Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the conditions for mimicking natural selection in chemical systems

Abstract

The emergence of natural selection, requiring that reproducing entities present variations that may be inherited and passed on, was arguably the most important breakthrough in the self-organization of life. In this Perspective, the assumptions governing biological reproduction are confronted with physico-chemical principles that control the evolution of material systems. In biology, the reproduction of living organisms is never considered to be reversible, whereas microscopic reversibility is an essential principle in the physical description of matter. Here, we show that this discrepancy places constraints on the possibility of finding kinetic processes in the chemical world that are equivalent to natural selection in the biological one. Chemical replicators can behave in a similar fashion to living entities, provided that the reproduction cycle proceeds in a unidirectional way. For this to be the case, kinetic barriers must hinder the reverse process. The system must, thus, be held far from equilibrium and fed with a non-degraded (low-entropy) form of energy. The ensuing constraints must be factored in when proposing scenarios that account for the origin of life at the molecular level.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Accounting for strand survival with models of autocatalysis.
Fig. 2: Reproduction cycles.
Fig. 3

References

  1. Darwin, C. On the Origin of Species (Harvard Univ. Press, 1859).

  2. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Barboiu, M. Dynamic interactive systems: dynamic selection in hybrid organic–inorganic constitutional networks. Chem. Commun. 46, 7466–7476 (2010).

    Article  CAS  Google Scholar 

  4. Wicken, J. S. An organismic critique of molecular darwinism. J. Theor. Biol. 117, 545–561 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Sharp, P. M. In search of molecular darwinism. Nature 385, 111–112 (1997).

    PubMed  Google Scholar 

  6. Huc, I. & Lehn, J.-M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl Acad. Sci. USA 94, 2106–2110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herrmann-Pillath, C. Entropy, function and evolution: naturalizing peircian semiosis. Entropy 12, 197–242 (2010).

    Article  Google Scholar 

  8. Popa, R. Necessity, futility and the possibility of defining life are all embedded in its origin as a punctuated-gradualism. Orig. Life Evol. Biosph. 40, 183–190 (2010).

    Article  PubMed  Google Scholar 

  9. Depew, D. J. & Weber, B. H. The fate of darwinism: evolution after the modern synthesis. Biol. Theory 6, 89–102 (2011).

    Article  Google Scholar 

  10. Saladino, R. et al. Chemomimesis and molecular Darwinism in action: from abiotic generation of nucleobases to nucleosides and RNA. Life 8, 24 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  11. Lewis, G. N. A new principle of equilibrium. Proc. Natl Acad. Sci. USA 11, 179–183 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  PubMed  Google Scholar 

  14. Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. van Rossum, S. A. P. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  PubMed  Google Scholar 

  16. Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Demetrius, L. Directionality principles in thermodynamics and evolution. Proc. Natl Acad. Sci. USA 94, 3491–3498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pross, A. & Khodorkovsky, V. Extending the concept of kinetic stability: toward a paradigm for life. J. Phys. Org. Chem. 17, 312–316 (2004).

    Article  CAS  Google Scholar 

  19. Pross, A. What is Life? (Oxford Univ. Press, 2016).

  20. Pross, A. Seeking the chemical roots of Darwinism: bridging between chemistry and biology. Chem. Eur. J. 15, 8374–8381 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Pascal, R. & Pross, A. Chemistry’s kinetic dimension and the physical basis for life. J. Syst. Chem. 7, 1–8 (2019).

    Google Scholar 

  22. Pascal, R. & Pross, A. Stability and its manifestation in the chemical and biological worlds. Chem. Commun. 51, 16160–16165 (2015).

    Article  CAS  Google Scholar 

  23. Pascal, R. Suitable energetic conditions for dynamic chemical complexity and the living state. J. Syst. Chem. 3, 3 (2012).

    Article  CAS  Google Scholar 

  24. Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 3, 130156 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pross, A. & Pascal, R. How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution. Beilstein J. Org. Chem. 13, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  27. Cousins, G. R. L., Poulsen, S.-A. & Sanders, J. K. M. Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. Curr. Opin. Chem. Biol. 4, 270–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Rozenman, M. M., McNaughton, B. R. & Liu, D. R. Solving chemical problems through the application of evolutionary principles. Curr. Opin. Chem. Biol. 11, 259–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ruiz-Mirazo, K., Pereto, J. & Moreno, A. A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph. 34, 323–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lotka, A. J. Natural selection as a physical principle. Proc. Natl Acad. Sci. USA 8, 151–154 (1922).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mills, D. R., Peterson, R. L. & Spiegelman, S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  PubMed  Google Scholar 

  34. Eigen, M. & Schuster, P. The hypercycle. A principle of natural self-organization. Part A. The emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Szathmáry, E. & Gladkih, I. Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138, 55–58 (1989).

    Article  PubMed  Google Scholar 

  36. von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935 (1986).

    Article  Google Scholar 

  37. Prigogine, I. Time, structure and fluctuations. Science 201, 777–785 (1978).

    Article  CAS  PubMed  Google Scholar 

  38. Zachar, I. & Szathmáry, E. A new replicator: a theoretical framework for analysing replication. BMC Biol. 8, 21–21 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sutherland, J. Opinion: Studies on the origin of life — the end of the beginning. Nat. Rev. Chem. 1, 0012 (2017).

    Article  CAS  Google Scholar 

  40. Peretó, J. in Handbook of Astrobiology Ch. 5.1 (ed. Kolb, V. M.) 219–233 (CRC, 2019).

  41. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Pascal, R. in Astrochemistry and Astrobiology: Physical Chemistry in Action (eds Smith, I. W. M., Cockell C. & Leach S.) 243–269 (Springer, 2013).

  43. Jencks, W. P. in Handbook of Biochemistry and Molecular Biology 3rd edn Vol. I (ed. Fasman, G. D.) 296–304 (CRC, 1976).

  44. Pross, A. The evolutionary origin of biological function and complexity. J. Mol. Evol. 76, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    Article  CAS  Google Scholar 

  46. Kreysing, M., Keil, L., Lanzmich, S. & Braun, D. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat. Chem. 7, 203–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Colomb-Delsuc, M., Mattia, E., Sadownik, J. W. & Otto, S. Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat. Commun. 6, 7427 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Duval, S. et al. Fougerite: the not so simple progenitor of the first cells. Interface Focus 9, 20190063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. England, J. L. Statistical physics of self-replication. J. Chem. Phys. 139, 121923 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Martyushev, L. M. & Seleznev, V. D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006).

    Article  CAS  Google Scholar 

  51. Ross, J., Corlan, A. D. & Müller, S. C. Proposed principles of maximum local entropy production. J. Phys. Chem. B 116, 7858–7865 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Wells, T. N. C., Ho, C. K. & Fersht, A. R. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases. Biochemistry 25, 6603–6608 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Cramer, F. & Freist, W. Molecular recognition by energy dissipation, a new enzymatic principle: the example isoleucine-valine. Acc. Chem. Res. 20, 79–84 (1987).

    Article  CAS  Google Scholar 

  54. Mitchell, P. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 95, 1–20 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Dibrova, D. V., Galperin, M. Y., Koonin, E. V. & Mulkidjanian, A. Y. Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry 80, 495–516 (2015).

    CAS  PubMed  Google Scholar 

  56. Pascal, R. & Boiteau, L. Energy flows, metabolism and translation. Phil. Trans. R. Soc. Lond. B Biol. Sci. 366, 2949–2958 (2011).

    Article  CAS  Google Scholar 

  57. Lineweaver, C. H. & Egan, C. A. Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5, 225–242 (2008).

    Article  Google Scholar 

  58. Pascal, R. Kinetic barriers and the self-organization of life. Isr. J. Chem. 55, 865–874 (2015).

    Article  CAS  Google Scholar 

  59. Wolfenden, R. Primordial chemistry and enzyme evolution in a hot environment. Cell. Mol. Life Sci. 71, 2909–2915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  61. Eschenmoser, A. Chemistry of potentially prebiological natural products. Orig. Life Evol. Biosph. 24, 389–423 (1994).

    Article  CAS  Google Scholar 

  62. Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew. Chem. Int. Ed. 50, 12412–12472 (2011).

    Article  CAS  Google Scholar 

  63. Westheimer, F. H. Why nature chose phosphate. Science 235, 1173–1178 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Pascal, R., Taillades, J. & Commeyras, A. Systèmes de Strecker et apparentés—XII: Catalyse par les aldéhydes de l’hydratation intramoléculaire des α-aminonitriles. Tetrahedron 36, 2999–3008 (1980).

    Article  CAS  Google Scholar 

  65. Canavelli, P., Islam, S. & Powner, M. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walker, S. I. The new physics needed to probe the origins of life. Nature 569, 36–38 (2019).

    Article  CAS  Google Scholar 

  68. Vasas, V., Szathmáry, E. & Santos, M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl Acad. Sci. USA 107, 1470–1475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Segré, D., Ben-Eli, D. & Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl Acad. Sci. USA 97, 4112–4117 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lahav, N., White, D. & Chang, S. Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201, 67–69 (1978).

    Article  CAS  PubMed  Google Scholar 

  72. Olasagasti, F., Kim, H. J., Pourmand, N. & Deamer, D. W. Non-enzymatic transfer of sequence information under plausible prebiotic conditions. Biochimie 93, 556–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Campbell, T. D. et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 10, 4508 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

R.P. thanks A. Pross for long-lasting exchanges of invaluable help in the development of concepts related to dynamic kinetic stability and for helpful suggestions on a previous version of the text.

Author information

Authors and Affiliations

Authors

Contributions

R.P. conceived the project. All authors contributed to its development and wrote the manuscript.

Corresponding author

Correspondence to Robert Pascal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danger, G., d’Hendecourt, L.L.S. & Pascal, R. On the conditions for mimicking natural selection in chemical systems. Nat Rev Chem 4, 102–109 (2020). https://doi.org/10.1038/s41570-019-0155-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0155-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing