Abstract
A cycloparaphenylene can be thought of as the shortest possible cross section of an armchair carbon nanotube. Although envisioned decades ago, these molecules — also referred to as carbon nanohoops — can be highly strained and, thus, eluded chemical synthesis. However, the past decade has seen the development of methods to access carbon nanohoops of varying size and composition. In contrast to many carbon-rich materials, the nanohoops are atom-precise and structurally tunable because they are prepared by stepwise organic synthesis. Accordingly, a variety of unique, size-dependent optoelectronic and host–guest properties have been uncovered. In this Review, we highlight recent research that aims to leverage the unique physical properties of nanohoops in applications and emphasize the connection between structure and properties.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).
Darzi, E. R., Sisto, T. J. & Jasti, R. Selective syntheses of [7]–[12]cycloparaphenylenes using orthogonal Suzuki–Miyaura cross-coupling reactions. J. Org. Chem. 77, 6624–6628 (2012).
Iwamoto, T., Watanabe, Y., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J. Am. Chem. Soc. 133, 8354–8361 (2011).
Segawa, Y. et al. Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. Org. Biomol. Chem. 10, 5979–5984 (2012).
Li, P., Sisto, T. J., Darzi, E. R. & Jasti, R. The effects of cyclic conjugation and bending on the optoelectronic properties of paraphenylenes. Org. Lett. 16, 182–185 (2014).
Fujitsuka, M., Iwamoto, T., Kayahara, E., Yamago, S. & Majima, T. Enhancement of the quinoidal character for smaller [n]cycloparaphenylenes probed by Raman spectroscopy. ChemPhysChem 14, 1570–1572 (2013).
Hines, D. A., Darzi, E. R., Jasti, R. & Kamat, P. V. Carbon nanohoops: excited singlet and triplet behavior of [9]- and [12]-cycloparaphenylene. J. Phys. Chem. A 118, 1595–1600 (2014).
Xia, J., Bacon, J. W. & Jasti, R. Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem. Sci. 3, 3018–3021 (2012).
Kayahara, E., Patel, V. K., Xia, J., Jasti, R. & Yamago, S. Selective and gram-scale synthesis of [6]cycloparaphenylene. Synlett 26, 1615–1619 (2015).
Kayahara, E. et al. Gram-scale syntheses and conductivities of [10]cycloparaphenylene and its tetraalkoxy derivatives. J. Am. Chem. Soc. 139, 18480–18483 (2017).
Li, P., Wong, B. M., Zakharov, L. N. & Jasti, R. Investigating the reactivity of 1,4-anthracene-incorporated cycloparaphenylene. Org. Lett. 18, 1574–1577 (2016).
Van Raden, J. M., Louie, S., Zakharov, L. N. & Jasti, R. 2,2′-Bipyridyl-embedded cycloparaphenylenes as a general strategy to investigate nanohoop-based coordination complexes. J. Am. Chem. Soc. 139, 2936–2939 (2017).
Evans, P. J., Zakharov, L. N. & Jasti, R. Synthesis of carbon nanohoops containing thermally stable cis azobenzene. J. Photochem. Photobiol. A Chem. 382, 111878 (2019).
Matsui, K., Segawa, Y. & Itami, K. Synthesis and properties of cycloparaphenylene-2,5-pyridylidene: a nitrogen-containing carbon nanoring. Org. Lett. 14, 1888–1891 (2012).
Tran-Van, A.-F. et al. Synthesis of substituted [8]cycloparaphenylenes by [2 + 2 + 2] cycloaddition. Org. Lett. 16, 1594–1597 (2014).
Kubota, N., Segawa, Y. & Itami, K. η6-Cycloparaphenylene transition metal complexes: synthesis, structure, photophysical properties, and application to the selective monofunctionalization of cycloparaphenylenes. J. Am. Chem. Soc. 137, 1356–1361 (2015).
Hashimoto, S. et al. Synthesis and physical properties of polyfluorinated cycloparaphenylenes. Org. Lett. 20, 5973–5976 (2018).
Van Raden, J. M., White, B. M., Zakharov, L. N. & Jasti, R. Nanohoop rotaxanes via active metal template syntheses and their potential in sensing applications. Angew. Chem. Int. Ed. 58, 7341–7345 (2019).
White, B. M. et al. Expanding the chemical space of biocompatible fluorophores: nanohoops in cells. ACS Cent. Sci. 4, 1173–1178 (2018).
Ozaki, N. et al. Electrically activated conductivity and white light emission of a hydrocarbon nanoring–iodine assembly. Angew. Chem. Int. Ed. 56, 11196–11202 (2017).
Della Sala, P. et al. First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Chem. Commun. 55, 3160–3163 (2019).
Xu, Y. et al. A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin–[10]CPP⊃fullerene complexes. Angew. Chem. Int. Ed. 57, 11549–11553 (2018).
Huang, Q. et al. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem. Int. Ed. 58, 6244–6249 (2019).
Sakamoto, H. et al. Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chem. Sci. 7, 4204–4210 (2016).
Tang, H. et al. Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration. Biomater. Sci. 7, 2552–2558 (2019).
Leonhardt, E. J. et al. A bottom-up approach to solution-processed, atomically precise graphitic cylinders on graphite. Nano Lett. 18, 7991–7997 (2018).
Darzi, E. R. & Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 44, 6401–6410 (2015).
Golder, M. R. & Jasti, R. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc. Chem. Res. 48, 557–566 (2015).
Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 44, 2221–2304 (2015).
Wu, D., Cheng, W., Ban, X. & Xia, J. Cycloparaphenylenes (CPPs): an overview of synthesis, properties, and potential applications. Asian J. Org. Chem. 7, 2161–2181 (2018).
Majewski, M. A. & Ste˛pien´, M. Bowls, hoops, and saddles: synthetic approaches to curved aromatic molecules. Angew. Chem. Int. Ed. 58, 86–116 (2019).
Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).
Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis and size-dependent properties of [12], [16], and [24]carbon nanobelts. J. Am. Chem. Soc. 140, 10054–10059 (2018).
Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).
Banerjee, M., Shukla, R. & Rathore, R. Synthesis, optical, and electronic properties of soluble poly-p-phenylene oligomers as models for molecular wires. J. Am. Chem. Soc. 131, 1780–1786 (2009).
Segawa, Y., Omachi, H. & Itami, K. Theoretical studies on the structures and strain energies of cycloparaphenylenes. Org. Lett. 12, 2262–2265 (2010).
Chen, H., Golder, M. R., Wang, F., Jasti, R. & Swan, A. K. Raman spectroscopy of carbon nanohoops. Carbon 67, 203–213 (2014).
Adamska, L. et al. Self-trapping of excitons, violation of Condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes. Nano Lett. 14, 6539–6546 (2014).
Evans, P. J., Darzi, E. R. & Jasti, R. Efficient room-temperature synthesis of a highly strained carbon nanohoop fragment of buckminsterfullerene. Nat. Chem. 6, 404–408 (2014).
Xia, J. & Jasti, R. Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. Angew. Chem. Int. Ed. 51, 2474–2476 (2012).
Lovell, T. C., Colwell, C. E., Zakharov, L. N. & Jasti, R. Symmetry breaking and the turn-on fluorescence of small, highly strained carbon nanohoops. Chem. Sci. 10, 3786–3790 (2019).
Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. 49, 757–759 (2010).
Jasti, R. & Bertozzi, C. R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010).
Sisto, T. J., Golder, M. R., Hirst, E. S. & Jasti, R. Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. J. Am. Chem. Soc. 133, 15800–15802 (2011).
Kayahara, E., Patel, V. K. & Yamago, S. Synthesis and characterization of [5]cycloparaphenylene. J. Am. Chem. Soc. 136, 2284–2287 (2014).
Balzani, V., Credi, A., Francisco, M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).
Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley-VCH, 2016).
Langton, M. J. & Beer, P. D. Rotaxane and catenane host structures for sensing charged guest species. Acc. Chem. Res. 47, 1935–1949 (2014).
Denis, M., Qin, L., Turner, P., Jolliffe, K. A. & Goldup, S. M. A fluorescent ditopic rotaxane ion-pair host. Angew. Chem. Int. Ed. 57, 5315–5319 (2018).
Denis, M., Pancholi, J., Jobe, K., Watkinson, M. & Goldup, S. M. Chelating rotaxane ligands as fluorescent sensors for metal ions. Angew. Chem. Int. Ed. 57, 5310–5314 (2018).
Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).
Movsisyan, L. D. et al. Polyyne rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366–1376 (2016).
Arunkumar, E., Forbes, C. C., Noll, B. C. & Smith, B. D. Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. J. Am. Chem. Soc. 127, 3288–3289 (2005).
Aucagne, V., Hänni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).
Denis, M. & Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 1, 0061 (2017).
Garland, M., Yim, J. J. & Bogyo, M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23, 122–136 (2016).
Lavis, L. D. & Raines, R. T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).
Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).
Lavis, L. D. & Raines, R. T. Brightest building blocks for chemical biology. ACS Chem. Biol. 9, 855–866 (2014).
Lavis, L. D. Chemistry is dead. Long live chemistry! Biochemistry 56, 5165–5170 (2017).
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).
Butkevich, A. N., Lukinavicˇius, G., D’Este, E. & Hell, S. W. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J. Am. Chem. Soc. 139, 12378–12381 (2017).
Dojindo Molecular Technologies. Cell counting kit-8: Technical Manual. Dojindo https://www.dojindo.com/TechnicalManual/Manual_CK04.pdf (2016).
Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011).
Consoli, G. M. L. et al. Design and synthesis of a multivalent fluorescent folate–calix[4]arene conjugate: cancer cell penetration and intracellular localization. Org. Biomol. Chem. 13, 3298–3307 (2015).
Consoli, G. M. L., Granata, G. & Geraci, C. Design, synthesis, and drug solubilising properties of the first folate–calix[4]arene conjugate. Org. Biomol. Chem. 9, 6491–6495 (2011).
Zhu, M. & Yang, C. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).
Shimizu, M. & Hiyama, T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian J. 5, 1516–1531 (2010).
Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).
Tanaka, T., Nishio, I., Sun, S.-T. & Ueno-Nishio, S. Collapse of gels in an electric field. Science 218, 467–469 (1982).
Zhang, Q. M. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002).
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive state in magnetoresistive manganites. Nature 388, 50–52 (1997).
Fernandez, C. A. et al. An electrically switchable metal-organic framework. Sci. Rep. 4, 6114 (2014).
Hasell, T., Schmidtmann, M. & Cooper, A. I. Molecular doping of porous cages. J. Am. Chem. Soc. 133, 14920–14923 (2011).
Hertzsch, T., Budde, F., Weber, E. & Hulliger, J. Supramolecular-wire confinement of I2 molecules in channels of the organic zeolite tris(o-phenylenedioxy)cyclotriphosphazene. Angew. Chem. Int. Ed. 41, 2281–2284 (2002).
Guan, L., Suenaga, K., Shi, Z., Gu, Z. & Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 7, 1532–1535 (2007).
Teitelbaum, R. C., Ruby, S. L. & Marks, T. J. On the structure of starch-iodine. J. Am. Chem. Soc. 100, 3215–3217 (1978).
Konishi, T., Tanaka, W., Kawai, T. & Fujikawa, T. Iodine L-edge XAFS study of linear polyiodide chains in amylose and α-cyclodextrin. J. Synchrotron Radiat. 8, 737–739 (2001).
Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).
Mukherjee, S. & Thilagar, P. Organic white-light emitting materials. Dyes Pigments 110, 2–27 (2014).
Iwamoto, T., Watanabe, Y., Sadahiro, T., Haino, T. & Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew. Chem. Int. Ed. 50, 8342–8344 (2011).
Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).
Meinardi, F. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014).
Meinardi, F. et al. Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Lett. 2, 2368–2377 (2017).
Papucci, C. et al. Green/yellow-emitting conjugated heterocyclic fluorophores for luminescent solar concentrators. Eur. J. Org. Chem. 2018, 2657–2666 (2018).
Sol, J. A. H. P. et al. Temperature-responsive luminescent solar concentrators: tuning energy transfer in a liquid crystalline matrix. Angew. Chem. Int. Ed. 57, 1030–1033 (2018).
Krumer, Z., van Sark, W. G. J. H. M., Schropp, R. E. I. & de Mello Donegá, C. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
Ball, M. et al. Conjugated macrocycles in organic electronics. Acc. Chem. Res. 52, 1068–1078 (2019).
Van Raden, J. M., Darzi, E. R., Zakharov, L. N. & Jasti, R. Synthesis and characterization of a highly strained donor–acceptor nanohoop. Org. Biomol. Chem. 14, 5721–5727 (2016).
Hines, D., Darzi, E. R., Jasti, R. & Kamat, P. Carbon nanohoops: excited singlet and triplet behavior of aza[8]CPP and 1,15-diaza[8]CPP. J. Phys. Chem. A 119, 8083–8089 (2015).
Darzi, E. R. et al. Synthesis, properties, and design principles of donor–acceptor nanohoops. ACS Cent. Sci. 1, 335–342 (2015).
Kuwabara, T., Orii, J., Segawa, Y. & Itami, K. Curved oligophenylenes as donors in shape-persistent donor–acceptor macrocycles with solvatofluorochromic properties. Angew. Chem. Int. Ed. 54, 9646–9649 (2015).
Canola, S., Graham, C., Pérez-Jiménez, A. J., Sancho-García, J. C. & Negri, F. Charge transport parameters for carbon based nanohoops and donor–acceptor derivatives. Phys. Chem. Chem. Phys. 21, 2057–2068 (2019).
Hu, L., Guo, Y., Yan, X., Zeng, H. & Zhou, J. Electronic transport properties in [n]cycloparaphenylenes molecular devices. Phys. Lett. A 381, 2107–2111 (2017).
Pérez-Guardiola, A., Pérez-Jiménez, A. J., Muccioli, L. & Sancho-García, J. C. Structure and charge transport properties of cycloparaphenylene monolayers on graphite. Adv. Mater. Interfaces 6, 1801948 (2019).
Sancho-García, J. C., Moral, M. & Pérez-Jiménez, A. J. Effect of cyclic topology on charge-transfer properties of organic molecular semiconductors: the case of cycloparaphenylene molecules. J. Phys. Chem. C 120, 9104–9111 (2016).
Lin, J. B., Darzi, E. R., Jasti, R., Yavuz, I. & Houk, K. N. Solid-state order and charge mobility in [5]- to [12]cycloparaphenylenes. J. Am. Chem. Soc. 141, 952–960 (2019).
Segawa, Y. et al. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 50, 3244–3248 (2011).
Kayahara, E., Sakamoto, Y., Suzuki, T. & Yamago, S. Selective synthesis and crystal structure of [10]cycloparaphenylene. Org. Lett. 14, 3284–3287 (2012).
Segawa, Y., Šenel, P., Matsuura, H., Omachi, H. & Itami, K. [9]Cycloparaphenylene: nickel-mediated synthesis and crystal structure. Chem. Lett. 40, 423–425 (2011).
Sibbel, F., Matsui, K., Segawa, Y., Studer, A. & Itami, K. Selective synthesis of [7]- and [8]cycloparaphenylenes. Chem. Commun. 50, 954–956 (2014).
Fukushima, T. et al. Polymorphism of [6]cycloparaphenylene for packing structure-dependent host–guest interaction. Chem. Lett. 46, 855–857 (2017).
Yavuz, I., Lopez, S. A., Lin, J. B. & Houk, K. N. Quantitative prediction of morphology and electron transport in crystal and disordered organic semiconductors. J. Mater. Chem. C 4, 11238–11243 (2016).
Zabula, A. V., Filatov, A. S., Xia, J., Jasti, R. & Petrukhina, M. A. Tightening of the nanobelt upon multielectron reduction. Angew. Chem. Int. Ed. 52, 5033–5036 (2013).
Spisak, S. N., Wei, Z., Darzi, E., Jasti, R. & Petrukhina, M. A. Highly strained [6]cycloparaphenylene: crystallization of an unsolvated polymorph and the first mono- and dianions. Chem. Commun. 54, 7818–7821 (2018).
Golder, M. R., Wong, B. M. & Jasti, R. Photophysical and theoretical investigations of the [8]cycloparaphenylene radical cation and its charge-resonance dimer. Chem. Sci. 4, 4285–4291 (2013).
Kayahara, E. et al. Isolation and characterization of the cycloparaphenylene radical cation and dication. Angew. Chem. Int. Ed. 52, 13722–13726 (2013).
Toriumi, N., Muranaka, A., Kayahara, E., Yamago, S. & Uchiyama, M. In-plane aromaticity in cycloparaphenylene dications: a magnetic circular dichroism and theoretical study. J. Am. Chem. Soc. 137, 82–85 (2015).
Kayahara, E., Kouyama, T., Kato, T. & Yamago, S. Synthesis and characterization of [n]CPP (n = 5, 6, 8, 10, and 12) radical cation and dications: size-dependent absorption, spin, and charge delocalization. J. Am. Chem. Soc. 138, 338–344 (2016).
Masumoto, Y. et al. Near-infrared fluorescence from in-plane-aromatic cycloparaphenylene dications. J. Phys. Chem. A 122, 5162–5167 (2018).
Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2, 678–682 (2003).
Blom, P. W. M., de Jong, M. J. M. & Vleggaar, J. J. Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).
Lei, T., Wang, J.-Y. & Pei, J. Roles of flexible chains in organic semiconducting materials. Chem. Mater. 26, 594–603 (2014).
Reese, C. & Bao, Z. Organic single-crystal field-effect transistors. Mater. Today 10, 20–27 (2007).
Li, C.-Z., Yip, H.-L. & Jen, A. K.-Y. Functional fullerenes for organic photovoltaics. J. Mater. Chem. 22, 4161–4177 (2012).
Guldi, D. M., Illescas, B. M., Atienza, C. M., Wielopolski, M. & Martín, N. Fullerene for organic electronics. Chem. Soc. Rev. 38, 1587–1597 (2009).
Babu, S. S., Möhwald, H. & Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 39, 4021–4035 (2010).
Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).
Smith, B. W. & Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321, 169–174 (2000).
Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).
Barnes, J. C. et al. Semiconducting single crystals comprising segregated arrays of complexes of C60. J. Am. Chem. Soc. 137, 2392–2399 (2015).
Iwamoto, T. et al. Size- and orientation-selective encapsulation of C70 by cycloparaphenylenes. Chem. Eur. J. 19, 14061–14068 (2013).
Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).
Chaur, M. N., Melin, F., Ortiz, A. L. & Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 48, 7514–7538 (2009).
Rodrígues-Fortea, A., Balch, A. L. & Poblet, J. M. Endohedral metallofullerenes: a unique host–guest association. Chem. Soc. Rev. 40, 3551–3563 (2011).
Kimura, K. et al. Evidence for substantial interaction between Gd ion and SWNT in (Gd@C82)n@SWCNT peapods revealed by STM studies. Chem. Phys. Lett. 379, 340–344 (2003).
Iwamoto, T. et al. Partial charge transfer in the shortest possible metallofullerene peapod, La@C82⊂[11]cycloparaphenylene. Chem. Eur. J. 20, 14403–14409 (2014).
Ueno, H., Nishihara, T., Segawa, Y. & Itami, K. Cycloparaphenylene-based ionic donor–acceptor supramolecule: isolation and characterization of Li+@C60⊂[10]CPP. Angew. Chem. Int. Ed. 54, 3707–3711 (2015).
Isobe, H., Hitosugi, S., Yamasaki, T. & Iizuka, R. Molecular bearings of finite carbon nanotubes and fullerenes in ensemble rolling motion. Chem. Sci. 4, 1293–1297 (2013).
Sato, S., Yamasaki, T. & Isobe, H. Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules. Proc. Natl Acad. Sci. USA 111, 8374–8379 (2014).
Isobe, H. et al. Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics. Chem. Sci. 6, 2746–2753 (2015).
Lim, G. N., Obondi, C. O. & D’Souza, F. A high-energy charge-separated state of 1.70 eV from a high-potential donor–acceptor dyad: a catalyst for energy-demanding photochemical reactions. Angew. Chem. Int. Ed. 55, 11517–11521 (2016).
Molina-Ontoria, A. et al. [2,2′]Paracyclophane-based π-conjugated molecular wires reveal molecular-junction behavior. J. Am. Chem. Soc. 133, 2370–2373 (2011).
Yamamoto, M., Föhlinger, J., Petersson, J., Hammarström, L. & Imahori, H. A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. Int. Ed. 56, 3329–3333 (2017).
Yu, H.-Z., Baskin, J. S. & Zewail, A. H. Ultrafast dynamics of porphyrins in the condensed phase: II. Zinc tetraphenylporphyrin. J. Phys. Chem. A 106, 9845–9854 (2002).
Guldi, D. M. & Prato, M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 33, 695–703 (2000).
Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).
Scott, L. T. Conjugated belts and nanorings with radially oriented p orbitals. Angew. Chem. Int. Ed. 42, 4133–4135 (2003).
Tan, L.-L. et al. Pillar[5]arene-based SOF for highly selective CO2-capture at ambient conditions. Adv. Mater. 26, 7027–7031 (2014).
Lim, S. et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).
Matsuda, R. et al. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chem. Sci. 1, 315–321 (2010).
Zhang, D. et al. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 27, 6125–6130 (2015).
Zheng, X. et al. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. Int. Ed. 54, 8094–8099 (2015).
Jiang, X. et al. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials 34, 1739–1746 (2013).
Liu, C., Zhen, X., Wang, X., Wu, W. & Jiang, X. Cellular entry fashion of hollow milk protein spheres. Soft Matter 7, 11526–11534 (2011).
Sorkin, A. & Goh, L. K. Endocytosis and intracellular trafficking of ErbBs. Exp. Cell Res. 315, 683–696 (2009).
Thalladi, V. R. et al. C−H···F interactions in the crystal structures of some fluorobenzenes. J. Am. Chem. Soc. 120, 8702–8710 (1998).
Coates, G. W., Dunn, A. R., Henling, L. M., Dougherty, D. A. & Grubbs, R. H. Phenyl–perfluorophenyl stacking interactions: a new strategy for supermolecule construction. Angew. Chem. Int. Ed. 36, 248–251 (1997).
Patrick, C. R. & Prosser, G. S. A molecular complex of benzene and hexafluorobenzene. Nature 187, 1021 (1960).
Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).
Salonen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011).
Falcaro, P. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017).
Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).
Wang, H. et al. Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J. Am. Chem. Soc. 132, 16747–16749 (2010).
Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).
Acknowledgements
The authors are grateful for support from the National Science Foundation (CHE-1800586, CHE-1808791), the Department of Energy (DE-SC0019017) and the UO OHSU Seed Grant Program.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to the preparation of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Leonhardt, E.J., Jasti, R. Emerging applications of carbon nanohoops. Nat Rev Chem 3, 672–686 (2019). https://doi.org/10.1038/s41570-019-0140-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-019-0140-0
This article is cited by
-
Anomalous anti-Kasha excited-state luminescence from symmetry-breaking heterogeneous carbon bisnanohoops
Nature Communications (2024)
-
C-H-activated Csp2-Csp3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions
Nature Communications (2024)
-
Photoinduced electron transfer in host–guest complexes of double nanohoops
Journal of Nanostructure in Chemistry (2024)
-
Cleavage of non-polar C(sp2)‒C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution
Nature Communications (2023)
-
Interlocked structures on active duty
Nature Chemistry (2023)