Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of chemical design in the performance of organic semiconductors

Abstract

Organic semiconductors are solution-processable, lightweight and flexible and are increasingly being used as the active layer in a wide range of new technologies. The versatility of synthetic organic chemistry enables the materials to be tuned such that they can be incorporated into biological sensors, wearable electronics, photovoltaics and flexible displays. These devices can be improved by improving their material components, not only by developing the synthetic chemistry but also by improving the analytical and computational techniques that enable us to understand the factors that govern material properties. Judicious molecular design provides control of the semiconductor frontier molecular orbital energy distribution and guides the hierarchical assembly of organic semiconductors into functional films where we can manipulate the properties and motion of charges and excited states. This Review describes how molecular design plays an integral role in developing organic semiconductors for electronic devices in present and emerging technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Manipulating frontier orbital distributions and energies.
Fig. 2: Schematic illustrations and chemical structures of conjugated thiophene-derived polymers.
Fig. 3: Species that may find applications in organic field effect transistors.
Fig. 4: Donor:acceptor bulk heterojunctions and some typical semiconducting components.
Fig. 5: The evolution of molecular organic light emitters.

References

  1. 1.

    Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Planells, M., Schroeder, B. C. & McCulloch, I. Effect of chalcogen atom substitution on the optoelectronic properties in cyclopentadithiophene polymers. Macromolecules 47, 5889–5894 (2014).

    CAS  Google Scholar 

  3. 3.

    Nikolka, M. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2016).

    PubMed  Google Scholar 

  4. 4.

    de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Google Scholar 

  5. 5.

    Abbaszadeh, D. et al. Electron trapping in conjugated polymers. Chem. Mater. 31, 6380–6386 (2019).

    CAS  Google Scholar 

  6. 6.

    Usta, H. et al. Design, synthesis, and characterization of ladder-type molecules and polymers. air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131, 5586–5608 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    CAS  PubMed  Google Scholar 

  8. 8.

    Lei, T. et al. Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 24, 1762–1770 (2012).

    CAS  Google Scholar 

  9. 9.

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Lemaur, V. et al. Resilience to conformational fluctuations controls energetic disorder in conjugated polymer materials: insights from atomistic simulations. Chem. Mater. 31, 6889–6899 (2019).

    CAS  Google Scholar 

  11. 11.

    Nielsen, C. B., White, A. J. P. & McCulloch, I. Effect of fluorination of 2,1,3-benzothiadiazole. J. Org. Chem. 80, 5045–5048 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Conboy, G. et al. To bend or not to bend — are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity? Mater. Horiz. 3, 333–339 (2016).

    CAS  Google Scholar 

  13. 13.

    Thorley, K. J. & McCulloch, I. Why are S–F and S–O non-covalent interactions stabilising? J. Mater. Chem. C 6, 12413–12421 (2018).

    CAS  Google Scholar 

  14. 14.

    von Eller-Pandraud, H. Structure cristalline de l’isoindigo. Acta Cryst. 13, 936–938 (1960).

    Google Scholar 

  15. 15.

    Naik, M. A., Venkatramaiah, N., Kanimozhi, C. & Patil, S. Influence of side-chain on structural order and photophysical properties in thiophene based diketopyrrolopyrroles: a systematic study. J. Phys. Chem. C 116, 26128–26137 (2012).

    CAS  Google Scholar 

  16. 16.

    Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene:  improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ebata, H. et al. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129, 15732–15733 (2007).

    CAS  PubMed  Google Scholar 

  18. 18.

    Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    CAS  PubMed  Google Scholar 

  19. 19.

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  20. 20.

    Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015).

    CAS  PubMed  Google Scholar 

  21. 21.

    Kim, Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 5, 197–203 (2006).

    CAS  Google Scholar 

  22. 22.

    Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells — towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    CAS  Google Scholar 

  23. 23.

    Kirkpatrick, J. et al. A systematic approach to the design optimization of light-absorbing indenofluorene polymers for organic photovoltaics. Adv. Energy Mater. 2, 260–265 (2012).

    CAS  Google Scholar 

  24. 24.

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dimitrov, S. D. et al. Towards optimisation of photocurrent from fullerene excitons in organic solar cells. Energy Environ. Sci. 7, 1037–1043 (2014).

    CAS  Google Scholar 

  27. 27.

    Sun, Y. et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 11, 44–48 (2011).

    PubMed  Google Scholar 

  28. 28.

    Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

    CAS  PubMed  Google Scholar 

  29. 29.

    Meng, D. et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 138, 375–380 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang, J. et al. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 139, 16092–16095 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhang, H. et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 30, 1800613 (2018).

    Google Scholar 

  37. 37.

    Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    CAS  Google Scholar 

  38. 38.

    Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 30, 1705600 (2018).

    Google Scholar 

  40. 40.

    Jurow, M. J. et al. Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. Nat. Mater. 15, 85–91 (2015).

    PubMed  Google Scholar 

  41. 41.

    Schmidt, T. D. et al. Emitter orientation as a key parameter in organic light-emitting diodes. Phys. Rev. Appl. 8, 037001 (2017).

    Google Scholar 

  42. 42.

    Moon, C.-K., Kim, K.-H. & Kim, J.-J. Unraveling the orientation of phosphors doped in organic semiconducting layers. Nat. Commun. 8, 791 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Tuong, Ly,K. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63–68 (2016).

    Google Scholar 

  45. 45.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2014).

    PubMed  Google Scholar 

  47. 47.

    Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

    CAS  Google Scholar 

  48. 48.

    Lin, T.-A. et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine–triazine hybrid. Adv. Mater. 28, 6976–6983 (2016).

    CAS  PubMed  Google Scholar 

  49. 49.

    Kaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zeng, W. et al. Realizing 22.5% external quantum efficiency for solution-processed thermally activated delayed-fluorescence OLEDs with red emission at 622 nm via a synergistic strategy of molecular engineering and host selection. Adv. Mater. 31, 1901404 (2019).

    Google Scholar 

  51. 51.

    Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).

    Google Scholar 

  52. 52.

    Dias, F. B. et al. The role of local triplet excited states and D–A relative orientation in thermally activated delayed fluorescence: photophysics and devices. Adv. Sci. 3, 1600080 (2016).

    Google Scholar 

  53. 53.

    Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Samanta, P. K., Kim, D., Coropceanu, V. & Brédas, J.-L. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states. J. Am. Chem. Soc. 139, 4042–4051 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Noda, H. et al. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nat. Mater. 18, 1084–1090 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Nakanotani, H. et al. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5, 4016 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Pershin, A. et al. Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nat. Commun. 10, 597 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678–682 (2019).

    CAS  Google Scholar 

  60. 60.

    Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Hamze, R. et al. Eliminating nonradiative decay in Cu(i) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Freeman, D. M. E. et al. Synthesis and exciton dynamics of donor-orthogonal acceptor conjugated polymers: reducing the singlet–triplet energy gap. J. Am. Chem. Soc. 139, 11073–11080 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Schweicher, G. et al. Chasing the ‘killer’ phonon mode for the rational design of low disorder, high mobility molecular semiconductors. Adv. Mater. 31, 1902407 (2019).

    CAS  Google Scholar 

  64. 64.

    Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    CAS  PubMed  Google Scholar 

  67. 67.

    Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Giovannitti, A. et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Sun, H. et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 30, 1704916 (2018).

    Google Scholar 

  70. 70.

    Yao, H. et al. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 141, 7743–7750 (2019).

    CAS  PubMed  Google Scholar 

  71. 71.

    Peng, Q., Obolda, A., Zhang, M. & Li, F. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 54, 7091–7095 (2015).

    CAS  Google Scholar 

  72. 72.

    Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Nagata, R., Nakanotani, H., Potscavage, W. J. Jr. & Adachi, C. Exploiting singlet fission in organic light-emitting diodes. Adv. Mater. 30, 1801484 (2018).

    Google Scholar 

  74. 74.

    Salehi, A. et al. Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage. Nat. Commun. 10, 2305 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Kimura, K. et al. Selective triplet exciton formation in a single molecule. Nature 570, 210–213 (2019).

    CAS  PubMed  Google Scholar 

  76. 76.

    Di, D. et al. Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater. 29, 1605987 (2017).

    Google Scholar 

  77. 77.

    Onwubiko, A. et al. Fused electron deficient semiconducting polymers for air stable electron transport. Nat. Commun. 9, 416 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.C.S. acknowledges the UK Research and Innovation for Future Leaders Fellowship MR/S031952/1 and the British Council 337323.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Iain McCulloch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bronstein, H., Nielsen, C.B., Schroeder, B.C. et al. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem 4, 66–77 (2020). https://doi.org/10.1038/s41570-019-0152-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing