. Chem. Lett. 8, 214–222 (2017).

    CAS  Google Scholar 

  137. 137.

    Lim, H.-K. et al. Toward a lithium–“air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013).

    CAS  Google Scholar 

  138. 138.

    Zhao, Z., Su, Y. & Peng, Z. Probing lithium carbonate formation in trace-O2-assisted aprotic Li–CO2 batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 10, 322–328 (2019).

    Google Scholar 

  139. 139.

    Khurram, A., He, M. & Gallant, B. M. Tailoring the discharge reaction in Li–CO2 batteries through incorporation of CO2 capture chemistry. Joule 2, 2649–2666 (2018).

    CAS  Google Scholar 

  140. 140.

    Yang, S. et al. A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 10, 972–978 (2017).

    CAS  Google Scholar 

  141. 141.

    Liu, B. et al. Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019).

    CAS  Google Scholar 

  142. 142.

    Yang, S., He, P. & Zhou, H. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 9, 1650–1654 (2016).

    CAS  Google Scholar 

  143. 143.

    Garcia-Lastra, J. M., Myrdal, J. S., Christensen, R., Thygesen, K. S. & Vegge, T. DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li–air batteries. J. Phys. Chem. C 117, 5568–5577 (2013).

    CAS  Google Scholar 

  144. 144.

    Ling, C., Zhang, R., Takechi, K. & Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 118, 26591–26598 (2014).

    CAS  Google Scholar 

  145. 145.

    Zhang, Z. et al. Verifying the rechargeability of Li–CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 5, 1700567 (2018).

    Google Scholar 

  146. 146.

    Ma, W., Lu, S., Lei, X., Liu, X. & Ding, Y. Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6, 20829–20835 (2018).

    CAS  Google Scholar 

  147. 147.

    Németh, K. & Srajer, G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries. RSC Adv. 4, 1879–1885 (2014).

    Google Scholar 

  148. 148.

    Hughes, T., Smith, R. & Kiely, D. Stored chemical energy propulsion system for underwater applications. J. Energy 7, 128–133 (1983).

    CAS  Google Scholar 

  149. 149.

    Li, Y., Khurram, A. & Gallant, B. M. A high-capacity lithium–gas battery based on sulfur fluoride conversion. J. Phys. Chem. C 122, 7128–7138 (2018). This work demonstrates the first Li–SF6 battery, where 8-electron transfer per SF6 molecule was achieved.

    CAS  Google Scholar 

  150. 150.

    Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+-O2 redox couple: standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    CAS  Google Scholar 

  151. 151.

    Zámostná, L. & Braun, T. Catalytic degradation of sulfur hexafluoride by rhodium complexes. Angew. Chem. Int. Ed. 54, 10652–10656 (2015).

    Google Scholar 

  152. 152.

    He, H. et al. Highly-efficient conversion of SF6 via an eight-electron transfer process in lithium batteries. Nano Energy 72, 104679 (2020).

    CAS  Google Scholar 

  153. 153.

    Braun, T., Noveski, D., Neumann, B. & Stammler, H.-G. Conversion of hexafluoropropene into 1,1,1-trifluoropropane by rhodium-mediated C–F activation. Angew. Chem. Int. Ed. 41, 2745–2748 (2002).

    CAS  Google Scholar 

  154. 154.

    Gao, H., Li, Y., Guo, R. & Gallant, B. M. Controlling fluoride-forming reactions for improved rate capability in lithium-perfluorinated gas conversion batteries. Adv. Energy Mater. 9, 1900393 (2019).

    Google Scholar 

  155. 155.

    He, M., Li, Y., Guo, R. & Gallant, B. M. Electrochemical conversion of nitrogen trifluoride as a gas-to-solid cathode in Li batteries. J. Phys. Chem. Lett. 9, 4700–4706 (2018).

    CAS  Google Scholar 

  156. 156.

    Ma, J.-L., Bao, D., Shi, M.-M., Yan, J.-M. & Zhang, X.-B. Reversible nitrogen fixation based on a rechargeable lithium–nitrogen battery for energy storage. Chem 2, 525–532 (2017).

    CAS  Google Scholar 

  157. 157.

    Parr, R. G. & Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983).

    CAS  Google Scholar 

  158. 158.

    Pearson, R. G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl Acad. Sci. USA 83, 8440–8441 (1986).

    CAS  Google Scholar 

  159. 159.

    Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    CAS  Google Scholar 

  160. 160.

    Travers, M. J., Cowles, D. C. & Ellison, G. B. Reinvestigation of the electron affinities of O2 and NO. Chem. Phys. Lett. 164, 449–455 (1989).

    CAS  Google Scholar 

  161. 161.

    Johnson, R. D. III (ed.) NIST computational chemistry comparison and benchmark database. NIST standard reference database number 101. National Institute of Standards and Technology https://cccbdb.nist.gov/ (2019).

  162. 162.

    Zintl, E., Harder, A. & Dauth, B. Gitterstruktur der oxyde, sulfide, selenide und telluride des lithiums, natriums und kaliums. Z. Elektrochem. Angew. Physik. Chem. 40, 588–593 (1934).

    CAS  Google Scholar 

  163. 163.

    Vannerberg, N.-G. in Progress in Inorganic Chemistry Vol. 4 (ed. Cotton, F. A.) (Wiley, 1962).

  164. 164.

    Sun, B. et al. Hierarchical porous carbon spheres for high-performance Na–O2 batteries. Adv. Mater. 29, 1606816 (2017).

    Google Scholar 

  165. 165.

    Zhang, Z. et al. The first introduction of graphene to rechargeable Li–CO2 batteries. Angew. Chem. Int. Ed. 54, 6550–6553 (2015).

    CAS  Google Scholar 

  166. 166.

    Xiao, N., Ren, X., He, M., McCulloch, W. D. & Wu, Y. Probing mechanisms for inverse correlation between rate performance and capacity in K–O2 batteries. ACS Appl. Mater. Interfaces 9, 4301–4308 (2017).

    CAS  Google Scholar 

  167. 167.

    Tatara, R. et al. Oxygen reduction reaction in highly concentrated electrolyte solutions of lithium bis(trifluoromethanesulfonyl)amide/dimethyl sulfoxide. J. Phys. Chem. C 121, 9162–9172 (2017).

    CAS  Google Scholar 

  168. 168.

    Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    CAS  Google Scholar 

  169. 169.

    Liu, Y., Wang, R., Lyu, Y., Li, H. & Chen, L. Rechargeable Li/CO2–O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014).

    CAS  Google Scholar 

  170. 170.

    Black, R., Lee, J.-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed. 52, 392–396 (2013).

    CAS  Google Scholar 

  171. 171.

    Li, J. & Rogachev, A. Y. SO2 — yet another two-faced ligand. Phys. Chem. Chem. Phys. 17, 1987–2000 (2015).

    CAS  Google Scholar 

  172. 172.

    Tang, R. & Callaway, J. Electronic structure of SF6. J. Chem. Phys. 84, 6854–6860 (1986).

    CAS  Google Scholar 

  173. 173.

    McLean, A. Extended basis-set LCSTO—MO—SCF calculations on the ground state of carbon dioxide. J. Chem. Phys. 38, 1347–1355 (1963).

    CAS  Google Scholar 

  174. 174.

    Jürgensen, A. & Cavell, R. G. Valence shell photoionization energies and cross-sections of NF3 and PF3. J. Electron. Spectrosc. Relat. Phenom. 128, 245–260 (2003).

    Google Scholar 

  175. 175.

    Cade, P. E. & Wahl, A. C. Hartree–Fock–Roothaan wavefunctions for diatomic molecules: II. First-row homonuclear systems A2, A2±, and A2*. At. Data Nucl. Data Tables 13, 339–389 (1974).

    CAS  Google Scholar 

  176. 176.

    Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the MIT Lincoln Laboratory and from the Army Research Office under award number W911NF-19-1-0311.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Betar M. Gallant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Gallant, B.M. Advances in the chemistry and applications of alkali-metal–gas batteries. Nat Rev Chem 4, 566–583 (2020). https://doi.org/10.1038/s41570-020-00224-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing