Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis

An Author Correction to this article was published on 13 May 2020

This article has been updated

Abstract

Oxygenic photosynthesis is the primary solar energy-conversion process that supports much of life on Earth. It is initiated by photosystem II (PSII), an enzyme that extracts electrons from H2O and feeds them into an electron-transport chain to result in chemical synthesis using the input of solar energy. PSII can be immobilized onto electrodes for photoelectrochemical studies, in which electrons photogenerated from PSII are harnessed for enzyme characterization, and to drive fuel-forming reactions by electrochemically coupling the PSII to a suitable (bio)catalyst. Research in PSII photoelectrochemistry has recently made substantial strides in electrode design and unravelling charge-transfer pathways at the bio–material interface. In turn, these efforts have opened up possibilities in the field of bio-photoelectrochemistry, expanding the range of biocatalysts that can be systematically interrogated, including biofilms of whole photosynthetic cells. Furthermore, these studies have accelerated the development of semi-artificial photosynthesis to afford autonomous, solar-driven, fuel-forming biohybrid devices. This Review summarizes the latest advancements in PSII photoelectrochemistry with respect to electrode design and understanding of the bio-material interface, on both the protein and cellular level. We also discuss the role of biological photosynthetic systems in present and future semi-artificial photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of PSII and its role in natural and semi-artificial photosynthesis.
Fig. 2: Photoelectrochemistry of PSII films.
Fig. 3: Charge-transfer and energy-transfer pathways at the PSII–electrode interface.
Fig. 4: Photoelectrochemistry of PSII films on a RRDE.
Fig. 5: Photocurrent output of electrodes used in PSII photoelectrochemistry since the mid-2000s.
Fig. 6: Semi-artificial photosynthetic schemes.
Fig. 7: Photoelectrochemistry of photosynthetic cells containing PSII.

Similar content being viewed by others

Change history

References

  1. Lubitz, W., Chrysina, M. & Cox, N. Water oxidation in photosystem II. Photosynth. Res. 142, 105–125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat. Geosci. 7, 283–286 (2014).

    CAS  Google Scholar 

  3. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  PubMed  Google Scholar 

  5. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  PubMed  Google Scholar 

  6. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    CAS  Google Scholar 

  7. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, W.-H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    CAS  Google Scholar 

  9. Zhou, X. et al. Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett. 1, 764–770 (2016).

    CAS  Google Scholar 

  10. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS  Google Scholar 

  11. Zhang, K., Ma, M., Li, P., Wang, D. H. & Park, J. H. Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv. Energy Mater. 6, 1600602 (2016).

    Google Scholar 

  12. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    CAS  Google Scholar 

  13. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    CAS  PubMed  Google Scholar 

  14. Woolerton, T. W., Sheard, S., Chaudhary, Y. S. & Armstrong, F. A. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ. Sci. 5, 7470–7490 (2012).

    CAS  Google Scholar 

  15. Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogt, L., Vinyard, D. J., Khan, S. & Brudvig, G. W. Oxygen-evolving complex of photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 25, 152–158 (2015).

    CAS  PubMed  Google Scholar 

  17. Ananyev, G. & Dismukes, G. C. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84, 355–365 (2005).

    CAS  PubMed  Google Scholar 

  18. Jones, A. K., Sillery, E., Albracht, S. P. J. & Armstrong, F. A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 2002, 866–867 (2002).

  19. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  PubMed  Google Scholar 

  20. Lee, S. H., Choi, D. S., Kuk, S. K. & Park, C. B. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018).

    CAS  Google Scholar 

  21. Wang, V. C. C., Ragsdale, S. W. & Armstrong, F. A. in The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences Vol. 14 (eds Kroneck, P. M. H. & Torres, M. E. S.) 71–97 (Springer, 2014).

  22. Cai, R. & Minteer, S. D. Nitrogenase bioelectrocatalysis: from understanding electron-transfer mechanisms to energy applications. ACS Energy Lett. 3, 2736–2742 (2018).

    CAS  Google Scholar 

  23. Michel, H. The nonsense of biofuels. Angew. Chem. Int. Ed. 51, 2516–2518 (2012).

    CAS  Google Scholar 

  24. Kothe, T., Schuhmann, W., Rögner, M. & Plumeré, N. in Biohydrogen (ed Rögner, M.) 189–210 (de Gruyter, 2015).

  25. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    CAS  PubMed  Google Scholar 

  26. Badura, A., Kothe, T., Schuhmann, W. & Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 4, 3263–3274 (2011).

    CAS  Google Scholar 

  27. Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    CAS  PubMed  Google Scholar 

  28. Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS  PubMed  Google Scholar 

  29. Sokol, K. P. et al. Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. J. Am. Chem. Soc. 140, 16418–16422 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Friebe, V. M. & Frese, R. N. Photosynthetic reaction center-based biophotovoltaics. Curr. Opin. Electrochem. 5, 126–134 (2017).

    CAS  Google Scholar 

  31. Plumeré, N. & Nowaczyk, M. M. in Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics (ed. Jeuken, L. J. C.) 111–136 (Springer, 2016).

  32. Roy, C., Lancaster, D., Ermler, U. & Michel, H. in Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration Vol. 2 (eds Blankenship, R. E., Madigan, M. T. & Bauer, C. E.) 503–526 (Kluwer, 1995).

  33. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).

    CAS  PubMed  Google Scholar 

  34. Nield, J. et al. 3D map of the plant photosystem II supercomplex obtained cryoelectron microscopy and single particle analysis. Nat. Struct. Biol. 7, 44–47 (2000).

    CAS  PubMed  Google Scholar 

  35. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    CAS  PubMed  Google Scholar 

  36. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    CAS  PubMed  Google Scholar 

  37. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    CAS  PubMed  Google Scholar 

  38. Shen, J.-R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23–48 (2015).

    CAS  PubMed  Google Scholar 

  39. Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta Bioenergetics 1817, 26–43 (2012).

    CAS  Google Scholar 

  40. Holzwarth, A. R. et al. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895–6900 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Groot, M. L. et al. Initial electron donor and acceptor in isolated photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl Acad. Sci. USA 102, 13087–13092 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, J., Wang, H., Yuan, Q. & Feng, Y. Structure and function of the photosystem supercomplexes. Front. Plant Sci. 9, 357 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).

    PubMed  Google Scholar 

  45. Armstrong, F. A., Heering, H. A. & Hirst, J. Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 26, 169–179 (1997).

    CAS  Google Scholar 

  46. Yates, N. D. J., Fascione, M. A. & Parkin, A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem. Eur. J. 24, 12164–12182 (2018).

    CAS  PubMed  Google Scholar 

  47. Bockris, J. O. M. & Shuaib, M. An electrochemical mechanism of the primary act of photosynthesis. Trans. Sot. Adv. Electrochem. Sci. Technol. 13, 249–252 (1978).

    CAS  Google Scholar 

  48. Agostiano, A., Ceglie, A. & Della Monica, M. Current–potential curves of photosystems adsorbed on platinized platinum electrodes. Bioelectrochem. Bioenerg. 10, 377–384 (1983).

    CAS  Google Scholar 

  49. Zhang, J. Z. et al. Competing charge transfer pathways at the photosystem II–electrode interface. Nat. Chem. Biol. 12, 1046–1052 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium–tin oxide electrode. J. Am. Chem. Soc. 134, 8332–8335 (2012).

    CAS  PubMed  Google Scholar 

  51. Kothe, T. et al. Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis. Chem. Eur. J. 20, 11029–11034 (2014).

    CAS  PubMed  Google Scholar 

  52. Badura, A. et al. Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20, 1043–1047 (2008).

    CAS  Google Scholar 

  53. Sokol, K. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698–3709 (2016).

    CAS  Google Scholar 

  54. Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    CAS  PubMed  Google Scholar 

  55. Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 135, 10610–10613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Telfer, A. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol. 55, 1216–1223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Krieger-Liszkay, A., Fufezan, C. & Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564 (2008).

    CAS  PubMed  Google Scholar 

  58. Allakhverdiev, S. I. et al. Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc. Natl Acad. Sci. USA 108, 8054–8058 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson, G. N., Rutherford, A. W. & Krieger, A. A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochim. Biophys. Acta Bioenergetics 1229, 202–207 (1995).

    Google Scholar 

  60. Fourmond, V. & Leger, C. Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr. Opin. Electrochem. 1, 110–120 (2017).

    CAS  Google Scholar 

  61. Fourmond, V. et al. The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster. Nat. Chem. 6, 336–342 (2014).

    CAS  PubMed  Google Scholar 

  62. Concepcion, J. J., Binstead, R. A., Alibabaei, L. & Meyer, T. J. Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts. Inorg. Chem. 52, 10744–10746 (2013).

    CAS  PubMed  Google Scholar 

  63. Kornienko, N. et al. Oxygenic photoreactivity in photosystem II studied by rotating ring disk electrochemistry. J. Am. Chem. Soc. 140, 17923–17931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, F. et al. Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes. Nat. Commun. 9, 1973–1982 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. LeBlanc, G., Chen, G., Gizzie, E. A., Jennings, G. K. & Cliffel, D. E. Enhanced photocurrents of photosystem I films on p-doped silicon. Adv. Mater. 24, 5959–5962 (2012).

    CAS  PubMed  Google Scholar 

  66. Friebe, V. M. et al. Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv. Funct. Mater. 26, 285–292 (2016).

    CAS  Google Scholar 

  67. Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6, 1891–1900 (2013).

    CAS  Google Scholar 

  68. Terasaki, N. et al. Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516, 2553–2557 (2008).

    CAS  Google Scholar 

  69. Badura, A. et al. Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385–1390 (2006).

    CAS  PubMed  Google Scholar 

  70. Fang, X. et al. Structure–activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stieger, K. R. et al. Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J. Mater. Chem. A 4, 17009–17017 (2016).

    CAS  Google Scholar 

  72. Leung, J., Vigil, J., Warnan, J., Edwardes Moore, E. & Reisner, E. Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem. Int. Ed. 131, 7779–7783 (2019).

  73. Orchard, K. L. et al. Catechol–TiO2 hybrids for photocatalytic H2 production and photocathode assembly. Chem. Commun. 53, 12638–12641 (2017).

    CAS  Google Scholar 

  74. Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).

    CAS  Google Scholar 

  75. Reuillard, B. et al. High performance reduction of H2O2 with an electron transport decaheme cytochrome on a porous ITO electrode. J. Am. Chem. Soc. 139, 3324–3327 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Riedel, M. & Lisdat, F. Integration of enzymes in polyaniline-sensitized 3D inverse opal TiO2 architectures for light-driven biocatalysis and light-to-current conversion. ACS Appl. Mater. Interfaces 10, 267–277 (2018).

    CAS  PubMed  Google Scholar 

  77. Nam, D. H. et al. Solar water splitting with a hydrogenase integrated in photoelectrochemical tandem cells. Angew. Chem. Int. Ed. 13, 10595–10599 (2018).

    Google Scholar 

  78. Kothe, T. et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew. Chem. Int. Ed. 52, 14233–14236 (2013).

    CAS  Google Scholar 

  79. Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).

    PubMed  Google Scholar 

  80. Riedel, M. et al. A Z-scheme-inspired photobioelectrochemical H2O/O2 cell with a 1 V open-circuit voltage combining photosystem II and PbS quantum dots. Angew. Chem. Int. Ed. 58, 801–805 (2018).

    Google Scholar 

  81. Yehezkeli, O., Tel-Vered, R., Michaeli, D., Nechushtai, R. & Willner, I. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 9, 2970–2978 (2013).

    CAS  PubMed  Google Scholar 

  82. Zhao, F. et al. A photosystem I monolayer with anisotropic electron flow enables Z-scheme like photosynthetic water splitting. Energy Environ. Sci. 12, 3133–3143 (2019).

    CAS  Google Scholar 

  83. Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator-free system under high levels of oxygen. Angew. Chem. Int. Ed. 52, 12313–12316 (2013).

    CAS  Google Scholar 

  84. Wombwell, C., Caputo, C. A. & Reisner, E. [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 48, 2858–2865 (2015).

    CAS  PubMed  Google Scholar 

  85. Efrati, A., Tel-Vered, R., Michaeli, D., Nechushtai, R. & Willner, I. Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells. Energy Environ. Sci. 6, 2950–2956 (2013).

    CAS  Google Scholar 

  86. Lee, C.-Y., Park, H. S., Fontecilla-Camps, J. C. & Reisner, E. Photoelectrochemical hydrogen evolution with a hydrogenase immobilized on a TiO2-protected silicon electrode. Angew. Chem. Int. Ed. 55, 5971–5974 (2016).

    CAS  Google Scholar 

  87. Leung, J. J. et al. Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172–5180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Z. et al. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10, 765–771 (2017).

    CAS  Google Scholar 

  89. Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).

    CAS  Google Scholar 

  90. Dau, H. & Zaharieva, I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870 (2009).

    CAS  PubMed  Google Scholar 

  91. Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7, 12552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, Y., Daye, J., Jenson, D. & Fong, S. Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments. Bioelectrochemistry 124, 22–27 (2018).

    CAS  PubMed  Google Scholar 

  93. Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Derks, A., Schaven, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta Bioenerg. 1847, 468–485 (2015).

    CAS  Google Scholar 

  95. McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).

    CAS  Google Scholar 

  96. Haehnel, W. & Hochheimer, H. J. On the current generated by a galvanic cell driven by photosynthetic electron transport. J. Electroanal. Chem. Interf. Electrochem. 6, 563–574 (1979).

    CAS  Google Scholar 

  97. Sawa, M. et al. Electricity generation from digitally printed cyanobacteria. Nat. Comm. 8, 1327–1337 (2017).

    Google Scholar 

  98. McCormick, A. J. et al. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 4, 4699–4709 (2011).

    CAS  Google Scholar 

  99. Cereda, A. et al. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803. PLOS ONE 9, e91484 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta Bioenergetics 1857, 247–255 (2016).

    CAS  Google Scholar 

  101. Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

    CAS  PubMed  Google Scholar 

  102. Longatte, G. et al. Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time. Chem. Sci. 9, 8271–8281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schneider, K., Thorne, R. J. & Petra, P. J. An investigation of anode and cathode materials in photomicrobial fuel cells. Phil. Trans. R. Soc. A 374, 20150080 (2016).

    PubMed  Google Scholar 

  104. Singh, S. P. & Montgomery, B. L. Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 19, 278–285 (2011).

    CAS  PubMed  Google Scholar 

  105. Lemieux, S. & Carpentier, R. Properties of a photosystem II preparation in a photoelectrochemical cell. J. Photochem. Photobiol. B 2, 221–231 (1988).

    CAS  Google Scholar 

  106. Kornienko, N. et al. Advancing techniques for investigating the enzyme–electrode interface. Acc. Chem. Res. 52, 1439–1448 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, H. et al. Upgraded bioelectrocatalytic N2 fixation: from N2 to chiral amine intermediates. J. Am. Chem. Soc. 141, 4963–4971 (2019).

    CAS  PubMed  Google Scholar 

  108. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    CAS  Google Scholar 

  109. Lu, Y. et al. Regulation of the cyanobacterial circadian clock by electrochemically controlled extracellular electron transfer. Angew. Chem. Int. Ed. 53, 2208–2211 (2014).

    CAS  Google Scholar 

  110. Liu, J. et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol. 114, 275–280 (2012).

    CAS  PubMed  Google Scholar 

  111. Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521–565 (2006).

    CAS  PubMed  Google Scholar 

  112. Happe, T., Hemschemeier, A., Winkler, M. & Kaminski, A. Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7, 246–250 (2002).

    CAS  PubMed  Google Scholar 

  113. Rochaix, J.-D. Regulation of photosynthetic electron transport. Biochim. Biophys. Acta Bioenerg. 1807, 375–383 (2011).

    CAS  Google Scholar 

  114. Yao, D. C. I., Brune, D. C. & Vermaas, W. F. J. Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 586, 169–173 (2012).

    CAS  PubMed  Google Scholar 

  115. Nomura, C. T., Persson, S., Shen, G., Inoue-Sakamoto, K. & Bryant, D. A. Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: inactivation of ctaDI affects the PS I:PS II ratio. Photosynth. Res. 87, 215–228 (2006).

    CAS  PubMed  Google Scholar 

  116. Weis, E. & Berry, J. A. Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Bioenerg. 894, 198–208 (1987).

    CAS  Google Scholar 

  117. Kuhl, H. et al. Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J. Biol. Chem. 275, 20652–20659 (2000).

    CAS  PubMed  Google Scholar 

  118. Liu, L. & Choi, S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications. Lab. Chip 17, 3817–3825 (2017).

    CAS  PubMed  Google Scholar 

  119. Longatte, G., Rappaport, F., Wollman, F.-A., Guille-Collignon, M. & Lemaitre, F. Electrochemical harvesting of photosynthetic electrons from unicellular algae population at the preparative scale by using 2,6-dichlorobenzoquinone. Electrochim. Acta 236, 337–342 (2017).

    CAS  Google Scholar 

  120. Wang, W. et al. Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting: a natural–artificial photosynthetic hybrid. Angew. Chem. Int. Ed. 55, 9229–9233 (2016).

    CAS  Google Scholar 

  121. Rao, K. K. et al. Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films. J. Photochem. Photobiol. B 5, 379–389 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an ERC Consolidator Grant ‘MatEnSAP’ (682833) and a BBSRC David Phillips Fellowship (BB/R011923/1). The authors thank S. Kalathil, X. Fang and L. Wey for the valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived the review, J.Z.Z. wrote the manuscript and constructed the figures, E.R. reviewed and edited the manuscript, contributed references and to discussions.

Corresponding authors

Correspondence to Jenny Z. Zhang or Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks V. Fourmond, R. Frese, F. Conzuelo and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.Z., Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat Rev Chem 4, 6–21 (2020). https://doi.org/10.1038/s41570-019-0149-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0149-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing