Abstract
There is a need to capture, convert and store CO2 by atom-efficient and energy-efficient pathways that use as few process configurations as possible. This need has motivated studies into multiphase reaction chemistries and this Review describes two such approaches in the context of carbon mineralization. The first approach uses aqueous alkaline solutions containing amine nucleophiles that capture CO2 and eventually convert it into calcium and magnesium carbonates, thereby regenerating the nucleophiles. Gas–liquid–solid and liquid–solid configurations of these reactions are explored. The second approach combines silicates such as CaSiO3 or Mg2SiO4 with CO and H2O from the water-gas shift reaction to give H2 and calcium or magnesium carbonates. Coupling carbonate formation to the water-gas shift reaction shifts the latter equilibrium to afford more H2 as part of a single-step catalytic approach to carbon mineralization. These pathways exploit the vast abundance of alkaline resources, including naturally occurring silicates and alkaline industrial residues. However, simple stoichiometries belie the complex, multiphase nature of the reactions, predictive control of which presents a scientific opportunity and challenge. This Review describes this multiphase chemistry and the knowledge gaps that need to be addressed to achieve ‘step-change’ advancements in the reactive separation of CO2 by carbon mineralization.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures
Scientific Reports Open Access 06 July 2021
-
Carbon mineralization pathways for carbon capture, storage and utilization
Communications Chemistry Open Access 26 February 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Kelemen, P. B. et al. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).
Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).
Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837–841 (2009).
Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).
Matter, J. M. et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352, 1312–1314 (2016).
Schaef, H. T., McGrail, B. P. & Owen, A. T. Basalt-CO2–H2O interactions and variability in carbonate mineralization rates. Energy Procedia 1, 4899–4906 (2009).
Schaef, H. T., McGrail, B. P., Owen, A. T. & Arey, B. W. Mineralization of basalts in the CO2–H2O–H2S system. Int. J. Greenh. Gas Control 16, 187–196 (2013).
Gerdemann, S. J., O’Connor, W. K., Dahlin, D. C., Penner, L. R. & Rush, H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol. 41, 2587–2593 (2007).
Gadikota, G., Matter, J., Kelemen, P. & Park, A.-hA. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys. 16, 4679–4693 (2014).
Eikeland, E., Blichfeld, A. B., Tyrsted, C., Jensen, A. & Iversen, B. B. Optimized carbonation of magnesium silicate mineral for CO2 storage. ACS Appl. Mater. Interfaces 7, 5258–5264 (2015).
Miller, Q. R. et al. Quantitative review of olivine carbonation kinetics: reactivity trends, mechanistic insights, and research frontiers. Environ. Sci. Technol. Lett. 6, 431–442 (2019).
Wang, F., Dreisinger, D., Jarvis, M., Hitchins, T. & Dyson, D. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions. Chem. Eng. J. 360, 452–463 (2019).
National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. The National Academies Press https://www.nap.edu/catalog/25259/negative-emissions-technologies-and-reliable-sequestration-a-research-agenda (2019).
Palandri, J. L. & Kharaka, Y. K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey Open File Report 2004-1068 https://pubs.usgs.gov/of/2004/1068/ (2004).
Bénézeth, P., Saldi, G. D., Dandurand, J.-L. & Schott, J. Experimental determination of the solubility product of magnesite at 50 to 200 °C. Chem. Geol. 286, 21–31 (2011).
Weyl, P. The change in solubility of calcium carbonate with temperature and carbon dioxide content. Geochim. Cosmochim. Acta 17, 214–225 (1959).
Rhodes, C., Hutchings, G. J. & Ward, A. M. Water-gas shift reaction: finding the mechanistic boundary. Catal. Today 23, 43–58 (1995).
Mirjafari, P., Asghari, K. & Mahinpey, N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 46, 921–926 (2007).
Patel, T. N., Park, A.-H. A. & Banta, S. Periplasmic expression of carbonic anhydrase in Escherichia coli: a new biocatalyst for CO2 hydration. Biotechnol. Bioeng. 110, 1865–1873 (2013).
Zhao, H., Park, Y., Lee, D. H. & Park, A.-H. A. Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates. Phys. Chem. Chem. Phys. 15, 15185–15192 (2013).
Béarat, H. et al. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ. Sci. Technol. 40, 4802–4808 (2006).
Daval, D. et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2. Chem. Geol. 284, 193–209 (2011).
Daval, D. et al. in Proc. 13th Int. Conf. Water Rock Interaction WRI-13 (eds Birkle, P. & Torres-Alvarado, I. S.) 713–716 (Taylor & Francis, 2010).
Park, A.-H. A. et al. Methods and systems for capturing and storing carbon dioxide. US Patent 14/237,690 (2015).
Di Lorenzo, F. et al. The carbonation of wollastonite: a model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration. Minerals 8, 209 (2018).
Giammar, D. E., Bruant Jr, R. G. & Peters, C. A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem. Geol. 217, 257–276 (2005).
Swanson, E. J., Fricker, K. J., Sun, M. & Park, A.-H. A. Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage. Phys. Chem. Chem. Phys. 16, 23440–23450 (2014).
Yu, C.-H., Huang, C.-H. & Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).
Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).
Bottoms, R. R. Process for separating acidic gases. US Patent 1,834,016 (1930).
Lepaumier, H., Picq, D. & Carrette, P.-L. New amines for CO2 capture. I. mechanisms of amine degradation in the presence of CO2. Ind. Eng. Chem. Res. 48, 9061–9067 (2009).
Sayari, A., Heydari-Gorji, A. & Yang, Y. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012).
Gouedard, C., Picq, D., Launay, F. & Carrette, P.-L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 10, 244–270 (2012).
Martin, S. et al. New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model. Ind. Eng. Chem. Res. 51, 6283–6289 (2012).
Dai, N. et al. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Environ. Sci. Technol. 46, 9793–9801 (2012).
Dai, N. & Mitch, W. A. Controlling nitrosamines, nitramines, and amines in amine-based CO2 capture systems with continuous ultraviolet and ozone treatment of washwater. Environ. Sci. Technol. 49, 8878–8886 (2015).
Wang, Z. & Mitch, W. A. Influence of dissolved metals on N-nitrosamine formation under amine-based CO2 capture conditions. Environ. Sci. Technol. 49, 11974–11981 (2015).
Rochelle, G. T. Thermal degradation of amines for CO2 capture. Curr. Opin. Chem. Eng. 1, 183–190 (2012).
Soosaiprakasam, I. R. & Veawab, A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process. Int. J. Greenh. Gas Control 2, 553–562 (2008).
Xiang, Y., Choi, Y. S., Yang, Y. & Nešić, S. Corrosion of carbon steel in MDEA-based CO2 capture plants under regenerator conditions: Effects of O2 and heat-stable salts. Corrosion 71, 30–37 (2014).
Wattanaphan, P., Sema, T., Idem, R., Liang, Z. & Tontiwachwuthikul, P. Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process. Int. J. Greenh. Gas Control 19, 340–349 (2013).
Veawab, A., Tontiwachwuthikul, P. & Chakma, A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind. Eng. Chem. Res. 38, 3917–3924 (2002).
Kittel, J. et al. Corrosion in MEA units for CO2 capture: pilot plant studies. Energy Procedia 1, 791–797 (2009).
Mandal, B. P., Guha, M., Biswas, A. K. & Bandyopadhyay, S. S. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem. Eng. Sci. 56, 6217–6224 (2001).
Idem, R. et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Ind. Eng. Chem. Res. 45, 2414–2420 (2006).
Li, Q. et al. A novel strategy for carbon capture and sequestration by rHLPD processing. Front. Energy Res. 3, 53 (2016).
Ji, L. et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 225, 356–366 (2018).
Kang, J. M. et al. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process. Chem. Eng. J. 335, 338–344 (2018).
Arti, M. et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 31, 763–769 (2017).
Yu, B. et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration. Int. J. Greenh. Gas Control 87, 58–65 (2019).
Vaidya, P. D., Konduru, P., Vaidyanathan, M. & Kenig, E. Y. Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts. Ind. Eng. Chem. Res. 49, 11067–11072 (2010).
Kumar, P. S., Hogendoorn, J. A., Versteeg, G. F. & Feron, P. H. M. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE J. 49, 203–213 (2003).
Portugal, A. F., Sousa, J. M., Magalhães, F. D. & Mendes, A. Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 64, 1993–2002 (2009).
Portugal, A. F., Derks, P. W. J., Versteeg, G. F., Magalhães, F. D. & Mendes, A. Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem. Eng. Sci. 62, 6534–6547 (2007).
Guo, D. et al. Amino acids as carbon capture solvents: chemical kinetics and mechanism of the glycine+CO2 reaction. Energy Fuels 27, 3898–3904 (2013).
Thee, H. et al. A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline. Int. J. Greenh. Gas Control 20, 212–222 (2014).
Sanchez Fernandez, E. et al. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents. Ind. Eng. Chem. Res. 52, 12223–12235 (2013).
Sanchez-Fernandez, E. et al. New process concepts for CO2 capture based on precipitating amino acids. Energy Procedia 37, 1160–1171 (2013).
Majchrowicz, M. E., Brilman, D. W. F. (Wim) & Groeneveld, M. J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases. Energy Procedia 1, 979–984 (2009).
Sanchez-Fernandez, E. et al. Analysis of process configurations for CO2 capture by precipitating amino acid solvents. Ind. Eng. Chem. Res. 53, 2348–2361 (2014).
Hänchen, M., Prigiobbe, V., Storti, G., Seward, T. M. & Mazzotti, M. Dissolution kinetics of fosteritic olivine at 90–150 °C including effects of the presence of CO2. Geochim. Cosmochim. Acta 70, 4403–4416 (2006).
Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R. & Schott, J. Olivine dissolution rates: a critical review. Chem. Geol. 500, 1–19 (2018).
Kirchofer, A., Brandt, A., Krevor, S., Prigiobbe, V. & Wilcox, J. Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ. Sci. 5, 8631–8641 (2012).
Park, A.-H. A. & Fan, L.-S. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 59, 5241–5247 (2004).
Sanna, A., Hall, M. R. & Maroto-Valer, M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ. Sci. 5, 7781–7796 (2012).
Gadikota, G. & Park, A.-H. A. in Carbon Dioxide Utilisation: Closing the Carbon Cycle (eds Styring, P., Quadrelli, E. A. & Armstrong, K.) 115–137 (Elsevier, 2015).
Murnandari, A. et al. Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization. Korean J. Chem. Eng. 34, 935–941 (2017).
Han, C. & Harrison, D. P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chem. Eng. Sci. 49, 5875–5883 (1994).
Liu, M. & Gadikota, G. Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy. Energy Fuels 33, 1722–1733 (2019).
Liu, M., Asgar, H., Seifert, S. & Gadikota, G. Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonate. Sustain. Energy Fuels. https://doi.org/10.1039/C9SE00316A (2019).
Hövelmann, J., Putnis, C. V., Ruiz-Agudo, E. & Austrheim, H. Direct nanoscale observations of CO2 sequestration during brucite [Mg(OH)2] dissolution. Environ. Sci. Technol. 46, 5253–5260 (2012).
Saldi, G. D., Jordan, G., Schott, J. & Oelkers, E. H. Magnesite growth rates as a function of temperature and saturation state. Geochim. Cosmochim. Acta 73, 5646–5657 (2009).
Schott, J., Pokrovsky, O. S. & Oelkers, E. H. The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev. Mineral Geochem. 70, 207–258 (2009).
Dresselhaus, M. Basic Research Needs for the Hydrogen Economy. US Department of Energy (2003).
Turner, J. A. Sustainable hydrogen production. Science 305, 972–975 (2004).
Pereira, E. G., da Silva, J. N., de Oliveira, J. L. & Machado, C. S. Sustainable energy: a review of gasification technologies. Renew. Sustain. Energy Rev. 16, 4753–4762 (2012).
Levalley, T. L., Richard, A. R. & Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies — a review. Int. J. Hydrog. Energy 39, 16983–17000 (2014).
Bukur, D. B., Todic, B. & Elbashir, N. Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: a review. Catal. Today 275, 66–75 (2016).
Fricker, K. J. Magnesium Hydroxide Sorbents for Combined Carbon Dioxide Capture and Storage in Energy Conversion Systems. PhD Thesis, Columbia Univ. (2014).
Byron Smith, R. J., Loganathan, M. & Shantha, M. S. A review of the water gas shift reaction kinetics. Int. J. Chem. React. Eng. 8, R4 (2010).
Pal, D. B., Chand, R., Upadhyay, S. N. & Mishra, P. K. Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018).
Elliott, D. C. & Sealock Jr, L. J. Aqueous catalyst systems for the water-gas shift reaction. 1. Comparative catalyst studies. Ind. Eng. Chem. Prod. Res. Dev. 22, 426–431 (1983).
Elliott, D. C., Hallen, R. T. & Sealock Jr, L. J. Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Ind. Eng. Chem. Prod. Res. Dev. 22, 431–435 (1983).
Onsager, O.-T., Brownrigg, M. S. A. & Lødeng, R. Hydrogen production from water and CO via alkali metal formate salts. Int. J. Hydrog. Energy 21, 883–885 (1996).
Stevens, R. W. Jr, Shamsi, A., Carpenter, S. & Siriwardane, R. Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel 89, 1280–1286 (2010).
Beaver, M. G., Caram, H. S. & Sircar, S. Selection of CO2 chemisorbent for fuel-cell grade H2 production by sorption-enhanced water gas shift reaction. Int. J. Hydrog. Energy 34, 2972–2978 (2009).
Dasgupta, D., Mondal, K. & Wiltowski, T. Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications. Int. J. Hydrog. Energy 33, 303–311 (2008).
Ding, Y. & Alpay, E. Adsorption-enhanced steam–methane reforming. Chem. Eng. Sci. 55, 3929–3940 (2000).
Guoxin, H. & Hao, H. Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenergy 33, 899–906 (2009).
Harrison, D. P. Sorption-enhanced hydrogen production: a review. Ind. Eng. Chem. Res. 47, 6486–6501 (2008).
Lee, K. B., Beaver, M. G., Caram, H. S. & Sircar, S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem. Res. 47, 8048–8062 (2008).
Lopez Ortiz, A. & Harrison, D. P. Hydrogen production using sorption-enhanced reaction. Ind. Eng. Chem. Res. 40, 5102–5109 (2002).
Van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R. & van den Brink, R. W. Carbon capture by sorption-enhanced water–gas shift reaction process using hydrotalcite-based material. Ind. Eng. Chem. Res. 48, 4184–4193 (2009).
Xiu, G.-h, Li, P. & Rodrigues, A. E. Sorption-enhanced reaction process with reactive regeneration. Chem. Eng. Sci. 57, 3893–3908 (2002).
Wei, L., Xu, S., Liu, J., Liu, C. & Liu, S. Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuels 22, 1997–2004 (2008).
Fricker, K. J. & Park, A.-H. A. Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage. Chem. Eng. Sci. 100, 332–341 (2013).
Fricker, K. J. & Park, A.-H. A. in Proc. 12th Int. Conf. Gas-Liquid and Gas-Liquid-Solid Reactor Engineering (GLS 12) (2015).
O’Connor, W. K. et al. Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status. US Department of Energy DOE/ARC-2001-029 (2001).
O’Connor, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J. & Nilsen, D. N. Final report: aqueous mineral carbonation. US Department of Energy DOE/ARC-TR-04-002 (2004).
Gadikota, G., Swanson, E. J., Zhao, H. & Park, A.-H. A. Experimental design and data analysis for accurate estimation of reaction kinetics and conversion for carbon mineralization. Ind. Eng. Chem. Res. 53, 6664–6676 (2014).
Gadikota, G. Geo-chemo-physical Studies of Carbon Mineralization for Natural and Engineered Carbon Storage. PhD Thesis, Columbia Univ. (2014).
Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B. & Ortega-Huertas, M. Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. Am. Mineral. 94, 578–593 (2009).
Ungermann, C. et al. Homogeneous catalysis of the water gas shift reaction by ruthenium and other metal carbonyls. studies in alkaline solutions. J. Am. Chem. Soc. 101, 5922–5929 (1979).
King Jr, A. D., King, R. B. & Yang, D. B. Homogeneous catalysis of the water gas shift reaction using iron pentacarbonyl. J. Am. Chem. Soc. 102, 1028–1032 (1980).
Ishida, H., Tanaka, K., Morimoto, M. & Tanaka, T. Isolation of intermediates in the water gas shift reactions catalyzed by [Ru(bpy)2(CO)Cl]+ and [Ru(bpy)2(CO)2]2+. Organometallics 5, 724–730 (1986).
Laine, R. M. & Crawford, E. J. Homogeneous catalysis of the water-gas shift reaction. J. Mol. Catal. 44, 357–387 (1988).
Thom, J. G. M., Dipple, G. M., Power, I. M. & Harrison, A. L. Chrysotile dissolution rates: implications for carbon sequestration. Appl. Geochem. 35, 244–254 (2013).
Vanderzee, S. S. S., Dipple, G. M. & Bradshaw, P. M. D. Targeting highly reactive labile magnesium in ultramafic tailings for greenhouse-gas offsets and potential tailings stabilization at the Baptiste deposit, central British Columbia (NTS 093K/13, 14). Geoscience BC http://cdn.geosciencebc.com/pdf/SummaryofActivities2018/MM/Schol_SoA2018_MM_Vanderzee.pdf (2019).
King, H. E., Plümper, O. & Putnis, A. Effect of secondary phase formation on the carbonation of olivine. Environ. Sci. Technol. 44, 6503–6509 (2010).
Waychunas, G. A. Grazing-incidence X-ray absorption and emission spectroscopy. Rev. Mineral. Geochem. 49, 267–315 (2002).
Fernandez-Martinez, A., Hu, Y., Lee, B., Jun, Y.-S. & Waychunas, G. A. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Environ. Sci. Technol. 47, 102–109 (2013).
Jubb, A. M., Hua, W. & Allen, H. C. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 63, 107–130 (2012).
Axnanda, S. et al. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid–liquid interface. Sci. Rep. 5, 9788 (2015).
Jiao, D., King, C., Grossfield, A., Darden, T. A. & Ren, P. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110, 18553––18559 (2006).
Power, I. M., Kenward, P. A., Dipple, G. M. & Raudsepp, M. Room temperature magnesite precipitation. Cryst. Growth Des. 17, 5652–5659 (2017).
Tai, C. Y. & Chen, F.-B. Polymorphism of CaCO3, precipitated in a constant-composition environment. AIChE J. 44, 1790–1798 (1998).
Nebel, H. & Epple, M. Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (Mg-ACC). Z. Anorg. Allg. Chem. 634, 1439–1443 (2008).
Loste, E., Park, R. J., Warren, J. & Meldrum, F. C. Precipitation of calcium carbonate in confinement. Adv. Funct. Mater. 14, 1211–1220 (2004).
Falini, G., Fermani, S., Gazzano, M. & Ripamonti, A. Oriented crystallization of vaterite in collagenous matrices. Chem. Eur. J. 4, 1048–1052 (1998).
Li, Q., Ding, Y., Li, F., Xie, B. & Qian, Y. Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin. J. Cryst. Growth 236, 357–362 (2002).
Zhou, G.-T., Yu, J. C., Wang, X.-C. & Zhang, L.-Z. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. N. J. Chem. 28, 1027–1031 (2004).
Li, M., Lebeau, B. & Mann, S. Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions. Adv. Mater. 15, 2032–2035 (2003).
Küther, J. et al. Templated crystallisation of calcium and strontium carbonates on centred rectangular self-assembled monolayer substrates. Chem. Eur. J. 4, 1834–1842 (1998).
Nassif, N. et al. Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew. Chem. Int. Ed. 44, 6004–6009 (2005).
Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).
Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science. 271, 67–69 (1996).
Heywood, B. R. & Mann, S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed Langmuir monolayers. Chem. Mater. 6, 311–318 (1994).
Litvin, A. L., Valiyaveettil, S., Kaplan, D. L. & Mann, S. Template-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers. Adv. Mater. 9, 124–127 (1997).
Davies, P. J. & Bubela, B. The transformation of nesquehonite into hydromagnesite. Chem. Geol. 12, 289–300 (1973).
Hänchen, M., Prigiobbe, V., Baciocchi, R. & Mazzotti, M. Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem. Eng. Sci. 63, 1012–1028 (2008).
Langmuir, D. Stability of carbonates in the system MgO–CO2–H2O. J. Geol. 73, 730–754 (1965).
Zhang, Z. et al. Temperature- and pH-dependent morphology and FT–IR analysis of magnesium carbonate hydrates. J. Phys. Chem. B 110, 12969–12973 (2006).
Zhao, L., Sang, L., Chen, J., Ji, J. & Teng, H. H. Aqueous carbonation of natural brucite: relevance to CO2 sequestration. Environ. Sci. Technol. 44, 406–411 (2010).
Lanas, J. & Alvarez, J. I. Dolomitic lime: thermal decomposition of nesquehonite. Thermochim. Acta 421, 123–132 (2004).
Sayles, F. L. & Fyfe, W. S. The crystallization of magnesite from aqueous solution. Geochim. Cosmochim. Acta 37, 87–99 (1973).
Fricker, K. J. & Park, A.-H. A. Investigation of the different carbonate phases and their formation kinetics during Mg(OH)2 slurry carbonation. Ind. Eng. Chem. Res. 53, 18170–18179 (2014).
Stack, A. G. et al. Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. Environ. Sci. Technol. 48, 6177–6183 (2014).
Ilavsky, J. et al. Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. J. Appl. Crystallogr. 51, 867–882 (2018).
Gadikota, G., Zhang, F. & Allen, A. In situ angstrom-to-micrometer characterization of the structural and microstructural changes in kaolinite on heating using ultrasmall-angle, small-angle, and wide-angle X-ray scattering (USAXS/SAXS/WAXS). Ind. Eng. Chem. Res. 56, 11791–11801 (2017).
Gadikota, G. & Allen, A. in Materials and Processes for CO 2 Capture, Conversion, and Sequestration (eds Li, L., Wong-Ng, W., Huang, K. & Cook, L. P.) 296–318 (Wiley, 2018).
Gadikota, G. Connecting the morphological and crystal structural changes during the conversion of lithium hydroxide monohydrate to lithium carbonate using multi-scale X-ray scattering measurements. Minerals 7, 169 (2017).
Yang, Z.-Z., Zhao, Y.-N. & He, L.-N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 1, 545–567 (2011).
Yang, Z.-Z. et al. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 4, 3971–3975 (2011).
Liu, A.-H. et al. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion. Angew. Chem. Int. Ed. 51, 11306–11310 (2012).
Jiang, B. et al. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Appl. Energy 109, 112–118 (2013).
Feron, P. H. M. & ten Asbroek, N. in Greenhouse Gas Control Technologies 7 Vol. 2 (eds Rubin, E. S. et al.) 1153–1158 (Elsevier, 2005).
Huang, Q., Bhatnagar, S., Remias, J. E., Selegue, J. P. & Liu, K. Thermal degradation of amino acid salts in CO2 capture. Int. J. Greenh. Gas Control 19, 243–250 (2013).
Acknowledgements
This research was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Provisional patents have been filed by Cornell University on the process for directed hydrogen synthesis starting with calcium and magnesium silicate precursors and the reactive separation of CO2 using amine-bearing solvents.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO2 and directed synthesis of H2. Nat Rev Chem 4, 78–89 (2020). https://doi.org/10.1038/s41570-019-0158-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-019-0158-3
This article is cited by
-
Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films
Nature Reviews Chemistry (2022)
-
Biopolymer-based membranes from polysaccharides for CO2 separation: a review
Environmental Chemistry Letters (2022)
-
Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures
Scientific Reports (2021)
-
Carbon mineralization pathways for carbon capture, storage and utilization
Communications Chemistry (2021)
-
Evaluation of elemental leaching behavior and morphological changes of steel slag in both acidic and basic conditions for carbon sequestration potential
Korean Journal of Chemical Engineering (2021)