Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging applications of carbon nanohoops

Abstract

A cycloparaphenylene can be thought of as the shortest possible cross section of an armchair carbon nanotube. Although envisioned decades ago, these molecules — also referred to as carbon nanohoops — can be highly strained and, thus, eluded chemical synthesis. However, the past decade has seen the development of methods to access carbon nanohoops of varying size and composition. In contrast to many carbon-rich materials, the nanohoops are atom-precise and structurally tunable because they are prepared by stepwise organic synthesis. Accordingly, a variety of unique, size-dependent optoelectronic and host–guest properties have been uncovered. In this Review, we highlight recent research that aims to leverage the unique physical properties of nanohoops in applications and emphasize the connection between structure and properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The electronic structures of cycloparaphenylenes are size-dependent.
Fig. 2: Applications of cycloparaphenylenes in biological imaging.
Fig. 3: Electrical and optical stimulation of cycloparaphenylenes.
Fig. 4: Electronic properties of cycloparaphenylenes.
Fig. 5: Electron transfer involving cycloparaphenylenes.
Fig. 6: Cycloparaphenylenes can serve as building blocks for nanomaterials

Similar content being viewed by others

References

  1. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Darzi, E. R., Sisto, T. J. & Jasti, R. Selective syntheses of [7]–[12]cycloparaphenylenes using orthogonal Suzuki–Miyaura cross-coupling reactions. J. Org. Chem. 77, 6624–6628 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Iwamoto, T., Watanabe, Y., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J. Am. Chem. Soc. 133, 8354–8361 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Segawa, Y. et al. Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. Org. Biomol. Chem. 10, 5979–5984 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Li, P., Sisto, T. J., Darzi, E. R. & Jasti, R. The effects of cyclic conjugation and bending on the optoelectronic properties of paraphenylenes. Org. Lett. 16, 182–185 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Fujitsuka, M., Iwamoto, T., Kayahara, E., Yamago, S. & Majima, T. Enhancement of the quinoidal character for smaller [n]cycloparaphenylenes probed by Raman spectroscopy. ChemPhysChem 14, 1570–1572 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Hines, D. A., Darzi, E. R., Jasti, R. & Kamat, P. V. Carbon nanohoops: excited singlet and triplet behavior of [9]- and [12]-cycloparaphenylene. J. Phys. Chem. A 118, 1595–1600 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Xia, J., Bacon, J. W. & Jasti, R. Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem. Sci. 3, 3018–3021 (2012).

    Article  CAS  Google Scholar 

  9. Kayahara, E., Patel, V. K., Xia, J., Jasti, R. & Yamago, S. Selective and gram-scale synthesis of [6]cycloparaphenylene. Synlett 26, 1615–1619 (2015).

    Article  CAS  Google Scholar 

  10. Kayahara, E. et al. Gram-scale syntheses and conductivities of [10]cycloparaphenylene and its tetraalkoxy derivatives. J. Am. Chem. Soc. 139, 18480–18483 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Li, P., Wong, B. M., Zakharov, L. N. & Jasti, R. Investigating the reactivity of 1,4-anthracene-incorporated cycloparaphenylene. Org. Lett. 18, 1574–1577 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Van Raden, J. M., Louie, S., Zakharov, L. N. & Jasti, R. 2,2′-Bipyridyl-embedded cycloparaphenylenes as a general strategy to investigate nanohoop-based coordination complexes. J. Am. Chem. Soc. 139, 2936–2939 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Evans, P. J., Zakharov, L. N. & Jasti, R. Synthesis of carbon nanohoops containing thermally stable cis azobenzene. J. Photochem. Photobiol. A Chem. 382, 111878 (2019).

    Article  CAS  Google Scholar 

  14. Matsui, K., Segawa, Y. & Itami, K. Synthesis and properties of cycloparaphenylene-2,5-pyridylidene: a nitrogen-containing carbon nanoring. Org. Lett. 14, 1888–1891 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Tran-Van, A.-F. et al. Synthesis of substituted [8]cycloparaphenylenes by [2 + 2 + 2] cycloaddition. Org. Lett. 16, 1594–1597 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Kubota, N., Segawa, Y. & Itami, K. η6-Cycloparaphenylene transition metal complexes: synthesis, structure, photophysical properties, and application to the selective monofunctionalization of cycloparaphenylenes. J. Am. Chem. Soc. 137, 1356–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Hashimoto, S. et al. Synthesis and physical properties of polyfluorinated cycloparaphenylenes. Org. Lett. 20, 5973–5976 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Van Raden, J. M., White, B. M., Zakharov, L. N. & Jasti, R. Nanohoop rotaxanes via active metal template syntheses and their potential in sensing applications. Angew. Chem. Int. Ed. 58, 7341–7345 (2019).

    Article  CAS  Google Scholar 

  19. White, B. M. et al. Expanding the chemical space of biocompatible fluorophores: nanohoops in cells. ACS Cent. Sci. 4, 1173–1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozaki, N. et al. Electrically activated conductivity and white light emission of a hydrocarbon nanoring–iodine assembly. Angew. Chem. Int. Ed. 56, 11196–11202 (2017).

    Article  CAS  Google Scholar 

  21. Della Sala, P. et al. First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Chem. Commun. 55, 3160–3163 (2019).

    Article  Google Scholar 

  22. Xu, Y. et al. A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin–[10]CPPfullerene complexes. Angew. Chem. Int. Ed. 57, 11549–11553 (2018).

    Article  CAS  Google Scholar 

  23. Huang, Q. et al. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem. Int. Ed. 58, 6244–6249 (2019).

    Article  CAS  Google Scholar 

  24. Sakamoto, H. et al. Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chem. Sci. 7, 4204–4210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang, H. et al. Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration. Biomater. Sci. 7, 2552–2558 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Leonhardt, E. J. et al. A bottom-up approach to solution-processed, atomically precise graphitic cylinders on graphite. Nano Lett. 18, 7991–7997 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Darzi, E. R. & Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 44, 6401–6410 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Golder, M. R. & Jasti, R. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc. Chem. Res. 48, 557–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 44, 2221–2304 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, D., Cheng, W., Ban, X. & Xia, J. Cycloparaphenylenes (CPPs): an overview of synthesis, properties, and potential applications. Asian J. Org. Chem. 7, 2161–2181 (2018).

    Article  CAS  Google Scholar 

  31. Majewski, M. A. & Ste˛pien´, M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 58, 86–116 (2019).

    Article  CAS  Google Scholar 

  32. Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis and size-dependent properties of [12], [16], and [24]carbon nanobelts. J. Am. Chem. Soc. 140, 10054–10059 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Banerjee, M., Shukla, R. & Rathore, R. Synthesis, optical, and electronic properties of soluble poly-p-phenylene oligomers as models for molecular wires. J. Am. Chem. Soc. 131, 1780–1786 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Segawa, Y., Omachi, H. & Itami, K. Theoretical studies on the structures and strain energies of cycloparaphenylenes. Org. Lett. 12, 2262–2265 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, H., Golder, M. R., Wang, F., Jasti, R. & Swan, A. K. Raman spectroscopy of carbon nanohoops. Carbon 67, 203–213 (2014).

    Article  CAS  Google Scholar 

  38. Adamska, L. et al. Self-trapping of excitons, violation of Condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes. Nano Lett. 14, 6539–6546 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Evans, P. J., Darzi, E. R. & Jasti, R. Efficient room-temperature synthesis of a highly strained carbon nanohoop fragment of buckminsterfullerene. Nat. Chem. 6, 404–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Xia, J. & Jasti, R. Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. Angew. Chem. Int. Ed. 51, 2474–2476 (2012).

    Article  CAS  Google Scholar 

  41. Lovell, T. C., Colwell, C. E., Zakharov, L. N. & Jasti, R. Symmetry breaking and the turn-on fluorescence of small, highly strained carbon nanohoops. Chem. Sci. 10, 3786–3790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. 49, 757–759 (2010).

    Article  CAS  Google Scholar 

  43. Jasti, R. & Bertozzi, C. R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sisto, T. J., Golder, M. R., Hirst, E. S. & Jasti, R. Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. J. Am. Chem. Soc. 133, 15800–15802 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Kayahara, E., Patel, V. K. & Yamago, S. Synthesis and characterization of [5]cycloparaphenylene. J. Am. Chem. Soc. 136, 2284–2287 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Balzani, V., Credi, A., Francisco, M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  47. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley-VCH, 2016).

  48. Langton, M. J. & Beer, P. D. Rotaxane and catenane host structures for sensing charged guest species. Acc. Chem. Res. 47, 1935–1949 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Denis, M., Qin, L., Turner, P., Jolliffe, K. A. & Goldup, S. M. A fluorescent ditopic rotaxane ion-pair host. Angew. Chem. Int. Ed. 57, 5315–5319 (2018).

    Article  CAS  Google Scholar 

  50. Denis, M., Pancholi, J., Jobe, K., Watkinson, M. & Goldup, S. M. Chelating rotaxane ligands as fluorescent sensors for metal ions. Angew. Chem. Int. Ed. 57, 5310–5314 (2018).

    Article  CAS  Google Scholar 

  51. Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Movsisyan, L. D. et al. Polyyne rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366–1376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arunkumar, E., Forbes, C. C., Noll, B. C. & Smith, B. D. Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. J. Am. Chem. Soc. 127, 3288–3289 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Aucagne, V., Hänni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Denis, M. & Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 1, 0061 (2017).

    Article  CAS  Google Scholar 

  56. Garland, M., Yim, J. J. & Bogyo, M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23, 122–136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lavis, L. D. & Raines, R. T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lavis, L. D. & Raines, R. T. Brightest building blocks for chemical biology. ACS Chem. Biol. 9, 855–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lavis, L. D. Chemistry is dead. Long live chemistry! Biochemistry 56, 5165–5170 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Butkevich, A. N., Lukinavicˇius, G., D’Este, E. & Hell, S. W. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J. Am. Chem. Soc. 139, 12378–12381 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Dojindo Molecular Technologies. Cell counting kit-8: Technical Manual. Dojindo https://www.dojindo.com/TechnicalManual/Manual_CK04.pdf (2016).

  65. Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Consoli, G. M. L. et al. Design and synthesis of a multivalent fluorescent folate–calix[4]arene conjugate: cancer cell penetration and intracellular localization. Org. Biomol. Chem. 13, 3298–3307 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Consoli, G. M. L., Granata, G. & Geraci, C. Design, synthesis, and drug solubilising properties of the first folate–calix[4]arene conjugate. Org. Biomol. Chem. 9, 6491–6495 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, M. & Yang, C. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Shimizu, M. & Hiyama, T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian J. 5, 1516–1531 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).

    Article  CAS  Google Scholar 

  71. Tanaka, T., Nishio, I., Sun, S.-T. & Ueno-Nishio, S. Collapse of gels in an electric field. Science 218, 467–469 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Q. M. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive state in magnetoresistive manganites. Nature 388, 50–52 (1997).

    Article  CAS  Google Scholar 

  74. Fernandez, C. A. et al. An electrically switchable metal-organic framework. Sci. Rep. 4, 6114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hasell, T., Schmidtmann, M. & Cooper, A. I. Molecular doping of porous cages. J. Am. Chem. Soc. 133, 14920–14923 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Hertzsch, T., Budde, F., Weber, E. & Hulliger, J. Supramolecular-wire confinement of I2 molecules in channels of the organic zeolite tris(o-phenylenedioxy)cyclotriphosphazene. Angew. Chem. Int. Ed. 41, 2281–2284 (2002).

    Article  CAS  Google Scholar 

  77. Guan, L., Suenaga, K., Shi, Z., Gu, Z. & Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 7, 1532–1535 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Teitelbaum, R. C., Ruby, S. L. & Marks, T. J. On the structure of starch-iodine. J. Am. Chem. Soc. 100, 3215–3217 (1978).

    Article  CAS  Google Scholar 

  79. Konishi, T., Tanaka, W., Kawai, T. & Fujikawa, T. Iodine L-edge XAFS study of linear polyiodide chains in amylose and α-cyclodextrin. J. Synchrotron Radiat. 8, 737–739 (2001).

    Article  CAS  Google Scholar 

  80. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Mukherjee, S. & Thilagar, P. Organic white-light emitting materials. Dyes Pigments 110, 2–27 (2014).

    Article  CAS  Google Scholar 

  82. Iwamoto, T., Watanabe, Y., Sadahiro, T., Haino, T. & Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew. Chem. Int. Ed. 50, 8342–8344 (2011).

    Article  CAS  Google Scholar 

  83. Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

    Article  CAS  Google Scholar 

  84. Meinardi, F. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014).

    Article  CAS  Google Scholar 

  85. Meinardi, F. et al. Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Lett. 2, 2368–2377 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Papucci, C. et al. Green/yellow-emitting conjugated heterocyclic fluorophores for luminescent solar concentrators. Eur. J. Org. Chem. 2018, 2657–2666 (2018).

    Article  CAS  Google Scholar 

  87. Sol, J. A. H. P. et al. Temperature-responsive luminescent solar concentrators: tuning energy transfer in a liquid crystalline matrix. Angew. Chem. Int. Ed. 57, 1030–1033 (2018).

    Article  CAS  Google Scholar 

  88. Krumer, Z., van Sark, W. G. J. H. M., Schropp, R. E. I. & de Mello Donegá, C. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).

    Article  CAS  Google Scholar 

  89. Ball, M. et al. Conjugated macrocycles in organic electronics. Acc. Chem. Res. 52, 1068–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Van Raden, J. M., Darzi, E. R., Zakharov, L. N. & Jasti, R. Synthesis and characterization of a highly strained donor–acceptor nanohoop. Org. Biomol. Chem. 14, 5721–5727 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Hines, D., Darzi, E. R., Jasti, R. & Kamat, P. Carbon nanohoops: excited singlet and triplet behavior of aza[8]CPP and 1,15-diaza[8]CPP. J. Phys. Chem. A 119, 8083–8089 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Darzi, E. R. et al. Synthesis, properties, and design principles of donor–acceptor nanohoops. ACS Cent. Sci. 1, 335–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuwabara, T., Orii, J., Segawa, Y. & Itami, K. Curved oligophenylenes as donors in shape-persistent donor–acceptor macrocycles with solvatofluorochromic properties. Angew. Chem. Int. Ed. 54, 9646–9649 (2015).

    Article  CAS  Google Scholar 

  94. Canola, S., Graham, C., Pérez-Jiménez, A. J., Sancho-García, J. C. & Negri, F. Charge transport parameters for carbon based nanohoops and donor–acceptor derivatives. Phys. Chem. Chem. Phys. 21, 2057–2068 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Hu, L., Guo, Y., Yan, X., Zeng, H. & Zhou, J. Electronic transport properties in [n]cycloparaphenylenes molecular devices. Phys. Lett. A 381, 2107–2111 (2017).

    Article  CAS  Google Scholar 

  96. Pérez-Guardiola, A., Pérez-Jiménez, A. J., Muccioli, L. & Sancho-García, J. C. Structure and charge transport properties of cycloparaphenylene monolayers on graphite. Adv. Mater. Interfaces 6, 1801948 (2019).

    Article  CAS  Google Scholar 

  97. Sancho-García, J. C., Moral, M. & Pérez-Jiménez, A. J. Effect of cyclic topology on charge-transfer properties of organic molecular semiconductors: the case of cycloparaphenylene molecules. J. Phys. Chem. C 120, 9104–9111 (2016).

    Article  CAS  Google Scholar 

  98. Lin, J. B., Darzi, E. R., Jasti, R., Yavuz, I. & Houk, K. N. Solid-state order and charge mobility in [5]- to [12]cycloparaphenylenes. J. Am. Chem. Soc. 141, 952–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Segawa, Y. et al. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 50, 3244–3248 (2011).

    Article  CAS  Google Scholar 

  100. Kayahara, E., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective synthesis and crystal structure of [10]cycloparaphenylene. Org. Lett. 14, 3284–3287 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Segawa, Y., Šenel, P., Matsuura, H., Omachi, H. & Itami, K. [9]Cycloparaphenylene: nickel-mediated synthesis and crystal structure. Chem. Lett. 40, 423–425 (2011).

    Article  CAS  Google Scholar 

  102. Sibbel, F., Matsui, K., Segawa, Y., Studer, A. & Itami, K. Selective synthesis of [7]- and [8]cycloparaphenylenes. Chem. Commun. 50, 954–956 (2014).

    Article  CAS  Google Scholar 

  103. Fukushima, T. et al. Polymorphism of [6]cycloparaphenylene for packing structure-dependent host–guest interaction. Chem. Lett. 46, 855–857 (2017).

    Article  CAS  Google Scholar 

  104. Yavuz, I., Lopez, S. A., Lin, J. B. & Houk, K. N. Quantitative prediction of morphology and electron transport in crystal and disordered organic semiconductors. J. Mater. Chem. C 4, 11238–11243 (2016).

    Article  CAS  Google Scholar 

  105. Zabula, A. V., Filatov, A. S., Xia, J., Jasti, R. & Petrukhina, M. A. Tightening of the nanobelt upon multielectron reduction. Angew. Chem. Int. Ed. 52, 5033–5036 (2013).

    Article  CAS  Google Scholar 

  106. Spisak, S. N., Wei, Z., Darzi, E., Jasti, R. & Petrukhina, M. A. Highly strained [6]cycloparaphenylene: crystallization of an unsolvated polymorph and the first mono- and dianions. Chem. Commun. 54, 7818–7821 (2018).

    Article  CAS  Google Scholar 

  107. Golder, M. R., Wong, B. M. & Jasti, R. Photophysical and theoretical investigations of the [8]cycloparaphenylene radical cation and its charge-resonance dimer. Chem. Sci. 4, 4285–4291 (2013).

    Article  CAS  Google Scholar 

  108. Kayahara, E. et al. Isolation and characterization of the cycloparaphenylene radical cation and dication. Angew. Chem. Int. Ed. 52, 13722–13726 (2013).

    Article  CAS  Google Scholar 

  109. Toriumi, N., Muranaka, A., Kayahara, E., Yamago, S. & Uchiyama, M. In-plane aromaticity in cycloparaphenylene dications: a magnetic circular dichroism and theoretical study. J. Am. Chem. Soc. 137, 82–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Kayahara, E., Kouyama, T., Kato, T. & Yamago, S. Synthesis and characterization of [n]CPP (n = 5, 6, 8, 10, and 12) radical cation and dications: size-dependent absorption, spin, and charge delocalization. J. Am. Chem. Soc. 138, 338–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Masumoto, Y. et al. Near-infrared fluorescence from in-plane-aromatic cycloparaphenylene dications. J. Phys. Chem. A 122, 5162–5167 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2, 678–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Blom, P. W. M., de Jong, M. J. M. & Vleggaar, J. J. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).

    Article  CAS  Google Scholar 

  114. Lei, T., Wang, J.-Y. & Pei, J. Roles of flexible chains in organic semiconducting materials. Chem. Mater. 26, 594–603 (2014).

    Article  CAS  Google Scholar 

  115. Reese, C. & Bao, Z. Organic single-crystal field-effect transistors. Mater. Today 10, 20–27 (2007).

    Article  CAS  Google Scholar 

  116. Li, C.-Z., Yip, H.-L. & Jen, A. K.-Y. Functional fullerenes for organic photovoltaics. J. Mater. Chem. 22, 4161–4177 (2012).

    Article  CAS  Google Scholar 

  117. Guldi, D. M., Illescas, B. M., Atienza, C. M., Wielopolski, M. & Martín, N. Fullerene for organic electronics. Chem. Soc. Rev. 38, 1587–1597 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Babu, S. S., Möhwald, H. & Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 39, 4021–4035 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  120. Smith, B. W. & Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321, 169–174 (2000).

    Article  CAS  Google Scholar 

  121. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Barnes, J. C. et al. Semiconducting single crystals comprising segregated arrays of complexes of C60. J. Am. Chem. Soc. 137, 2392–2399 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Iwamoto, T. et al. Size- and orientation-selective encapsulation of C70 by cycloparaphenylenes. Chem. Eur. J. 19, 14061–14068 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).

    Article  CAS  Google Scholar 

  125. Chaur, M. N., Melin, F., Ortiz, A. L. & Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 48, 7514–7538 (2009).

    Article  CAS  Google Scholar 

  126. Rodrígues-Fortea, A., Balch, A. L. & Poblet, J. M. Endohedral metallofullerenes: a unique host–guest association. Chem. Soc. Rev. 40, 3551–3563 (2011).

    Article  CAS  Google Scholar 

  127. Kimura, K. et al. Evidence for substantial interaction between Gd ion and SWNT in (Gd@C82)n@SWCNT peapods revealed by STM studies. Chem. Phys. Lett. 379, 340–344 (2003).

    Article  CAS  Google Scholar 

  128. Iwamoto, T. et al. Partial charge transfer in the shortest possible metallofullerene peapod, La@C82[11]cycloparaphenylene. Chem. Eur. J. 20, 14403–14409 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Ueno, H., Nishihara, T., Segawa, Y. & Itami, K. Cycloparaphenylene-based ionic donor–acceptor supramolecule: isolation and characterization of Li+@C60[10]CPP. Angew. Chem. Int. Ed. 54, 3707–3711 (2015).

    Article  CAS  Google Scholar 

  130. Isobe, H., Hitosugi, S., Yamasaki, T. & Iizuka, R. Molecular bearings of finite carbon nanotubes and fullerenes in ensemble rolling motion. Chem. Sci. 4, 1293–1297 (2013).

    Article  CAS  Google Scholar 

  131. Sato, S., Yamasaki, T. & Isobe, H. Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules. Proc. Natl Acad. Sci. USA 111, 8374–8379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Isobe, H. et al. Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics. Chem. Sci. 6, 2746–2753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lim, G. N., Obondi, C. O. & D’Souza, F. A high-energy charge-separated state of 1.70 eV from a high-potential donor–acceptor dyad: a catalyst for energy-demanding photochemical reactions. Angew. Chem. Int. Ed. 55, 11517–11521 (2016).

    Article  CAS  Google Scholar 

  134. Molina-Ontoria, A. et al. [2,2′]Paracyclophane-based π-conjugated molecular wires reveal molecular-junction behavior. J. Am. Chem. Soc. 133, 2370–2373 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Yamamoto, M., Föhlinger, J., Petersson, J., Hammarström, L. & Imahori, H. A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. Int. Ed. 56, 3329–3333 (2017).

    Article  CAS  Google Scholar 

  136. Yu, H.-Z., Baskin, J. S. & Zewail, A. H. Ultrafast dynamics of porphyrins in the condensed phase: II. Zinc tetraphenylporphyrin. J. Phys. Chem. A 106, 9845–9854 (2002).

    Article  CAS  Google Scholar 

  137. Guldi, D. M. & Prato, M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 33, 695–703 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Scott, L. T. Conjugated belts and nanorings with radially oriented p orbitals. Angew. Chem. Int. Ed. 42, 4133–4135 (2003).

    Article  CAS  Google Scholar 

  140. Tan, L.-L. et al. Pillar[5]arene-based SOF for highly selective CO2-capture at ambient conditions. Adv. Mater. 26, 7027–7031 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Lim, S. et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).

    Article  CAS  Google Scholar 

  142. Matsuda, R. et al. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chem. Sci. 1, 315–321 (2010).

    Article  CAS  Google Scholar 

  143. Zhang, D. et al. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 27, 6125–6130 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Zheng, X. et al. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. Int. Ed. 54, 8094–8099 (2015).

    Article  CAS  Google Scholar 

  145. Jiang, X. et al. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials 34, 1739–1746 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, C., Zhen, X., Wang, X., Wu, W. & Jiang, X. Cellular entry fashion of hollow milk protein spheres. Soft Matter 7, 11526–11534 (2011).

    Article  CAS  Google Scholar 

  147. Sorkin, A. & Goh, L. K. Endocytosis and intracellular trafficking of ErbBs. Exp. Cell Res. 315, 683–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Thalladi, V. R. et al. C−H···F interactions in the crystal structures of some fluorobenzenes. J. Am. Chem. Soc. 120, 8702–8710 (1998).

    Article  CAS  Google Scholar 

  149. Coates, G. W., Dunn, A. R., Henling, L. M., Dougherty, D. A. & Grubbs, R. H. Phenyl–perfluorophenyl stacking interactions: a new strategy for supermolecule construction. Angew. Chem. Int. Ed. 36, 248–251 (1997).

    Article  CAS  Google Scholar 

  150. Patrick, C. R. & Prosser, G. S. A molecular complex of benzene and hexafluorobenzene. Nature 187, 1021 (1960).

    Article  CAS  Google Scholar 

  151. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Salonen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011).

    Article  CAS  Google Scholar 

  153. Falcaro, P. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, H. et al. Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 132, 16747–16749 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation (CHE-1800586, CHE-1808791), the Department of Energy (DE-SC0019017) and the UO OHSU Seed Grant Program.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Ramesh Jasti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonhardt, E.J., Jasti, R. Emerging applications of carbon nanohoops. Nat Rev Chem 3, 672–686 (2019). https://doi.org/10.1038/s41570-019-0140-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0140-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing