Abstract
Inorganic nanomaterials are widely used in chemical, electronics, photonics, energy and medical industries. Preparing a nanomaterial (NM) typically requires physical and/or chemical methods that involve harsh and environmentally hazardous conditions. Recently, wild-type and genetically engineered microorganisms have been harnessed for the biosynthesis of inorganic NMs under mild and environmentally friendly conditions. Microorganisms such as microalgae, fungi and bacteria, as well as bacteriophages, can be used as biofactories to produce single-element and multi-element inorganic NMs. This Review describes the emerging area of inorganic NM biosynthesis, emphasizing the mechanisms of inorganic-ion reduction and detoxification, while also highlighting the proteins and peptides involved. We show how analysing a Pourbaix diagram can help us devise strategies for the predictive biosynthesis of NMs with high producibility and crystallinity and also describe how to control the size and morphology of the product. Here, we survey biosynthetic inorganic NMs of 55 elements and their applications in catalysis, energy harvesting and storage, electronics, antimicrobials and biomedical therapy. Furthermore, a step-by-step flow chart is presented to aid the design and biosynthesis of inorganic NMs employing microbial cells. Future research in this area will add to the diversity of available inorganic NMs but should also address scalability and purity.

This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The periodic table of photosynthetic purple non-sulfur bacteria: intact cell-metal ions interactions
Photochemical & Photobiological Sciences Open Access 08 November 2021
-
Synthetic biology 2020–2030: six commercially-available products that are changing our world
Nature Communications Open Access 11 December 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Davies, D. W. et al. Computational screening of all stoichiometric inorganic materials. Chem 1, 617–627 (2016).
Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).
Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).
Escárcega-González, C. E., Garza-Cervantes, J. A., Vázquez-Rodríguez, A. & Morones-Ramírez, J. R. Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int. J. Polym. Sci. 2018, 1–15 (2018).
Seo, J. M., Kim, E. B., Hyun, M. S., Kim, B. B. & Park, T. J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces 135, 27–34 (2015).
Kolev, S. K. et al. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 10, 659–678 (2018).
Sadler, W. R. & Trudinger, P. A. The inhibition of microorganisms by heavy metals. Miner. Deposita 2, 158–168 (1967).
Choi, Y., Kim, H.-A., Kim, K.-W. & Lee, B.-T. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. 66, 50–60 (2018).
Huang, F. et al. Biosorption of Cd(ii) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf. B Biointerfaces 107, 11–18 (2013).
Iravani, S. & Varma, R. S. Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain. Chem. Eng. 8, 5395–5409 (2020).
Choi, Y., Park, T. J., Lee, D. C. & Lee, S. Y. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl Acad. Sci. USA 115, 5944–5949 (2018).
Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M. & Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65, 150–153 (2008).
Riddin, T. L., Gericke, M. & Whiteley, C. G. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17, 3482 (2006).
Rautaray, D., Sanyal, A., Adyanthaya, S. D., Ahmad, A. & Sastry, M. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20, 6827–6833 (2004).
Bansal, V., Rautaray, D., Ahmad, A. & Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14, 3303–3305 (2004).
Mirzadeh, S., Darezereshki, E., Bakhtiari, F., Fazaelipoor, M. H. & Hosseini, M. R. Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum. Mater. Sci. Semicond. Process. 16, 374–378 (2013).
Bai, H.-J., Zhang, Z.-M. & Gong, J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett. 28, 1135–1139 (2006).
Hamer, D. H. Metallothionein. Annu. Rev. Biochem. 55, 913–951 (1986).
Inouhe, M. Phytochelatins. Braz. J. Plant Physiol. 17, 65–78 (2005).
Cobbett, C. S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211–216 (2000).
Li, Y. et al. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell. Physiol. 45, 1787–1797 (2004).
Kang, S. H., Bozhilov, K. N., Myung, N. V., Mulchandani, A. & Chen, W. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. Engl. 47, 5186–5189 (2008).
Park, T. J., Lee, S. Y., Heo, N. S. & Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. Engl. 49, 7019–7024 (2010).
Lee, K. G. et al. In vitro biosynthesis of metal nanoparticles in microdroplets. ACS Nano 6, 6998–7008 (2012).
Kim, E. B., Seo, J. M., Kim, G. W., Lee, S. Y. & Park, T. J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme Microb. Technol. 95, 201–208 (2016).
Jung, J. H., Lee, S. Y. & Seo, T. S. In vivo synthesis of nanocomposites using the recombinant Escherichia coli. Small 14, 1803133 (2018).
Jung, J. H., Park, T. J., Lee, S. Y. & Seo, T. S. Homogeneous biogenic paramagnetic nanoparticle synthesis based on a microfluidic droplet generator. Angew. Chem. Int. Ed. 51, 5634–5637 (2012).
Li, D.-B. et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 4, 3735 (2014).
Xiao, X. et al. Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. Biochem. Eng. J. 105, 214–219 (2016).
Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).
Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).
Shirodkar, S., Reed, S., Romine, M. & Saffarini, D. The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. Environ. Microbiol. 13, 108–115 (2011).
Perez-Gonzalez, T. et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim. Cosmochim. Acta 74, 967–979 (2010).
Bose, S. et al. Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 73, 962–976 (2009).
Xiao, X. et al. Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1. Int. Biodeterior. Biodegrad. 116, 10–16 (2017).
Fellowes, J. et al. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J. Hazard. Mater. 189, 660–669 (2011).
Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl Acad. Sci. USA 108, 15248–15252 (2011).
Lin, I. W.-S., Lok, C.-N. & Che, C.-M. Biosynthesis of silver nanoparticles from silver(i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem. Sci. 5, 3144–3150 (2014).
Potter, L. C. & Cole, J. A. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem. J. 344, 69–76 (1999).
Gescher, J. S., Cordova, C. D. & Spormann, A. M. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol. Microbiol. 68, 706–719 (2008).
Jeong, C. K. et al. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016–11025 (2013).
Dang, X. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6, 377–384 (2011).
Gahlawat, G. & Choudhury, A. R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9, 12944–12967 (2019).
Ali, J., Ali, N., Wang, L., Waseem, H. & Pan, G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159, 18–25 (2019).
Iravani, S. & Varma, R. S. Biofactories: engineered nanoparticles via genetically engineered organisms. Green Chem. 21, 4583–4603 (2019).
Khan, M. R. et al. Metal nanoparticle–microbe interactions: synthesis and antimicrobial effects. Part. Part. Syst. Charact. 37, 1900419 (2020).
Mirabello, G., Lenders, J. J. M. & Sommerdijk, N. A. J. M. Bioinspired synthesis of magnetite nanoparticles. Chem. Soc. Rev. 45, 5085–5106 (2016).
Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004).
Jacob, J. J. & Suthindhiran, K. Magnetotactic bacteria and magnetosomes — scope and challenges. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 919–928 (2016).
Blakemore, R. Magnetotactic bacteria. Science 190, 377–379 (1975).
Faramarzi, M. A. & Sadighi, A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 189–190, 1–20 (2013).
Jogler, C. & Schüler, D. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 133–161 (Springer, 2006).
Vargas, G. et al. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2348 (2018).
Vilchis-Nestor, A. R. et al. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett. 62, 3103–3105 (2008).
Al juraifani, A. A. A. & Ghazwani, A. A. Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. Afr. J. Biotechnol. 14, 2170–2174 (2015).
Hosseini, M. R., Schaffie, M., Pazouki, M., Darezereshki, E. & Ranjbar, M. Biologically synthesized copper sulfide nanoparticles: production and characterization. Mater. Sci. Semicond. Process. 15, 222–225 (2012).
Schaffie, M. & Hosseini, M. R. Biological process for synthesis of semiconductor copper sulfide nanoparticle from mine wastewaters. J. Environ. Chem. Eng. 2, 386–391 (2014).
Syed, A. & Ahmad, A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 106, 41–47 (2013).
Bansal, V. et al. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15, 2583–2589 (2005).
Bharde, A. et al. Extracellular biosynthesis of magnetite using fungi. Small 2, 135–141 (2006).
Bansal, V., Poddar, P., Ahmad, A. & Sastry, M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958–11963 (2006).
Uddin, I. et al. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J. Nanosci. Nanotechnol. 8, 3909–3913 (2008).
Kawazoe, H. et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939–942 (1997).
Ahmad, A. et al. Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2. Adv. Mater. 19, 3295–3299 (2007).
Lian, S. et al. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9, 221 (2019).
Bao, H., Hao, N., Yang, Y. & Zhao, D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 3, 481–489 (2010).
Dameron, C. T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989).
Waghmare, S. R., Mulla, M. N., Marathe, S. R. & Sonawane, K. D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5, 33–38 (2015).
Apte, M. et al. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3, 32 (2013).
Pimprikar, P. S., Joshi, S. S., Kumar, A. R., Zinjarde, S. S. & Kulkarni, S. K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 74, 309–316 (2009).
Chen, X. et al. Microorganism-assisted synthesis of Au/Pd/Ag nanowires. Mater. Lett. 165, 29–32 (2016).
Seshadri, S., Saranya, K. & Kowshik, M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 27, 1464–1469 (2011).
Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K. & Paknikar, K. M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 14, 815–818 (2002).
Jha, A. K., Prasad, K. & Kulkarni, A. R. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf. B Biointerfaces 71, 226–229 (2009).
Salunke, B. K., Sawant, S. S., Lee, S. I. & Kim, B. S. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99, 5419–5427 (2015).
Zhou, W. et al. Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J. Magn. Magn. Mater. 321, 1025–1028 (2009).
Anal K. Jha, K. P. Biological synthesis of cobalt ferrite nanoparticles. Nanotechnol. Dev. 2, 46–51 (2012).
Prasad, K., Jha, A. K., Prasad, K. & Kulkarni, A. R. Can microbes mediate nano-transformation? Indian J. Phys. 84, 1355–1360 (2010).
Jha, A. K., Prasad, K. & Prasad, K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43, 303–306 (2009).
Wang, L., Pang, Q., Song, Q., Pan, X. & Jia, L. Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation. Fuel 140, 267–274 (2015).
Jiang, M. et al. Biological nano-mineralization of Ce phosphate by Saccharomyces cerevisiae. Chem. Geol. 277, 61–69 (2010).
Jiang, M., Ohnuki, T. & Utsunomiya, S. Biomineralization of middle rare earth element samarium in yeast and bacteria systems. Geomicrobiol. J. 35, 375–384 (2018).
Jiang, M. et al. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae. Geochim. Cosmochim. Acta 93, 30–46 (2012).
Pei, X. et al. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environ. Sci. Pollut. Res. 24, 21649–21659 (2017).
Qu, Y. et al. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst. Eng. 41, 359–367 (2018).
Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S. & Arumugam, A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 5, 295–303 (2015).
Chokshi, K. et al. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. 6, 72269–72274 (2016).
Aziz, N. et al. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31, 11605–11612 (2015).
Singaravelu, G., Arockiamary, J. S., Kumar, V. G. & Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces 57, 97–101 (2007).
Dahoumane, S. A. et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J. Nanopart. Res. 18, 79 (2016).
Vanathi, P., Rajiv, P. & Sivaraj, R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull. Mater. Sci. 39, 1165–1170 (2016).
Abboud, Y. et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 4, 571–576 (2014).
Xia, Y. et al. Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J. Mater. Chem. 21, 6498–6501 (2011).
He, J. et al. Diatom-templated TiO2 with enhanced photocatalytic activity: biomimetics of photonic crystals. Appl. Phys. A 113, 327–332 (2013).
Chen, L., Feng, W., Pu, Z., Wang, X. & Song, C. Impact of pH on preparation of LiFePO4@C cathode materials by a sol-gel route assisted by biomineralization. Ionics 25, 5625–5632 (2019).
Santomauro, G. et al. Biomineralization of zinc-phosphate-based nano needles by living microalgae. J. Biomater. Nanobiotechnol. 3, 362–370 (2012).
Hou, L., Gao, F. & Li, N. T4 virus-based toolkit for the direct synthesis and 3D organization of metal quantum particles. Chem. Eur. J. 16, 14397–14403 (2010).
Kim, I. et al. Virus-templated self-mineralization of ligand-free colloidal palladium nanostructures for high surface activity and stability. Adv. Funct. Mater. 27, 1703262 (2017).
Kim, Y.-H. et al. Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device. ECS J. Solid State Sci. Technol. 5, Q226–Q230 (2016).
Love, A. J. et al. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front. Plant Sci. 6, 984 (2015).
Oh, M. H., Yu, J. H., Kim, I. & Nam, Y. S. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl. Mater. Interfaces 7, 22578–22586 (2015).
Vera-Robles, L. I., Escobar-Alarcón, L., Picquart, M., Hernández-Pozos, J. L. & Haro-Poniatowski, E. A biological approach for the synthesis of bismuth nanoparticles: using thiolated M13 phage as scaffold. Langmuir 32, 3199–3206 (2016).
Mao, C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213–217 (2004).
Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).
Jung, S. M., Qi, J., Oh, D., Belcher, A. & Kong, J. M13 virus aerogels as a scaffold for functional inorganic materials. Adv. Funct. Mater. 27, 1603203 (2017).
Nuraje, N. et al. Biotemplated synthesis of perovskite nanomaterials for solar energy conversion. Adv. Mater. 24, 2885–2889 (2012).
Nam, Y. S. et al. Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale 4, 3405–3409 (2012).
Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100, 6946–6951 (2003).
Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).
Yang, C., Meldon, J. H., Lee, B. & Yi, H. Investigation on the catalytic reduction kinetics of hexavalent chromium by viral-templated palladium nanocatalysts. Catal. Today 233, 108–116 (2014).
Avery, K. N., Schaak, J. E. & Schaak, R. E. M13 bacteriophage as a biological scaffold for magnetically-recoverable metal nanowire catalysts: combining specific and nonspecific interactions to design multifunctional nanocomposites. Chem. Mater. 21, 2176–2178 (2009).
Mi, C. et al. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J. Biotechnol. 153, 125–132 (2011).
Ouyang, C.-Y., Lin, Y.-K., Tsai, D.-Y. & Yeh, Y.-C. Secretion of metal-binding proteins by a newly discovered OsmY homolog in Cupriavidus metallidurans for the biogenic synthesis of metal nanoparticles. RSC Adv. 6, 16798–16801 (2016).
Yuan, Q., Bomma, M. & Xiao, Z. Enhanced silver nanoparticle synthesis by Escherichia coli transformed with Candida albicans metallothionein gene. Materials 12, 4180 (2019).
Tsai, Y.-J. et al. Biosynthesis and display of diverse metal nanoparticles by recombinant Escherichia coli. RSC Adv. 4, 58717–58719 (2014).
Monrás, J. P. et al. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS ONE 7, e48657 (2012).
Edmundson, M. C. & Horsfall, L. Construction of a modular arsenic-resistance operon in E. coli and the production of arsenic nanoparticles. Front. Bioeng. Biotechnol. 3, 160 (2015).
Chellamuthu, P. et al. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb. Biotechnol. 12, 161–172 (2019).
Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).
Tofanello, A. et al. pH-dependent synthesis of anisotropic gold nanostructures by bioinspired cysteine-containing peptides. ACS Omega 1, 424–434 (2016).
Wang, S., Qian, K., Bi, X. & Huang, W. Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids. J. Phys. Chem. C 113, 6505–6510 (2009).
Kumari, M. et al. Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci. Rep. 6, 27575 (2016).
Rizki, N. I. & Okibe, N. Size-controlled production of gold bionanoparticles using the extremely acidophilic Fe(iii)-reducing bacterium, Acidocella aromatica. Minerals 8, 81 (2018).
Wang, M. et al. Microorganism-mediated synthesis of chemically difficult-to-synthesize Au nanohorns with excellent optical properties in the presence of hexadecyltrimethylammonium chloride. Nanoscale 5, 6599–6606 (2013).
Jing, X. et al. Microorganism-mediated, CTAC-directed synthesis of SERS-sensitive Au nanohorns with three-dimensional nanostructures by Escherichia coli cells. J. Chem. Technol. Biotechnol. 90, 678–685 (2015).
Phanjom, P. & Ahmed, G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045016 (2017).
Gurunathan, S. et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 74, 328–335 (2009).
Debabov, V. et al. Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol. Russ. 8, 269–276 (2013).
Enyedi, N. T. et al. Cave bacteria-induced amorphous calcium carbonate formation. Sci. Rep. 10, 8696 (2020).
Wang, T., Yang, L., Zhang, B. & Liu, J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf. B Biointerfaces 80, 94–102 (2010).
Ruiz Fresneda, M. A. et al. Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: impact on Se mobility within the concept of radioactive waste disposal. Environ. Sci. Nano 5, 2103–2116 (2018).
Wang, G. et al. DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J. Mater. Chem. B 1, 5899–5907 (2013).
Martins, M. et al. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 108, 160–168 (2017).
Srivastava, N. & Mukhopadhyay, M. Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind. Eng. Chem. Res. 53, 13971–13979 (2014).
Zhang, H. & Hu, X. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction. Enzyme Microb. Technol. 113, 59–66 (2018).
Tuo, Y. et al. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ. Sci. Pollut. Res. 24, 5249–5258 (2017).
Xu, H. et al. Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology 30, 065607 (2019).
Tuo, Y. et al. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci. Rep. 5, 13515 (2015).
Zhang, S., Yu, H., Yang, J. & Shen, Z. Design of the nanoarray pattern Fe–Ni bi-metal nanoparticles@M13 virus for the enhanced reduction of p-chloronitrobenzene through the micro-electrolysis effect. Environ. Sci. Nano 4, 876–885 (2017).
Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).
Su, Y. et al. Close-packed nanowire–bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).
Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).
Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).
Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).
Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).
Ding, Y. et al. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot–bacteria nanobiohybrids. J. Am. Chem. Soc. 141, 10272–10282 (2019).
Kilper, S. et al. Genetically induced in situ-poling for piezo-active biohybrid nanowires. Adv. Mater. 31, 1805597 (2018).
Lee, B. Y. et al. Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7, 351–356 (2012).
Cung, K. et al. Biotemplated synthesis of PZT nanowires. Nano Lett. 13, 6197–6202 (2013).
Shin, D.-M. et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ. Sci. 8, 3198–3203 (2015).
Kim, T.-Y., Kim, M. G., Lee, J.-H. & Hur, H.-G. Biosynthesis of nanomaterials by Shewanella species for application in lithium ion batteries. Front. Microbiol. 9, 2817 (2018).
Chen, P.-Y. et al. Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting. ACS Nano 7, 6563–6574 (2013).
Órdenes-Aenishanslins, N. et al. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells. Front. Microbiol. 10, 1587 (2019).
Durán, N. et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12, 789–799 (2016).
Courtney, C. M. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 15, 529–534 (2016).
Kazempour, Z. B., Yazdi, M. H., Rafii, F. & Shahverdi, A. R. Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran. J. Microbiol. 5, 81–85 (2013).
Zare, B., Babaie, S., Setayesh, N. & Shahverdi, A. R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed. J. 1, 13–19 (2013).
Cruz, L. Y., Wang, D. & Liu, J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J. Photochem. Photobiol. B 191, 123–127 (2019).
Hariharan, H., Al-Harbi, N., Karuppiah, P. & Rajaram, S. Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett. 9, 509–515 (2012).
Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8, 681 (2018).
Suresh, A. K. et al. Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater. 7, 4253–4258 (2011).
Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. & Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382–386 (2009).
Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. & Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4, 141–144 (2008).
Fayaz, A. M. et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6, 103–109 (2010).
Jayaseelan, C. et al. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 82–89 (2013).
Składanowski, M. et al. Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J. Clust. Sci. 28, 59–79 (2017).
Hamouda, R. A., Yousuf, W. E., Abdeen, E. E. & Mohamed, A. Biological and chemical synthesis of silver nanoparticles: characterization, MIC and antibacterial activity against pathogenic bacteria. J. Chem. Pharm. Res. 11, 1–12 (2019).
Cumberland, S. A. & Lead, J. R. Synthesis of NOM-capped silver nanoparticles: size, morphology, stability, and NOM binding characteristics. ACS Sustain. Chem. Eng. 1, 817–825 (2013).
Kim, H. A., Choi, Y. J., Kim, K.-W., Lee, B.-T. & Ranville James, F. Nanoparticles in the environment: stability and toxicity. Rev. Environ. Health 27, 175–179 (2012).
Tian, L.-J. et al. A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochem. Eng. J. 124, 130–137 (2017).
Fan, T.-X., Chow, S.-K. & Zhang, D. Biomorphic mineralization: from biology to materials. Prog. Mater. Sci. 54, 542–659 (2009).
Dilnawaz, F. & Sahoo, S. K. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov. Today 20, 1256–1264 (2015).
Tilley, R. D. Synthesis and applications of nanoparticles and quantum dots. Chem. N. Z. 72, 146–150 (2008).
Xie, H. et al. An intrinsically fluorescent recognition ligand scaffold based on chaperonin protein and semiconductor quantum-dot conjugates. Small 5, 1036–1042 (2009).
Yong, K.-T., Roy, I., Ding, H., Bergey, E. J. & Prasad, P. N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 5, 1997–2004 (2009).
Zibik, E. A. et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).
Bao, H. et al. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 6, 3534–3541 (2010).
Sun, S. & Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002).
Park, T. J., Lee, K. G. & Lee, S. Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 100, 521–534 (2016).
Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A. & Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B 140, 194–204 (2014).
Shivani, V., Puneet, U., Mahfoozur, R., Deo Nandan, P. & Lalit, K. Gold nanoparticles and their applications in cancer treatment. Curr. Nanomed. 8, 184–201 (2018).
El-Kassas, H. Y. & El-Sheekh, M. M. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev. 15, 4311–4317 (2014).
Chen, C. et al. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI. Biomaterials 104, 352–360 (2016).
Moon, J.-W. et al. Large-scale production of magnetic nanoparticles using bacterial fermentation. J. Ind. Microbiol. Biotechnol. 37, 1023–1031 (2010).
Moon, J.-W. et al. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl. Microbiol. Biotechnol. 100, 7921–7931 (2016).
Moon, J.-W. et al. Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films. Acta Biomater. 10, 4474–4483 (2014).
Moon, J.-W. et al. Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J. Ind. Microbiol. Biotechnol. 40, 1263–1271 (2013).
Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).
Marguet, P., Tanouchi, Y., Spitz, E., Smith, C. & You, L. Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology. PLoS ONE 5, e11909 (2010).
Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).
Cui, S. et al. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138, 2877–2882 (2013).
Raman, R. & Langer, R. Biohybrid design gets personal: new materials for patient-specific therapy. Adv. Mater. 32, 1901969 (2020).
Yoon, J. et al. Nanobiohybrid material-based bioelectronic devices. Biotechnol. J. 15, 1900347 (2020).
Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (English edition) (Oxford Univ. Press, 1966).
Huang, H.-H. The Eh–pH diagram and its advances. Metals 6, 23 (2016).
Acknowledgements
This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557).
Author information
Authors and Affiliations
Contributions
S.Y.L. and Y.C. designed the content and flow of the paper. Y.C. collected the necessary information and data. Y.C. and S.Y.L. wrote the paper together.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Choi, Y., Lee, S.Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 4, 638–656 (2020). https://doi.org/10.1038/s41570-020-00221-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-020-00221-w
This article is cited by
-
A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications
Biological Trace Element Research (2023)
-
The periodic table of photosynthetic purple non-sulfur bacteria: intact cell-metal ions interactions
Photochemical & Photobiological Sciences (2022)
-
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals
Journal of Cluster Science (2022)
-
Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli
Applied Microbiology and Biotechnology (2022)
-
Fabrication and characterization of CdS nanowires templated in tobacco mosaic virus with improved photocatalytic ability
Applied Microbiology and Biotechnology (2021)