Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering protein post-translational modifications using chemical biology tools

Abstract

Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein post-translational modifications diversify the proteome.
Fig. 2: Genetic-code expansion.
Fig. 3: SPPS, protein ligation and intein splicing.
Fig. 4: Site-specifically modified proteins accessed via chemical synthesis and amide-forming ligations.
Fig. 5: Site-specifically modified proteins accessed via protein semi-synthesis and trans-splicing.
Fig. 6: Enzymatic protein modifications and ligations.
Fig. 7: Mimics and stable analogues of PTMs.

Similar content being viewed by others

References

  1. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  2. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barber, K. W. & Rinehart, J. The ABCs of PTMs. Nat. Chem. Biol. 14, 188–192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farley, A. R. & Link, A. J. Identification and quantification of protein posttranslational modifications. Methods Enzymol. 463, 725–763 (2009).

    CAS  PubMed  Google Scholar 

  5. Chuh, K. N. & Pratt, M. R. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24, 27–37 (2015).

    CAS  PubMed  Google Scholar 

  6. Harmel, R. & Fiedler, D. Features and regulation of non-enzymatic post-translational modifications. Nat. Chem. Biol. 14, 244–252 (2018).

    CAS  PubMed  Google Scholar 

  7. Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).

    CAS  PubMed  Google Scholar 

  8. Chuh, K. N., Batt, A. R. & Pratt, M. R. Chemical methods for encoding and decoding of posttranslational modifications. Cell Chem. Biol. 23, 86–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Z. A. & Cole, P. A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol. 27, 953–969 (2020).

    CAS  PubMed  Google Scholar 

  10. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    CAS  Google Scholar 

  11. Schumacher, D. & Hackenberger, C. P. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr. Opin. Chem. Biol. 22, 62–69 (2014).

    CAS  PubMed  Google Scholar 

  12. Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).

    CAS  PubMed  Google Scholar 

  13. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    CAS  Google Scholar 

  14. Radziwon, K. & Weeks, A. M. Protein engineering for selective proteomics. Curr. Opin. Chem. Biol. 60, 10–19 (2020).

    PubMed  Google Scholar 

  15. UniProt Consortium. Controlled vocabulary of posttranslational modifications (PTM). UniProt https://www.uniprot.org/docs/ptmlist (2020).

  16. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    CAS  PubMed  Google Scholar 

  17. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    CAS  PubMed  Google Scholar 

  18. Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764–4806 (2014).

    CAS  PubMed  Google Scholar 

  19. Koh, M., Yao, A., Gleason, P. R., Mills, J. H. & Schultz, P. G. A general strategy for engineering noncanonical amino acid dependent bacterial growth. J. Am. Chem. Soc. 141, 16213–16216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    CAS  PubMed  Google Scholar 

  21. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

    CAS  PubMed  Google Scholar 

  22. Brown, W., Liu, J. & Deiters, A. Genetic code expansion in animals. ACS Chem. Biol. 13, 2375–2386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arranz-Gibert, P., Vanderschuren, K. & Isaacs, F. J. Next-generation genetic code expansion. Curr. Opin. Chem. Biol. 46, 203–211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding Nε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    CAS  PubMed  Google Scholar 

  25. Nguyen, D. P., Garcia Alai, M. M., Kapadnis, P. B., Neumann, H. & Chin, J. W. Genetically encoding Nε-methyl-l-lysine in recombinant histones. J. Am. Chem. Soc. 131, 14194–14195 (2009).

    CAS  PubMed  Google Scholar 

  26. Groff, D., Chen, P. R., Peters, F. B. & Schultz, P. G. A genetically encoded ε-N-methyl lysine in mammalian cells. ChemBioChem 11, 1066–1068 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, D. P., Garcia Alai, M. M., Virdee, S. & Chin, J. W. Genetically directing ɛ-N, N-dimethyl-l-lysine in recombinant histones. Chem. Biol. 17, 1072–1076 (2010).

    CAS  PubMed  Google Scholar 

  28. Akahoshi, A., Suzue, Y., Kitamatsu, M., Sisido, M. & Ohtsuki, T. Site-specific incorporation of arginine analogs into proteins using arginyl-tRNA synthetase. Biochem. Biophys. Res. Commun. 414, 625–630 (2011).

    CAS  PubMed  Google Scholar 

  29. Park, H. S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rogerson, D. T. et al. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 11, 496–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, M. S. et al. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat. Methods. 14, 729–736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, S. et al. Incorporation of phosphorylated tyrosine into proteins: in vitro translation and study of phosphorylated IκB-α and its interaction with NF-κB. J. Am. Chem. Soc. 139, 14098–14108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoppmann, C. et al. Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nat. Chem. Biol. 13, 842–844 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo, X. et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat. Chem. Biol. 13, 845–849 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, C. C., Cellitti, S. E., Geierstanger, B. H. & Schultz, P. G. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. Nat. Protoc. 4, 1784–1789 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Italia, J. S. et al. Genetically encoded protein sulfation in mammalian cells. Nat. Chem. Biol. 16, 379–382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Porter, J. J. et al. Genetically encoded protein tyrosine nitration in mammalian cells. ACS Chem. Biol. 14, 1328–1336 (2019).

    CAS  PubMed  Google Scholar 

  38. Xiao, H., Xuan, W., Shao, S., Liu, T. & Schultz, P. G. Genetic incorporation of ε-N-2-hydroxyisobutyryl-lysine into recombinant histones. ACS Chem. Biol. 10, 1599–1603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, Y., Gilgenast, M. J., Hauc, S. & Chatterjee, A. Capturing post-translational modification-triggered protein–protein interactions using dual noncanonical amino acid mutagenesis. ACS Chem. Biol. 13, 1137–1141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Z. A. et al. A versatile approach for site-specific lysine acylation in proteins. Angew. Chem. Int. Ed. 56, 1643–1647 (2017).

    CAS  Google Scholar 

  41. Nilsson, B. L., Kiessling, L. L. & Raines, R. T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    CAS  PubMed  Google Scholar 

  42. Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

    CAS  PubMed  Google Scholar 

  43. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  44. Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    CAS  PubMed  Google Scholar 

  45. Rosner, D., Schneider, T., Schneider, D., Scheffner, M. & Marx, A. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat. Protoc. 10, 1594–1611 (2015).

    PubMed  Google Scholar 

  46. Streichert, K. et al. Synthesis of erythropoietins site-specifically conjugated with complex-type N-glycans. ChemBioChem 20, 1914–1918 (2019).

    CAS  PubMed  Google Scholar 

  47. Wang, Y., Yang, S. H., Brimble, M. A. & Harris, P. W. R. Recent progress in the synthesis of homogeneous erythropoietin (EPO) glycoforms. ChemBioChem https://doi.org/10.1002/cbic.202000347 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dedkova, L. M. & Hecht, S. M. Expanding the scope of protein synthesis using modified ribosomes. J. Am. Chem. Soc. 141, 6430–6447 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oller-Salvia, B. & Chin, J. W. Efficient phage display with multiple distinct non-canonical amino acids using orthogonal ribosome-mediated genetic code expansion. Angew. Chem. Int. Ed. 58, 10844–10848 (2019).

    CAS  Google Scholar 

  50. Reinkemeier, C. D., Girona, G. E. & Lemke, E. A. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science 363, aaw2644 (2019).

    Google Scholar 

  51. Anderson, J. C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA 101, 7566–7571 (2004).

    CAS  PubMed  Google Scholar 

  52. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    CAS  PubMed  Google Scholar 

  53. Zhang, Y. et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551, 644–647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fischer, E. C. et al. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 16, 570–576 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwane, Y. et al. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nat. Chem. 8, 317–325 (2016).

    CAS  PubMed  Google Scholar 

  56. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuru, E. et al. Release factor inhibiting antimicrobial peptides improve nonstandard amino acid incorporation in wild-type bacterial cells. ACS Chem. Biol. 15, 1852–1861 (2020).

    CAS  PubMed  Google Scholar 

  59. Dunkelmann, D. L., Willis, J. C. W., Beattie, A. T. & Chin, J. W. Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat. Chem. 12, 535–544 (2020).

    CAS  PubMed  Google Scholar 

  60. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    CAS  Google Scholar 

  61. Bertran-Vicente, J. et al. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nat. Commun. 7, 12703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hauser, A., Penkert, M. & Hackenberger, C. P. R. Chemical approaches to investigate labile peptide and protein phosphorylation. Acc. Chem. Res. 50, 1883–1893 (2017).

    CAS  PubMed  Google Scholar 

  64. Hartrampf, N. et al. Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).

    CAS  PubMed  Google Scholar 

  65. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  66. Bode, J. W., Fox, R. M. & Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew. Chem. Int. Ed. 45, 1248–1252 (2006).

    CAS  Google Scholar 

  67. Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2013).

    CAS  PubMed  Google Scholar 

  68. Conibear, A. C., Watson, E. E., Payne, R. J. & Becker, C. F. W. Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 47, 9046–9068 (2018).

    CAS  PubMed  Google Scholar 

  69. Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2020).

    CAS  PubMed  Google Scholar 

  70. Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

    CAS  Google Scholar 

  71. Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).

    CAS  PubMed  Google Scholar 

  72. Wang, P. et al. Erythropoietin derived by chemical synthesis. Science 342, 1357–1360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wilson, R. M., Dong, S., Wang, P. & Danishefsky, S. J. The winding pathway to erythropoietin along the chemistry–biology frontier: a success at last. Angew. Chem. Int. Ed. 52, 7646–7665 (2013).

    CAS  Google Scholar 

  74. Unverzagt, C. & Kajihara, Y. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem. Soc. Rev. 42, 4408–4420 (2013).

    CAS  PubMed  Google Scholar 

  75. Murakami, M. et al. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. Sci. Adv. 2, e1500678 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Li, Y., Tran, A. H., Danishefsky, S. J. & Tan, Z. Chemical biology of glycoproteins: from chemical synthesis to biological impact. Methods Enzymol. 621, 213–229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramage, R. et al. Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem. J. 299, 151–158 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, H. & Brik, A. The journey for the total chemical synthesis of a 53 kDa protein. Acc. Chem. Res. 52, 3361–3371 (2019).

    CAS  PubMed  Google Scholar 

  79. Sun, H. et al. Diverse fate of ubiquitin chain moieties: the proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc. Natl Acad. Sci. USA 116, 7805–7812 (2019).

    CAS  PubMed  Google Scholar 

  80. Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).

    CAS  Google Scholar 

  81. Hua, X., Chu, G. C. & Li, Y. M. The ubiquitin enigma: progress in the detection and chemical synthesis of branched ubiquitin chains. ChemBioChem https://doi.org/10.1002/cbic.202000295 (2020).

    Article  PubMed  Google Scholar 

  82. Watson, E. E. et al. Rapid assembly and profiling of an anticoagulant sulfoprotein library. Proc. Natl Acad. Sci. USA 116, 13873–13878 (2019).

    CAS  PubMed  Google Scholar 

  83. Maxwell, J. W. C. & Payne, R. J. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Curr. Opin. Chem. Biol. 58, 72–85 (2020).

    CAS  PubMed  Google Scholar 

  84. Bode, J. W. Chemical protein synthesis with the α-ketoacid–hydroxylamine ligation. Acc. Chem. Res. 50, 2104–2115 (2017).

    CAS  PubMed  Google Scholar 

  85. Baldauf, S., Ogunkoya, A. O., Boross, G. N. & Bode, J. W. Aspartic acid forming α-ketoacid–hydroxylamine (KAHA) ligations with (S)-4,4-difluoro-5-oxaproline. J. Org. Chem. 85, 1352–1364 (2020).

    CAS  PubMed  Google Scholar 

  86. Harmand, T. J., Pattabiraman, V. R. & Bode, J. W. Chemical synthesis of the highly hydrophobic antiviral membrane-associated protein IFITM3 and modified variants. Angew. Chem. Int. Ed. 56, 12639–12643 (2017).

    CAS  Google Scholar 

  87. Dumas, A. M., Molander, G. A. & Bode, J. W. Amide-forming ligation of acyltrifluoroborates and hydroxylamines in water. Angew. Chem. Int. Ed. 51, 5683–5686 (2012).

    CAS  Google Scholar 

  88. Noda, H., Erős, G. & Bode, J. W. Rapid ligations with equimolar reactants in water with the potassium acyltrifluoroborate (KAT) amide formation. J. Am. Chem. Soc. 136, 5611–5614 (2014).

    CAS  PubMed  Google Scholar 

  89. White, C. J. & Bode, J. W. PEGylation and dimerization of expressed proteins under near equimolar conditions with potassium 2-pyridyl acyltrifluoroborates. ACS Cent. Sci. 4, 197–206 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, C. L., Liu, H., Wong, C. T., Chow, H. Y. & Li, X. Enabling N-to-C Ser/Thr ligation for convergent protein synthesis via combining chemical ligation approaches. J. Am. Chem. Soc. 138, 10477–10484 (2016).

    CAS  PubMed  Google Scholar 

  91. Zhang, Y. et al. Chemical synthesis of atomically tailored SUMO E2 conjugating enzymes for the formation of covalently linked SUMO–E2–E3 ligase ternary complexes. J. Am. Chem. Soc. 141, 14742–14751 (2019).

    CAS  PubMed  Google Scholar 

  92. David, Y. & Muir, T. W. Emerging chemistry strategies for engineering native chromatin. J. Am. Chem. Soc. 139, 9090–9096 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dikiy, I. et al. Semisynthetic and in vitro phosphorylation of alpha-synuclein at Y39 promotes functional partly helical membrane-bound states resembling those induced by PD mutations. ACS Chem. Biol. 11, 2428–2437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fauvet, B. & Lashuel, H. A. Semisynthesis and enzymatic preparation of post-translationally modified α-synuclein. Methods Mol. Biol. 1345, 3–20 (2016).

    CAS  PubMed  Google Scholar 

  96. Levine, P. M. et al. O-GlcNAc modification inhibits the calpain-mediated cleavage of α-synuclein. Bioorg. Med. Chem. 25, 4977–4982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. El Turk, F. et al. Exploring the role of post-translational modifications in regulating α-synuclein interactions by studying the effects of phosphorylation on nanobody binding. Protein Sci. 27, 1262–1274 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, H., Zhao, Y.-F., Chen, Y.-X. & Li, Y.-M. Exploring the roles of post-translational modifications in the pathogenesis of Parkinson’s disease using synthetic and semisynthetic modified α-synuclein. ACS Chem. Neurosci. 10, 910–921 (2019).

    CAS  PubMed  Google Scholar 

  99. Moon, S. P., Balana, A. T., Galesic, A., Rakshit, A. & Pratt, M. R. Ubiquitination can change the structure of the α-synuclein amyloid fiber in a site selective fashion. J. Org. Chem. 85, 1548–1555 (2020).

    CAS  PubMed  Google Scholar 

  100. Pan, B., Rhoades, E. & Petersson, E. J. Chemoenzymatic semisynthesis of phosphorylated α-synuclein enables identification of a bidirectional effect on fibril formation. ACS Chem. Biol. 15, 640–645 (2020).

    CAS  PubMed  Google Scholar 

  101. Marotta, N. P. et al. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson’s disease. Nat. Chem. 7, 913–920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lewis, Y. E. et al. O-GlcNAcylation of α-synuclein at serine 87 reduces aggregation without affecting membrane binding. ACS Chem. Biol. 12, 1020–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Levine, P. M. et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 1511–1519 (2019).

    CAS  PubMed  Google Scholar 

  104. Schwagerus, S., Reimann, O., Despres, C., Smet-Nocca, C. & Hackenberger, C. P. Semi-synthesis of a tag-free O-GlcNAcylated tau protein by sequential chemoselective ligation. J. Pept. Sci. 22, 327–333 (2016).

    CAS  PubMed  Google Scholar 

  105. Haj-Yahya, M. & Lashuel, H. A. Protein semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J. Am. Chem. Soc. 140, 6611–6621 (2018).

    CAS  PubMed  Google Scholar 

  106. Ellmer, D., Brehs, M., Haj-Yahya, M., Lashuel, H. A. & Becker, C. F. W. Single posttranslational modifications in the central repeat domains of Tau4 impact its aggregation and tubulin binding. Angew. Chem. Int. Ed. 58, 1616–1620 (2019).

    CAS  Google Scholar 

  107. Chu, N. et al. Akt kinase activation mechanisms revealed using protein semisynthesis. Cell 174, 897–907.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shah, N. H., Eryilmaz, E., Cowburn, D. & Muir, T. W. Naturally split inteins assemble through a “capture and collapse” mechanism. J. Am. Chem. Soc. 135, 18673–18681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Muona, M., Aranko, A. S., Raulinaitis, V. & Iwai, H. Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat. Protoc. 5, 574–587 (2010).

    CAS  PubMed  Google Scholar 

  110. Wood, D. W. & Camarero, J. A. Intein applications: from protein purification and labeling to metabolic control methods. J. Biol. Chem. 289, 14512–14519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, D. & Cowburn, D. Segmental isotopic labeling of proteins for NMR study using intein technology. Methods Mol. Biol. 1495, 131–145 (2017).

    CAS  PubMed  Google Scholar 

  112. Di Ventura, B. & Mootz, H. D. Switchable inteins for conditional protein splicing. Biol. Chem. 400, 467–475 (2019).

    PubMed  Google Scholar 

  113. Stevens, A. J. et al. A promiscuous split intein with expanded protein engineering applications. Proc. Natl Acad. Sci. USA 114, 8538–8543 (2017).

    CAS  PubMed  Google Scholar 

  114. Burton, A. J. et al. In situ chromatin interactomics using a chemical bait and trap approach. Nat. Chem. 12, 520–527 (2020).

    CAS  PubMed  Google Scholar 

  115. Shiraishi, Y. et al. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat. Commun. 9, 194 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Matveenko, M., Cichero, E., Fossa, P. & Becker, C. F. Impaired chaperone activity of human heat shock protein Hsp27 site-specifically modified with argpyrimidine. Angew. Chem. Int. Ed. 55, 11397–11402 (2016).

    CAS  Google Scholar 

  117. Jacobsen, M. T., Erickson, P. W. & Kay, M. S. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg. Med. Chem. 25, 4946–4952 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Liszczak, G. P. et al. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc. Natl Acad. Sci. USA 114, 681–686 (2017).

    CAS  PubMed  Google Scholar 

  119. Gramespacher, J. A., Burton, A. J., Guerra, L. F. & Muir, T. W. Proximity induced splicing utilizing caged split inteins. J. Am. Chem. Soc. 141, 13708–13712 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bhagawati, M. et al. In cellulo protein semi-synthesis from endogenous and exogenous fragments using the ultra-fast split Gp41-1 intein. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202006822 (2020).

    Article  Google Scholar 

  121. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    CAS  PubMed  Google Scholar 

  122. Bruce, V. J. & McNaughton, B. R. Inside job: methods for delivering proteins to the interior of mammalian cells. Cell Chem. Biol. 24, 924–934 (2017).

    CAS  PubMed  Google Scholar 

  123. David, Y., Vila-Perello, M., Verma, S. & Muir, T. W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 7, 394–402 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, Y., Park, K. Y., Suazo, K. F. & Distefano, M. D. Recent progress in enzymatic protein labelling techniques and their applications. Chem. Soc. Rev. 47, 9106–9136 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Choi, J. et al. Engineering orthogonal polypeptide GalNAc-transferase and UDP-sugar pairs. J. Am. Chem. Soc. 141, 13442–13453 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Islam, K. The bump-and-hole tactic: expanding the scope of chemical genetics. Cell Chem. Biol. 25, 1171–1184 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Garre, S., Gamage, A. K., Faner, T. R., Dedigama-Arachchige, P. & Pflum, M. K. H. Identification of kinases and interactors of p53 using kinase-catalyzed cross-linking and immunoprecipitation. J. Am. Chem. Soc. 140, 16299–16310 (2018).

    CAS  PubMed  Google Scholar 

  128. Mathur, S., Fletcher, A. J., Branigan, E., Hay, R. T. & Virdee, S. Photocrosslinking activity-based probes for ubiquitin RING E3 ligases. Cell Chem. Biol. 27, 74–82.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tripsianes, K., Schutz, U., Emmanouilidis, L., Gemmecker, G. & Sattler, M. Selective isotope labeling for NMR structure determination of proteins in complex with unlabeled ligands. J. Biomol. NMR 73, 183–189 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, C. & Wang, L. X. Chemoenzymatic methods for the synthesis of glycoproteins. Chem. Rev. 118, 8359–8413 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramirez, D. H. et al. Engineering a proximity-directed O-GlcNAc transferase for selective protein O-GlcNAcylation in cells. ACS Chem. Biol. 15, 1059–1066 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yang, Q. et al. Glycan remodeling of human erythropoietin (EPO) through combined mammalian cell engineering and chemoenzymatic transglycosylation. ACS Chem. Biol. 12, 1665–1673 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Tang, F. et al. Selective N-glycan editing on living cell surfaces to probe glycoconjugate function. Nat. Chem. Biol. 16, 766–775 (2020).

    CAS  PubMed  Google Scholar 

  134. Schmidt, M., Toplak, A., Quaedflieg, P. J. & Nuijens, T. Enzyme-mediated ligation technologies for peptides and proteins. Curr. Opin. Chem. Biol. 38, 1–7 (2017).

    CAS  PubMed  Google Scholar 

  135. Henager, S. H. et al. Enzyme-catalyzed expressed protein ligation. Nat. Methods. 13, 925–927 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Henager, S. H., Henriquez, S., Dempsey, D. R. & Cole, P. A. Analysis of site-specific phosphorylation of PTEN by using enzyme-catalyzed expressed protein ligation. ChemBioChem 21, 64–68 (2020).

    CAS  PubMed  Google Scholar 

  137. Thompson, R. E., Stevens, A. J. & Muir, T. W. Protein engineering through tandem transamidation. Nat. Chem. 11, 737–743 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Fottner, M. et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat. Chem. Biol. 15, 276–284 (2019).

    CAS  PubMed  Google Scholar 

  139. Chen, Z. & Cole, P. A. Synthetic approaches to protein phosphorylation. Curr. Opin. Chem. Biol. 28, 115–122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pedersen, S. W. et al. Site-specific phosphorylation of PSD-95 PDZ domains reveals fine-tuned regulation of protein–protein interactions. ACS Chem. Biol. 12, 2313–2323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Conibear, A. C., Rosengren, K. J., Becker, C. F. W. & Kaehlig, H. Random coil shifts of posttranslationally modified amino acids. J. Biomol. NMR 73, 587–599 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

    CAS  PubMed  Google Scholar 

  143. Yates, L. M. & Fiedler, D. A stable pyrophosphoserine analog for incorporation into peptides and proteins. ACS Chem. Biol. 11, 1066–1073 (2016).

    CAS  PubMed  Google Scholar 

  144. Kee, J. M., Villani, B., Carpenter, L. R. & Muir, T. W. Development of stable phosphohistidine analogues. J. Am. Chem. Soc. 132, 14327–14329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chalker, J. M., Bernardes, G. J., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).

    CAS  PubMed  Google Scholar 

  146. Lakbub, J. C., Shipman, J. T. & Desaire, H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal. Bioanal. Chem. 410, 2467–2484 (2018).

    CAS  PubMed  Google Scholar 

  147. Macmillan, D., Bill, R. M., Sage, K. A., Fern, D. & Flitsch, S. L. Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chem. Biol. 8, 133–145 (2001).

    CAS  PubMed  Google Scholar 

  148. Bhat, S. et al. Hydrazide mimics for protein lysine acylation to assess nucleosome dynamics and deubiquitinase action. J. Am. Chem. Soc. 140, 9478–9485 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hossain, M. A. et al. Total chemical synthesis of a nonfibrillating human glycoinsulin. J. Am. Chem. Soc. 142, 1164–1169 (2020).

    CAS  PubMed  Google Scholar 

  150. Wang, H., Farnung, L., Dienemann, C. & Cramer, P. Structure of H3K36-methylated nucleosome–PWWP complex reveals multivalent cross-gyre binding. Nat. Struct. Mol. Biol. 27, 8–13 (2020).

    CAS  PubMed  Google Scholar 

  151. Chu, G. C. et al. Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J. Am. Chem. Soc. 141, 3654–3663 (2019).

    CAS  PubMed  Google Scholar 

  152. Debelouchina, G. T., Gerecht, K. & Muir, T. W. Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nat. Chem. Biol. 13, 105–110 (2017).

    CAS  PubMed  Google Scholar 

  153. Bernardes, G. J. et al. From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. 47, 2244–2247 (2008).

    CAS  Google Scholar 

  154. Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, aag1465 (2016).

    PubMed  Google Scholar 

  155. Yang, A. et al. A chemical biology route to site-specific authentic protein modifications. Science 354, 623–626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, Q. et al. A general approach towards triazole-linked adenosine diphosphate ribosylated peptides and proteins. Angew. Chem. Int. Ed. 57, 1659–1662 (2018).

    CAS  Google Scholar 

  157. Kistemaker, H. A. et al. Synthesis and macrodomain binding of mono-ADP-ribosylated peptides. Angew. Chem. Int. Ed. 55, 10634–10638 (2016).

    CAS  Google Scholar 

  158. Mylona, A. et al. Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation. Science 354, 233–237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Theillet, F. X. et al. Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat. Protoc. 8, 1416–1432 (2013).

    PubMed  Google Scholar 

  160. Köhn, M. Turn and face the strange: a new view on phosphatases. ACS Cent. Sci. 6, 467–477 (2020).

    PubMed  PubMed Central  Google Scholar 

  161. Spinck, M., Neumann-Staubitz, P., Ecke, M., Gasper, R. & Neumann, H. Evolved, selective erasers of distinct lysine acylations. Angew. Chem. Int. Ed. 59, 11142–11149 (2020).

    CAS  Google Scholar 

  162. Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 12, 129–137 (2016).

    CAS  PubMed  Google Scholar 

  163. Bah, A. & Forman-Kay, J. D. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 6696–6705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Theillet, F. X. et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54, 217–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Carroll, E. C., Greene, E. R., Martin, A. & Marqusee, S. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nat. Chem. Biol. 16, 866–875 (2020).

    CAS  PubMed  Google Scholar 

  166. Freiburger, L. et al. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J. Biomol. NMR 63, 1–8 (2015).

    CAS  PubMed  Google Scholar 

  167. Nitsche, C. & Otting, G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog. Nucl. Magn. Res. Spectrosc. 98–99, 20–49 (2017).

    Google Scholar 

  168. Hendriks, I. A. et al. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat. Struct. Mol. Biol. 24, 325–336 (2017).

    CAS  PubMed  Google Scholar 

  169. Sager, R. A. et al. Post-translational regulation of FNIP1 creates a rheostat for the molecular chaperone Hsp90. Cell Rep. 26, 1344–1356.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lechner, C. C., Agashe, N. D. & Fierz, B. Traceless synthesis of asymmetrically modified bivalent nucleosomes. Angew. Chem. Int. Ed. 55, 2903–2906 (2016).

    CAS  Google Scholar 

  171. Liokatis, S., Klingberg, R., Tan, S. & Schwarzer, D. Differentially isotope-labeled nucleosomes to study asymmetric histone modification crosstalk by time-resolved NMR spectroscopy. Angew. Chem. Int. Ed. 55, 8262–8265 (2016).

    CAS  Google Scholar 

  172. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS  PubMed  Google Scholar 

  173. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Heal, W. P. & Tate, E. W. Getting a chemical handle on protein post-translational modification. Org. Biomol. Chem. 8, 731–738 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C.C. is supported by a UQ Development Fellowship (project 613982) and an Early Career Researcher Grant (project 616535) from the University of Queensland. J. Rosengren and O. Gajsek are gratefully acknowledged for helpful discussions and feedback.

Author information

Authors and Affiliations

Authors

Contributions

A.C.C. gathered literature, and wrote and edited the manuscript and figures.

Corresponding author

Correspondence to Anne C. Conibear.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks Y. Kajihara, M. Pratt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Proteome

All the proteins present in a cell, tissue or organism at a given time.

Post-translational modifications

(PTMs). Covalent modifications to a protein after its assembly on the ribosome.

Proteoforms

Modified and/or processed forms of a protein arising from a single gene.

PTM sites

Specific amino acid residues bearing one or more post-translational modifications (PTMs).

Canonical amino acids

The 20 standard amino acids encoded in the genetic code and incorporated into proteins by endogenous protein biosynthesis processes.

Aminoacyl-tRNA synthetase

(aa-tRNA synthetase). Enzyme that loads an amino acid onto tRNA bearing the respective anticodon for that amino acid.

Bioorthogonal handle

Functional group that is not found in biological systems, allowing chemical reactions to be carried out in complex mixtures of biomolecules without affecting native processes.

Directed evolution

Selection of a protein or nucleic acid with a desired trait by iterative cycles of genetic diversification, library screening and replication of functional variants.

Histone

One of several proteins that associate with DNA in eukaryotic nuclei and help to package it into chromatin.

Glycoproteins

Proteins that have one or more oligosaccharide chains covalently attached to an amino acid side chain.

Depsipeptides

Peptides that contain an ester linkage in place of one of the backbone amide bonds.

Epigenetic regulation

Control of gene expression and activity that is heritable and does not involve changes in the DNA sequence.

Amyloidogenic protein

A protein that produces or tends to produce fibrillar aggregates.

Consensus sequence

A representative protein or nucleic acid sequence comprising the most frequently occurring residues at each position, calculated by aligning multiple sequences.

Nucleosomes

The basic structural units of eukaryotic chromatin, comprising a segment of DNA wrapped around eight histones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conibear, A.C. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 4, 674–695 (2020). https://doi.org/10.1038/s41570-020-00223-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-00223-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing