Abstract
Controlling the where and when of a chemical reaction, rather than just the if, can be an essential component in the successful development of applications. There are a large number of situations in which a predetermined sequence of chemical reaction events might be highly beneficial. In this Review, we examine the development of such spatiotemporal control of chemical reactions. We classify the means of control into either passive or active approaches. The passive approach relies on characteristics inherent to the chosen chemical system in order to predict where and when a reaction will occur. The active strategy, on the other hand, relies on the input of an external stimulus to remotely control the onset of a chemical reaction. Among active methods, we distinguish two different strategies — either remote activation of a reaction or controlled release of chemicals. This versatile toolbox allows spatiotemporal control to be achieved in myriad situations and thus to address some key challenges in chemistry, such as drug delivery.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Advincula, R. C. Review of conjugated polymer synthesis: methods and reactions conjugated polymer synthesis: methods and reactions. J. Am. Chem. Soc. 133, 5622 (2011).
Chen, W.-L., Cordero, R., Tran, H. & Ober, C. K. Polymer brushes: novel surfaces for future materials. Macromolecules 50, 4089–4113 (2017).
Nemani, S. K. et al. Surface modification of polymers: methods and applications. Adv. Mater. Interfaces 5, 1801247 (2018).
Wang, Y., Feng, L. & Wang, S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv. Funct. Mater. 29, 1806818 (2019).
García-Fernández, L. et al. Dual photosensitive polymers with wavelength-selective photoresponse. Adv. Mater. 26, 5012–5017 (2014).
Kaupp, M. et al. Wavelength selective polymer network formation of end-functional star polymers. Chem. Commun. 52, 1975–1978 (2016).
Zhang, X., Xi, W., Huang, S., Long, K. & Bowman, C. N. Wavelength-selective sequential polymer network formation controlled with a two-color responsive initiation system. Macromolecules 50, 5652–5660 (2017).
Blasco, E., Wegener, M. & Barner-Kowollik, C. Photochemically driven polymeric network formation: synthesis and applications. Adv. Mater. 29, 1604005 (2017).
Tsai, I. Y., Crosby, A. J. & Russell, T. P. in Methods in Cell Biology Vol. 83 Ch. 4 (eds Wang, Y.-L. & Discher, D. E.) 67–87 (Elsevier, 2007).
Leijten, J. et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R Rep. 119, 1–35 (2017).
Heinz, O., Aghajani, M., Greenberg, A. R. & Ding, Y. Surface-patterning of polymeric membranes: fabrication and performance. Curr. Opin. Chem. Eng. 20, 1–12 (2018).
Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. & Berkland, C. J. Practical considerations, challenges, and limitations of bioconjugation via azide–alkyne cycloaddition. Bioconjug. Chem. 29, 686–701 (2018).
Jiao, M. et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater. Sci. 6, 726–745 (2018).
Valcourt, D. M. et al. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 11, 4999–5016 (2018).
Sivaram, A. J., Wardiana, A., Howard, C. B., Mahler, S. M. & Thurecht, K. J. Recent advances in the generation of antibody-nanomaterial conjugates. Adv. Healthc. Mater. 7, 1700607 (2018).
Sanchis, A., Salvador, J.-P. & Marco, M.-P. Light-induced mechanisms for nanocarrier’s cargo release. Colloids Surf. B Biointerfaces 173, 825–832 (2019).
Reeβing, F. & Szymanski, W. Following nanomedicine activation with magnetic resonance imaging: why, how, and what’s next? Curr. Opin. Biotechnol. 58, 9–18 (2019).
Jiang, Y., Chekuri, S., Fang, R. H. & Zhang, L. Engineering biological interactions on the nanoscale. Curr. Opin. Biotechnol. 58, 1–8 (2019).
Hossen, S. et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res. 15, 1–18 (2019).
Norris, M. D., Seidel, K. & Kirschning, A. Externally induced drug release systems with magnetic nanoparticle carriers: an emerging field in nanomedicine. Adv. Ther. 2, 1800092 (2019).
Gulfam, M., Sahle, F. F. & Lowe, T. L. Design strategies for chemical-stimuli-responsive programmable nanotherapeutics. Drug Discov. Today 24, 129–147 (2019).
McIlwaine, R., Kovacs, K., Scott, S. K. & Taylor, A. F. A novel route to pH oscillators. Chem. Phys. Lett. 417, 39–42 (2006).
Hu, G., Bounds, C., Pojman, J. A. & Taylor, A. F. Time-lapse thiol-acrylate polymerization using a pH clock reaction. J. Polym. Sci. Part Polym. Chem. 48, 2955–2959 (2010).
Kovacs, K., McIlwaine, R. E., Scott, S. K. & Taylor, A. F. An organic-based pH oscillator. J. Phys. Chem. A 111, 549–551 (2007).
Tóth-Szeles, E. et al. Chemically coded time-programmed self-assembly. Mol. Syst. Des. Eng. 2, 274–282 (2017).
Hu, G., Pojman, J. A., Scott, S. K., Wrobel, M. M. & Taylor, A. F. Base-catalyzed feedback in the urea−urease reaction. J. Phys. Chem. B 114, 14059–14063 (2010).
Muzika, F., Bánsági, T., Schreiber, I., Schreiberová, L. & Taylor, A. F. A bistable switch in pH in urease-loaded alginate beads. Chem. Commun. 50, 11107–11109 (2014).
Jee, E., Bánsági, T., Taylor, A. F. & Pojman, J. A. Temporal control of gelation and polymerization fronts driven by an autocatalytic enzyme reaction. Angew. Chem. Int. Ed. 55, 2127–2131 (2016).
Chatani, S., Sheridan, R. J., Podgórski, M., Nair, D. P. & Bowman, C. N. Temporal control of thiol-click chemistry. Chem. Mater. 25, 3897–3901 (2013).
Arnold, R. M. & Locklin, J. Self-sorting click reactions that generate spatially controlled chemical functionality on surfaces. Langmuir 29, 5920–5926 (2013).
Arnold, R. M., McNitt, C. D., Popik, V. V. & Locklin, J. Direct grafting of poly(pentafluorophenyl acrylate) onto oxides: versatile substrates for reactive microcapillary printing and self-sorting modification. Chem. Commun. 50, 5307–5309 (2014).
Arnold, R. M., Patton, D. L., Popik, V. V. & Locklin, J. A dynamic duo: pairing click chemistry and postpolymerization modification to design complex surfaces. Acc. Chem. Res. 47, 2999–3008 (2014).
Brooks, K. et al. Multifunctional surface manipulation using orthogonal click chemistry. Langmuir 32, 6600–6605 (2016).
Yu, H., Li, J., Wu, D., Qiu, Z. & Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39, 464–473 (2010).
Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).
Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 (2014).
Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).
Glusac, K. What has light ever done for chemistry? Nat. Chem. 8, 734–735 (2016).
Tasdelen, M. A. & Yagci, Y. Light-induced click reactions. Angew. Chem. Int. Ed. 52, 5930–5938 (2013).
Ramil, C. P. & Lin, Q. Bioorthogonal chemistry: strategies and recent developments. Chem. Commun. 49, 11007–11022 (2013).
Herner, A. & Lin, Q. Photo-triggered click chemistry for biological applications. Top. Curr. Chem. 374, 1 (2016).
Madl, C. M. & Heilshorn, S. C. Bioorthogonal strategies for engineering extracellular matrices. Adv. Funct. Mater. 28, 1706046 (2018).
Qin, L.-H., Hu, W. & Long, Y.-Q. Bioorthogonal chemistry: optimization and application updates during 2013–2017. Tetrahedron Lett. 59, 2214–2228 (2018).
Ji, X. et al. Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 48, 1077–1094 (2019).
Bach, T. & Hehn, J. P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. 50, 1000–1045 (2011).
Kaur, G., Johnston, P. & Saito, K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polym. Chem. 5, 2171–2186 (2014).
Vidavsky, Y. & Lemcoff, N. G. Light-induced olefin metathesis. Beilstein J. Org. Chem. 6, 1106–1119 (2010).
Eivgi, O. & Lemcoff, N. Turning the light on: recent developments in photoinduced olefin metathesis. Synthesis 50, 49–63 (2018).
Poloukhtine, A. A., Mbua, N. E., Wolfert, M. A., Boons, G.-J. & Popik, V. V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc. 131, 15769–15776 (2009).
Nainar, S. et al. Temporal labeling of nascent rna using photoclick chemistry in live cells. J. Am. Chem. Soc. 139, 8090–8093 (2017).
Orski, S. V. et al. High density orthogonal surface immobilization via photoactivated copper-free click chemistry. J. Am. Chem. Soc. 132, 11024–11026 (2010).
Weissleder, R. A clearer vision for in vivo imaging.pdf. Nat. Biotechnol. 19, 316–317 (2001).
Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).
Urdabayev, N. K., Poloukhtine, A. & Popik, V. V. Two-photon induced photodecarbonylation reaction of cyclopropenones. Chem. Commun. 2006, 454–456 (2006).
McNitt, C. D., Cheng, H., Ullrich, S., Popik, V. V. & Bjerknes, M. Multiphoton activation of photo-strain-promoted azide alkyne cycloaddition “click” reagents enables in situ labeling with submicrometer resolution. J. Am. Chem. Soc. 139, 14029–14032 (2017).
Pauloehrl, T. et al. Adding spatial control to click chemistry: phototriggered Diels–Alder surface (bio)functionalization at ambient temperature. Angew. Chem. Int. Ed. 51, 1071–1074 (2011).
Krappitz, T. et al. Polymer networks based on photo-caged diene dimerization. Mater. Horiz. 6, 81–89 (2019).
Claus, T. K. et al. Simultaneous dual encoding of three-dimensional structures by light-induced modular ligation. Angew. Chem. Int. Ed. 55, 3817–3822 (2016).
Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Adv. Mater. 29, 1604342 (2017).
Hiltebrandt, K., Elies, K., D’hooge, D. R., Blinco, J. P. & Barner-Kowollik, C. A light-activated reaction manifold. J. Am. Chem. Soc. 138, 7048–7054 (2016).
Houck, H. A., Du Prez, F. E. & Barner-Kowollik, C. Controlling thermal reactivity with different colors of light. Nat. Commun. 8, 1869 (2017).
Feng, W. et al. UV-induced tetrazole–thiol reaction for polymer conjugation and surface functionalization. Angew. Chem. Int. Ed. 54, 8732–8735 (2015).
Arumugam, S. & Popik, V. V. Patterned surface derivatization using Diels–Alder photoclick reaction. J. Am. Chem. Soc. 133, 15730–15736 (2011).
Gungor, E. & Armani, A. M. Photocleavage of covalently immobilized amphiphilic block copolymer: from bilayer to monolayer. Macromolecules 49, 5773–5781 (2016).
Arumugam, S. & Popik, V. V. Attach, remove, or replace: reversible surface functionalization using thiol–quinone methide photoclick chemistry. J. Am. Chem. Soc. 134, 8408–8411 (2012).
Adzima, B. J. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem. 3, 256–259 (2011).
Alzahrani, A. A., Erbse, A. H. & Bowman, C. N. Evaluation and development of novel photoinitiator complexes for photoinitiating the copper-catalyzed azide–alkyne cycloaddition reaction. Polym. Chem. 5, 1874–1882 (2014).
Hardy, M. D., Konetski, D., Bowman, C. N. & Devaraj, N. K. Ruthenium photoredox-triggered phospholipid membrane formation. Org. Biomol. Chem. 14, 5555–5558 (2016).
Konetski, D., Gong, T. & Bowman, C. N. Photoinduced vesicle formation via the copper-catalyzed azide–alkyne cycloaddition reaction. Langmuir 32, 8195–8201 (2016).
Chen, R. T. et al. Photoinitiated alkyne–azide click and radical cross-linking reactions for the patterning of peg hydrogels. Biomacromolecules 13, 889–895 (2012).
Frazier, C. P., Palmer, L. I., Samoshin, A. V. & Read de Alaniz, J. Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett. 56, 3353–3357 (2015).
Nguyen, J. D., Tucker, J. W., Konieczynska, M. D. & Stephenson, C. R. J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc. 133, 4160–4163 (2011).
Nair, D. P. et al. The thiol–Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).
DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).
Xi, W. et al. Spatial and temporal control of thiol-Michael addition via photocaged superbase in photopatterning and two-stage polymer networks formation. Macromolecules 47, 6159–6165 (2014).
Xu, R., Guan, X., He, M. & Yang, J. Phototriggered base proliferation: a powerful 365 nm LED photoclick tool for nucleophile-initiated thiol-Michael addition reaction. RSC Adv. 7, 914–918 (2017).
Arimitsu, K., Miyamoto, M. & Ichimura, K. Applications of a nonlinear organic reaction of carbamates to proliferate aliphatic amines. Angew. Chem. Int. Ed. 39, 3425–3428 (2000).
Zhang, X., Xi, W., Wang, C., Podgórski, M. & Bowman, C. N. Visible-light-initiated thiol–Michael addition polymerizations with coumarin-based photobase generators: another photoclick reaction strategy. ACS Macro Lett. 5, 229–233 (2016).
Liu, Z. et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol Michael addition reaction. Adv. Mater. 26, 3912–3917 (2014).
Yang, Y., Li, Y., Lin, Q., Bao, C. & Zhu, L. In situ phototriggered disulfide-cross-link nanoparticles for drug delivery. ACS Macro Lett. 5, 301–305 (2016).
Liu, Z., Liu, T., Lin, Q., Bao, C. & Zhu, L. Sequential control over thiol click chemistry by a reversibly photoactivated thiol mechanism of spirothiopyran. Angew. Chem. Int. Ed. 54, 174–178 (2014).
Ramil, C. P. et al. Spirohexene–tetrazine ligation enables bioorthogonal labeling of class B G protein-coupled receptors in live cells. J. Am. Chem. Soc. 139, 13376–13386 (2017).
Kumar, P., Jiang, T., Li, S., Zainul, O. & Laughlin, S. T. Caged cyclopropenes for controlling bioorthogonal reactivity. Org. Biomol. Chem. 16, 4081–4085 (2018).
Shah, L., Laughlin, S. T. & Carrico, I. S. Light-activated Staudinger–Bertozzi ligation within living animals. J. Am. Chem. Soc. 138, 5186–5189 (2016).
Frisch, H., Marschner, D. E., Goldmann, A. S. & Barner-Kowollik, C. Wavelength-gated dynamic covalent chemistry. Angew. Chem. Int. Ed. 57, 2036–2045 (2018).
Doi, T., Kawai, H., Murayama, K., Kashida, H. & Asanuma, H. Visible-light-triggered cross-linking of DNA duplexes by reversible [2 + 2] photocycloaddition of styrylpyrene. Chem. Eur. J. 22, 10533–10538 (2016).
Marschner, D. E. et al. Visible light [2 + 2] cycloadditions for reversible polymer ligation. Macromolecules 51, 3802–3807 (2018).
Truong, V. X., Li, F., Ercole, F. & Forsythe, J. S. Wavelength-selective coupling and decoupling of polymer chains via reversible [2 + 2] photocycloaddition of styrylpyrene for construction of cytocompatible photodynamic hydrogels. ACS Macro Lett. 7, 464–469 (2018).
Teator, A. J. & Bielawski, C. W. Remote control Grubbs catalysts that modulate ring-opening metathesis polymerizations. J. Polym. Sci. Part Polym. Chem. 55, 2949–2960 (2017).
Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).
Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).
Teator, A. J., Shao, H., Lu, G., Liu, P. & Bielawski, C. W. A photoswitchable olefin metathesis catalyst. Organometallics 36, 490–497 (2017).
Kalinin, Y. V., Murali, A. & Gracias, D. H. Chemistry with spatial control using particles and streams. RSC Adv. 2, 9707–9726 (2012).
Leong, T., Gu, Z., Koh, T. & Gracias, D. H. Spatially controlled chemistry using remotely guided nanoliter scale containers. J. Am. Chem. Soc. 128, 11336–11337 (2006).
Ye, H. et al. Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates. Angew. Chem. Int. Ed. 46, 4991–4994 (2007).
Park, J. R. et al. Reconfigurable microfluidics with metallic containers. J. Microelectromechan. Syst. 17, 265–271 (2008).
Kalinin, Y. V., Randhawa, J. S. & Gracias, D. H. Three-dimensional chemical patterns for cellular self-organization. Angew. Chem. Int. Ed. 50, 2549–2553 (2007).
Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).
Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).
Sahandi Zangabad, P. et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. opening synthetic cages to release the tiger. Nanoscale 9, 1356–1392 (2017).
Wang, F., Zhang, Y., Du, Z., Ren, J. & Qu, X. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 9, 1209 (2018).
Wang, D., Zhao, W., Wei, Q., Zhao, C. & Zheng, Y. Photoswitchable azobenzene/cyclodextrin host–guest complexes: from UV- to visible/near-IR-light-responsive systems. Chem. Photo. Chem. 2, 403–415 (2018).
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. Droplet microfluidics. Lab. Chip 8, 198–220 (2008).
Gu, H., Duits, M. H. G. & Mugele, F. Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12, 2572–2597 (2011).
Mashaghi, S., Abbaspourrad, A., Weitz, D. A. & van Oijen, A. M. Droplet microfluidics: a tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 82, 118–125 (2016).
Thakur, R., Zhang, Y., Amin, A. & Wereley, S. Programmable microfluidic platform for spatiotemporal control over nanoliter droplets. Microfluid. Nanofluidics 18, 1425–1431 (2015).
Tan, W.-H. & Takeuchi, S. Timing controllable electrofusion device for aqueous droplet-based microreactors. Lab. Chip 6, 757–763 (2006).
Yasuga, H. et al. Serial DNA relay in DNA logic gates by electrical fusion and mechanical splitting of droplets. PLOS ONE 12, e0180876 (2017).
Bezagu, M. et al. High spatiotemporal control of spontaneous reactions using ultrasound-triggered composite droplets. J. Am. Chem. Soc. 136, 7205–7208 (2014).
Couture, O. et al. Ultrasound internal tattooing. Med. Phys. 38, 1116–1123 (2011).
Bezagu, M. et al. In situ targeted activation of an anticancer agent using ultrasound-triggered release of composite droplets. Eur. J. Med. Chem. 142, 2–7 (2017).
Chan, T. G., Morse, S. V., Copping, M. J., Choi, J. J. & Vilar, R. Targeted delivery of DNA–Au nanoparticles across the blood–brain barrier using focused ultrasound. Chem. Med. Chem. 13, 1311–1314 (2018).
Rabe, K. S., Müller, J., Skoupi, M. & Niemeyer, C. M. Cascades in compartments: en route to machine-assisted biotechnology. Angew. Chem. Int. Ed. 56, 13574–13589 (2017).
Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42, 512–529 (2013).
Rifaie-Graham, O. et al. Wavelength-selective light-responsive DASA-functionalized polymersome nanoreactors. J. Am. Chem. Soc. 140, 8027–8036 (2018).
Grant, J., Modica, J. A., Roll, J., Perkovich, P. & Mrksich, M. An immobilized enzyme reactor for spatiotemporal control over reaction products. Small 14, 1800923 (2018).
Gupta, M. K. et al. 3D printed programmable release capsules. Nano Lett. 15, 5321–5329 (2015).
Huang, T.-Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27, 6644–6650 (2015).
Miyako, E., Chechetka, S. A., Doi, M., Yuba, E. & Kono, K. In vivo remote control of reactions in Caenorhabditis elegans by using supramolecular nanohybrids of carbon nanotubes and liposomes. Angew. Chem. Int. Ed. 54, 9903–9906 (2015).
Miyako, E. et al. Carbon nanotube–liposome supramolecular nanotrains for intelligent molecular-transport systems. Nat. Commun. 3, 1226 (2012).
Miyako, E. et al. A photo-thermal-electrical converter based on carbon nanotubes for bioelectronic applications. Angew. Chem. Int. Ed. 50, 12266–12270 (2011).
Chechetka, S. A. et al. Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew. Chem. Int. Ed. 55, 6476–6481 (2016).
Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).
Mohamed, S. M., Veeranarayanan, S., Maekawa, T. & Kumar, S. D. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv. Drug Deliv. Rev. 138, 18–40 (2019).
Chechetka, S. A. et al. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 8, 15432 (2017).
Yu, Y. et al. Self-assembled nanodiamond supraparticles for anticancer chemotherapy. Nanoscale 10, 8969–8978 (2018).
Barner-Kowollik, C. et al. 3D laser micro- and nanoprinting: challenges for chemistry. Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
Hippler, M. et al. 3D scaffolds to study basic cell biology. Adv. Mater. 31, 1808110 (2019).
Melissinaki, V. et al. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3, 045005 (2011).
Gregor, A. et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng. 11, 31 (2017).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Bialas, S. et al. Access to disparate soft matter materials by curing with two colors of light. Adv. Mater. 31, 1807288 (2019).
Frisch, H., Bloesser, F. R. & Barner-Kowollik, C. Controlling chain coupling and single-chain ligation by two colours of visible light. Angew. Chem. Int. Ed. 58, 3604–3609 (2019).
Menzel, J. P. et al. Light-controlled orthogonal covalent bond formation at two different wavelengths. Angew. Chem. Int. Ed. 58, 7470–7474 (2019).
Qin, X.-H., Wang, X., Rottmar, M., Nelson, B. J. & Maniura-Weber, K. Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments. Adv. Mater. 30, 1705564 (2018).
Gernhardt, M. et al. Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 31, e1901269 (2019).
Acknowledgements
The authors thank Queen Mary University of London and L’Oréal Unesco for Women in Science for funding.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the preparation of this article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aubert, S., Bezagu, M., Spivey, A.C. et al. Spatial and temporal control of chemical processes. Nat Rev Chem 3, 706–722 (2019). https://doi.org/10.1038/s41570-019-0139-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-019-0139-6