Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Monitoring chemical reactions in liquid media using electron microscopy

This article has been updated

Abstract

Developments in chemistry, materials science and biology have been fuelled by our search for structure–property relationships in matter at different levels of organization. Transformations in chemical synthesis and living systems predominantly take place in solution, such that many efforts have focused on studying nanoscale systems in the liquid phase. These studies have largely relied on spectroscopic data, the assignment of which can often be ambiguous. By contrast, electron microscopy can be used to directly visualize chemical systems and processes with up to atomic resolution. Electron microscopy is most amenable to studying solid samples and, until recently, to study a liquid phase, one had to remove solvent and lose important structural information. Over the past decade, however, liquid-phase electron microscopy has revolutionized direct mechanistic studies of reactions in liquid media. Scanning electron microscopy and (scanning) transmission electron microscopy of liquid samples have enabled breakthroughs in nanoparticle chemistry, soft-matter science, catalysis, electrochemistry, battery research and biochemistry. In this Review, we discuss the utility of liquid-phase electron microscopy for studying chemical reaction mechanisms in liquid systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Reactions can be effected using different stimuli and monitored using different electron microscopes and sample holders.
Fig. 3: Electron micrographs help one follow the progress of metal-containing particle synthesis and reactivity in solution.
Fig. 4: Liquid-phase electron microscopy can be used to observe electrochemical processes in systems related to Li-ion batteries.
Fig. 5: Electron micrographs reveal the dynamics in soft-material solutions.

Change history

  • 14 November 2019

    This article has been corrected to change image credits given for Figures 3, 4 and 5. The credit line of Fig. 3 now reads “Part a is adapted with permission from ref.67, AAAS. Part b is adapted with permission from ref.77, ACS. Part c is adapted from ref.102, CC-BY-4.0. Part d is adapted with permission from ref.107, Elsevier. Part e is adapted from ref.111, CC-BY-4.0.” The credit line of Fig. 4 now reads “Part a is adapted with permission from ref.135, ACS. Part b is adapted with permission from ref.137, Elsevier. Part c is adapted with permission from ref.148, AAAS. Part d is adapted with permission from ref.151, OUP.” The credit line of Fig. 5 now reads ”Part a is adapted with permission from ref.153, ACS. Part b is adapted with permission from ref.164, Wiley-VCH. Part c is adapted with permission from ref.165, ACS.

References

  1. 1.

    Gauglitz, G. & Moore, D. S. (eds.) Handbook of Spectroscopy: Second, Enlarged Edition (Wiley-VCH, 2014).

  2. 2.

    Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry 3rd edn (Elsevier, 2016).

  3. 3.

    Lindon, J., Tranter, G. E. & Koppenaal, D. (eds.) Encyclopedia of Spectroscopy and Spectrometry 3rd edn (Academic Press, 2016).

  4. 4.

    Akitt, J. W. & Mann, B. E. NMR and Chemistry: An Introduction to Modern NMR Spectroscopy 4th edn (CRC Press, 2000).

  5. 5.

    Pienack, N. & Bensch, W. In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 50, 2014–2034 (2011).

    Article  CAS  Google Scholar 

  6. 6.

    Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012).

    Article  CAS  Google Scholar 

  7. 7.

    Hansen, T. C. & Kohlmann, H. Chemical reactions followed by in situ neutron powder diffraction. Z. Anorg. Allg. Chem. 640, 3044–3063 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Hodoroaba, V.-D., Rades, S. & Unger, W. E. S. Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode. Surf. Interface Anal. 46, 945–948 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Rades, S. et al. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Adv. 4, 49577–49587 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stach, E. A. Real-time observations with electron microscopy. Mater. Today 11, 50–58 (2008).

    Article  Google Scholar 

  12. 12.

    de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

    Article  CAS  Google Scholar 

  13. 13.

    Chen, X., Li, C. & Cao, H. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 7, 4811–4819 (2015).

    Article  CAS  Google Scholar 

  14. 14.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    Article  CAS  Google Scholar 

  15. 15.

    Wang, C.-M., Liao, H.-G. & Ross, F. M. Observation of materials processes in liquids by electron microscopy. MRS Bull. 40, 46–52 (2015).

    Article  Google Scholar 

  16. 16.

    Bañares, M. A. Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71–77 (2005).

    Article  CAS  Google Scholar 

  17. 17.

    Guerrero-Pérez, M. O. & Bañares, M. A. From conventional in situ to operando studies in Raman spectroscopy. Catal. Today 113, 48–57 (2006).

    Article  CAS  Google Scholar 

  18. 18.

    Weker, J. N. & Toney, M. F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials. Adv. Funct. Mater. 25, 1622–1637 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    Botos, A. et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 138, 8175–8183 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Miners, S. A., Rance, G. A. & Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 45, 4727–4746 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    Skowron, S. T. et al. Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy. Acc. Chem. Res. 50, 1797–1807 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotechnol. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    Samanta, D. et al. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat. Commun. 9, 641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Großmann, D., Dreier, A., Lehmann, C. W. & Grünert, W. Encapsulation of copper and zinc oxide nanoparticles inside small diameter carbon nanotubes. Microporous Mesoporous Mater. 202, 189–197 (2015).

    Article  CAS  Google Scholar 

  25. 25.

    Crozier, P. A. & Chenna, S. In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy 111, 177–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Miller, B. K. & Crozier, P. A. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy. Microsc. Microanal. 20, 815–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Colby, R., Alsem, D. H., Liyu, A. & Kabius, B. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope. Ultramicroscopy 153, 55–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Katsukura, H., Miyata, T., Shirai, M., Matsumoto, H. & Mizoguchi, T. Estimation of the molecular vibration of gases using electron microscopy. Sci. Rep. 7, 16434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kuwabata, S., Kongkanand, A., Oyamatsu, D. & Torimoto, T. Observation of ionic liquid by scanning electron microscope. Chem. Lett. 35, 600–601 (2006).

    Article  CAS  Google Scholar 

  30. 30.

    Plechkova, N. V. & Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008).

    Article  CAS  Google Scholar 

  31. 31.

    Patel, D. D. & Lee, J.-M. Applications of ionic liquids. Chem. Rec. 12, 329–355 (2012).

    Article  CAS  Google Scholar 

  32. 32.

    Azov, V. A., Egorova, K. S., Seitkalieva, M. M., Kashin, A. S. & Ananikov, V. P. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem. Soc. Rev. 47, 1250–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Stokes, D. J. Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Philos. Trans. R. Soc. A 361, 2771–2787 (2003).

    Article  CAS  Google Scholar 

  34. 34.

    Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 38, 390–401 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kirk, S. E., Skepper, J. N. & Donald, A. M. Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233, 205–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gai, P. L., Sharma, R. & Ross, F. M. Environmental (S)TEM studies of gas–liquid–solid interactions under reaction conditions. MRS Bull. 33, 107–114 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    Tao, F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yang, J. C., Small, M. W., Grieshaber, R. V. & Nuzzo, R. G. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem. Soc. Rev. 41, 8179–8194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Grunwaldt, J.-D., Wagner, J. B. & Dunin-Borkowski, R. E. Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 62–80 (2013).

    Article  CAS  Google Scholar 

  40. 40.

    Hansen, T. W. & Wagner, J. B. Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673–1685 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    Su, D. S., Zhang, B. & Schlögl, R. Electron microscopy of solid catalysts — transforming from a challenge to a toolbox. Chem. Rev. 115, 2818–2882 (2015).

    Article  CAS  Google Scholar 

  42. 42.

    Tao, F. & Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 3487–3539 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Dou, J. et al. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 46, 2001–2027 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Jiang, Y. et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 11, 42–67 (2018).

    Article  Google Scholar 

  45. 45.

    Abrams, I. M. & McBain, J. W. A closed cell for electron microscopy. J. Appl. Phys. 15, 607–609 (1944).

    Article  CAS  Google Scholar 

  46. 46.

    Fullam, E. F. A closed wet cell for the electron microscope. Rev. Sci. Instrum. 43, 245–247 (1972).

    Article  CAS  Google Scholar 

  47. 47.

    Woehl, T. J. et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53–63 (2013).

    Article  CAS  Google Scholar 

  48. 48.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. & Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).

    Article  CAS  Google Scholar 

  50. 50.

    de Jonge, N., Houben, L., Dunin-Borkowski, R. E. & Ross, F. M. Resolution and aberration correction in liquid cell transmission electron microscopy. Nat. Rev. Mater. 4, 61–78 (2019).

    Article  Google Scholar 

  51. 51.

    Naguib, N. et al. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4, 2237–2243 (2004).

    Article  CAS  Google Scholar 

  52. 52.

    Rossi, M. P. et al. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4, 989–993 (2004).

    Article  CAS  Google Scholar 

  53. 53.

    Mirsaidov, U. et al. Scrolling graphene into nanofluidic channels. Lab Chip 13, 2874–2878 (2013).

    Article  CAS  Google Scholar 

  54. 54.

    Bhattacharya, D., Bosman, M., Mokkapati, V. R. S. S., Leong, F. Y. & Mirsaidov, U. Nucleation dynamics of water nanodroplets. Microsc. Microanal. 20, 407–415 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    Nishijima, K., Yamasaki, J., Orihara, H. & Tanaka, N. Development of microcapsules for electron microscopy and their application to dynamical observation of liquid crystals in transmission electron microscopy. Nanotechnology 15, S329–S332 (2004).

    Article  CAS  Google Scholar 

  56. 56.

    Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sasaki, Y., Kitaura, R., Yuk, J. M., Zettl, A. & Shinohara, H. Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene. Chem. Phys. Lett. 650, 107–112 (2016).

    Article  CAS  Google Scholar 

  58. 58.

    Textor, M. & de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 18, 3313–3321 (2018).

    Article  CAS  Google Scholar 

  59. 59.

    Rasool, H., Dunn, G., Fathalizadeh, A. & Zettl, A. Graphene-sealed Si/SiN cavities for high-resolution in situ electron microscopy of nano-confined solutions. Phys. Status Solidi 253, 2351–2354 (2016).

    Article  CAS  Google Scholar 

  60. 60.

    Wadell, C. et al. Nanocuvette: a functional ultrathin liquid container for transmission electron microscopy. ACS Nano 11, 1264–1272 (2017).

    Article  CAS  Google Scholar 

  61. 61.

    Kelly, D. J. et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett. 18, 1168–1174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Thiberge, S., Zik, O. & Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum. 75, 2280–2289 (2004).

    Article  CAS  Google Scholar 

  63. 63.

    Grogan, J. M. & Bau, H. H. The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19, 885–894 (2010).

    Article  CAS  Google Scholar 

  64. 64.

    Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622–629 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    Dwyer, J. R. & Harb, M. Through a window, brightly: a review of selected nanofabricated thin-film platforms for spectroscopy, imaging, and detection. Appl. Spectrosc. 71, 2051–2075 (2017).

    Article  CAS  Google Scholar 

  66. 66.

    Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

    Article  CAS  Google Scholar 

  67. 67.

    Liao, H. G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

    Article  CAS  Google Scholar 

  68. 68.

    Ievlev, A. V. et al. Quantitative description of crystal nucleation and growth from in situ liquid scanning transmission electron microscopy. ACS Nano 9, 11784–11791 (2015).

    Article  CAS  Google Scholar 

  69. 69.

    Jeong, M., Yuk, J. M. & Lee, J. Y. Observation of surface atoms during platinum nanocrystal growth by monomer attachment. Chem. Mater. 27, 3200–3202 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Kolmakova, N. & Kolmakov, A. Scanning electron microscopy for in situ monitoring of semiconductor−liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C 114, 17233–17237 (2010).

    Article  CAS  Google Scholar 

  71. 71.

    Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. & Browning, N. D. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ahn, T.-Y., Hong, S.-P., Kim, S.-I. & Kim, Y.-W. In situ liquid-cell transmission electron microscopy for direct observation of concentration-dependent growth and dissolution of silver nanoparticles. RSC Adv. 5, 82342–82345 (2015).

    Article  CAS  Google Scholar 

  73. 73.

    Ge, M., Lu, M., Chu, Y. & Xin, H. Anomalous growth rate of Ag nanocrystals revealed by in situ STEM. Sci. Rep. 7, 16420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kraus, T. & de Jonge, N. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29, 8427–8432 (2013).

    Article  CAS  Google Scholar 

  75. 75.

    Chen, Y.-T. et al. Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv. 4, 31652–31656 (2014).

    Article  CAS  Google Scholar 

  76. 76.

    Lu, Y., Wang, K., Chen, F.-R., Zhang, W. & Sui, M. L. Extracting nano-gold from HAuCl4 solution manipulated with electrons. Phys. Chem. Chem. Phys. 18, 30079–30085 (2016).

    Article  CAS  Google Scholar 

  77. 77.

    Zhang, Y., Keller, D., Rossell, M. D. & Erni, R. Formation of Au nanoparticles in liquid cell transmission electron microscopy: from a systematic study to engineered nanostructures. Chem. Mater. 29, 10518–10525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ahmad, N., Le Bouar, Y., Ricolleau, C. & Alloyeau, D. Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history. Adv. Struct. Chem. Imag. 2, 9 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    Zhu, C. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 9, 421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Zhu, G. et al. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 50, 9447–9450 (2014).

    Article  CAS  Google Scholar 

  81. 81.

    Abellan, P. et al. Gaining control over radiolytic synthesis of uniform sub-3-nanometer palladium nanoparticles: use of aromatic liquids in the electron microscope. Langmuir 32, 1468–1477 (2016).

    Article  CAS  Google Scholar 

  82. 82.

    Xin, H. L. & Zheng, H. In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12, 1470–1474 (2012).

    Article  CAS  Google Scholar 

  83. 83.

    Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    Article  CAS  Google Scholar 

  84. 84.

    Liao, H. G. & Zheng, H. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 135, 5038–5043 (2013).

    Article  CAS  Google Scholar 

  85. 85.

    Bian, B. et al. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x<5)-oleylamine and platinum(II) acetylacetonate. Nanoscale 5, 2454–2459 (2013).

    Article  CAS  Google Scholar 

  86. 86.

    Bresin, M. et al. Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem. Int. Ed. 52, 8004–8007 (2013).

    Article  CAS  Google Scholar 

  87. 87.

    De Clercq, A. et al. Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett. 5, 2126–2130 (2014).

    Article  CAS  Google Scholar 

  88. 88.

    Konuspayeva, Z. et al. Monitoring in situ the colloidal synthesis of AuRh/TiO2 selective-hydrogenation nanocatalysts. J. Mater. Chem. A 5, 17360–17367 (2017).

    Article  CAS  Google Scholar 

  89. 89.

    Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. & Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett. 13, 2964–2970 (2013).

    Article  CAS  Google Scholar 

  90. 90.

    Weiner, R. G., Chen, D. P., Unocic, R. R. & Skrabalak, S. E. Impact of membrane-induced particle immobilization on seeded growth monitored by in situ liquid scanning transmission electron microscopy. Small 12, 2701–2706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Tan, S. F. et al. Real-time imaging of the formation of Au–Ag core–shell nanoparticles. J. Am. Chem. Soc. 138, 5190–5193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Wu, J. et al. Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett. 15, 2711–2715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Liu, Y., Tai, K. & Dillon, S. J. Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater. 25, 2927–2933 (2013).

    Article  CAS  Google Scholar 

  94. 94.

    Niu, K.-Y., Park, J., Zheng, H. & Alivisatos, A. P. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715–5719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    van de Put, M. W. P. et al. Writing silica structures in liquid with scanning transmission electron microscopy. Small 11, 585–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bresin, M., Nadimpally, B. R., Nehru, N., Singh, V. P. & Hastings, J. T. Site-specific growth of CdS nanostructures. Nanotechnology 24, 505305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. & De Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 14, 394–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Abellan, P. et al. The formation of cerium(III) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Adv. 7, 3831–3837 (2017).

    Article  CAS  Google Scholar 

  100. 100.

    Patterson, J. P. et al. Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

    Article  CAS  Google Scholar 

  101. 101.

    Sutter, E. et al. In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 5, 4946 (2014).

    Article  CAS  Google Scholar 

  102. 102.

    Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Wang, W., Dahl, M. & Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 25, 1179–1189 (2013).

    Article  CAS  Google Scholar 

  104. 104.

    Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  105. 105.

    Hermannsdörfer, J., de Jonge, N. & Verch, A. Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Commun. 51, 16393–16396 (2015).

    Article  Google Scholar 

  106. 106.

    Ye, X. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 354, 874–877 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    Jiang, Y. et al. Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy. Micron 97, 22–28 (2017).

    Article  CAS  Google Scholar 

  108. 108.

    Shan, H. et al. Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. Nat. Commun. 9, 1011 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Zecˇevic´, J., Hermannsdörfer, J., Schuh, T., de Jong, K. P. & de Jonge, N. Anisotropic shape changes of silica nanoparticles induced in liquid with scanning transmission electron microscopy. Small 13, 1602466 (2017).

    Article  CAS  Google Scholar 

  110. 110.

    Asghar, M. S. A., Inkson, B. J. & Möbus, G. Giant radiolytic dissolution rates of aqueous ceria observed in situ by liquid-cell TEM. ChemPhysChem 18, 1247–1251 (2017).

    Article  CAS  Google Scholar 

  111. 111.

    Kashin, A. S., Degtyareva, E. S., Eremin, D. B. & Ananikov, V. P. Exploring the performance of nanostructured reagents with organic-group-defined morphology in cross-coupling reaction. Nat. Commun. 9, 2936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Degtyareva, E. S., Erokhin, K. S., Kashin, A. S. & Ananikov, V. P. Switchable Ni-catalyzed bis-thiolation of acetylene with aryl disulfides as an access to functionalized alkenes and 1,3-dienes. Appl. Catal. A Gen. 571, 170–179 (2019).

    Article  CAS  Google Scholar 

  113. 113.

    Ananikov, V. P. & Beletskaya, I. P. Preparation of metal “nanosalts” and their application in catalysis: heterogeneous and homogeneous pathways. Dalton Trans. 40, 4011–4023 (2011).

    Article  CAS  Google Scholar 

  114. 114.

    Imanishi, A., Tamura, M. & Kuwabata, S. Formation of Au nanoparticles in an ionic liquid by electron beam irradiation. Chem. Commun. 1775–1777 (2009).

    Article  CAS  Google Scholar 

  115. 115.

    Uematsu, T. et al. Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. J. Am. Chem. Soc. 136, 13789–13797 (2014).

    Article  CAS  Google Scholar 

  116. 116.

    Yoshida, K., Nozaki, T., Hirayama, T. & Tanaka, N. In situ high-resolution transmission electron microscopy of photocatalytic reactions by excited electrons in ionic liquid. J. Electron Microsc. 56, 177–180 (2007).

    Article  Google Scholar 

  117. 117.

    Ishioka, J. et al. In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope. AIP Adv. 7, 035220 (2017).

    Article  CAS  Google Scholar 

  118. 118.

    Park, J. et al. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6, 2078–2085 (2012).

    Article  CAS  Google Scholar 

  119. 119.

    Zhu, G. et al. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 49, 10944–10946 (2013).

    Article  CAS  Google Scholar 

  120. 120.

    Lin, G. et al. Nanodroplet-mediated assembly of platinum nanoparticle rings in solution. Nano Lett. 16, 1092–1096 (2016).

    Article  CAS  Google Scholar 

  121. 121.

    Kim, P. Y., Ribbe, A. E., Russell, T. P. & Hoagland, D. A. Visualizing the dynamics of nanoparticles in liquids by scanning electron microscopy. ACS Nano 10, 6257–6264 (2016).

    Article  CAS  Google Scholar 

  122. 122.

    Tan, S. F., Chee, S. W., Lin, G. & Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 50, 1303–1312 (2017).

    Article  CAS  Google Scholar 

  123. 123.

    Miele, E., Raj, S., Baraissov, Z., Král, P. & Mirsaidov, U. Dynamics of templated assembly of nanoparticle filaments within nanochannels. Adv. Mater. 29, 1702682 (2017).

    Article  CAS  Google Scholar 

  124. 124.

    Powers, A. S. et al. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 17, 15–20 (2017).

    Article  CAS  Google Scholar 

  125. 125.

    Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).

    Article  CAS  Google Scholar 

  126. 126.

    Radisic, A., Ross, F. M. & Searson, P. C. In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862–7868 (2006).

    Article  CAS  Google Scholar 

  127. 127.

    Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. & Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238–242 (2006).

    Article  CAS  Google Scholar 

  128. 128.

    Radisic, A., Vereecken, P. M., Searson, P. C. & Ross, F. M. The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci. 600, 1817–1826 (2006).

    Article  CAS  Google Scholar 

  129. 129.

    Schneider, N. M. et al. Nanoscale evolution of interface morphology during electrodeposition. Nat. Commun. 8, 2174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Park, J. H. et al. Control of growth front evolution by Bi additives during ZnAu electrodeposition. Nano Lett. 18, 1093–1098 (2018).

    Article  CAS  Google Scholar 

  132. 132.

    Gu, M. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106–6112 (2013).

    Article  CAS  Google Scholar 

  133. 133.

    Sacci, R. L. et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014).

    Article  CAS  Google Scholar 

  134. 134.

    Zeng, Z. et al. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014).

    Article  CAS  Google Scholar 

  135. 135.

    Mehdi, B. L. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).

    Article  CAS  Google Scholar 

  136. 136.

    Mehdi, B. L. et al. The impact of Li grain size on Coulombic efficiency in Li batteries. Sci. Rep. 6, 34267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017).

    Article  CAS  Google Scholar 

  138. 138.

    Kushima, A. et al. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li–oxygen battery. Nano Lett. 15, 8260–8265 (2015).

    CAS  Google Scholar 

  139. 139.

    Yang, C. et al. Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li–O2 microbattery by scanning transmission electron microscopy. Adv. Mater. 29, 1702752 (2017).

    Article  CAS  Google Scholar 

  140. 140.

    Liu, P. et al. Operando characterization of cathodic reactions in a liquid-state lithium–oxygen micro-battery by scanning transmission electron microscopy. Sci. Rep. 8, 3134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Hou, C. et al. Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy 47, 427–433 (2018).

    Article  CAS  Google Scholar 

  142. 142.

    Lutz, L. et al. Operando monitoring of the solution-mediated discharge and charge processes in a Na–O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 18, 1280–1289 (2018).

    Article  CAS  Google Scholar 

  143. 143.

    Kuwabata, S., Torimoto, T., Imanishi, A. & Tsuda, T. Introduction of ionic liquid to vacuum conditions for development of material productions and analyses. Electrochem. 80, 498–503 (2012).

    Article  CAS  Google Scholar 

  144. 144.

    Arimoto, S., Oyamatsu, D., Torimoto, T. & Kuwabata, S. Development of in situ electrochemical scanning electron microscopy with ionic liquids as electrolytes. ChemPhysChem 9, 763–767 (2008).

    Article  CAS  Google Scholar 

  145. 145.

    Arimoto, S., Kageyama, H., Torimoto, T. & Kuwabata, S. Development of in situ scanning electron microscope system for real time observation of metal deposition from ionic liquid. Electrochem. Commun. 10, 1901–1904 (2008).

    Article  CAS  Google Scholar 

  146. 146.

    Hsieh, Y.-T., Tsuda, T. & Kuwabata, S. SEM as a facile tool for real-time monitoring of microcrystal growth during electrodeposition: the merit of ionic liquids. Anal. Chem. 89, 7249–7254 (2017).

    Article  CAS  Google Scholar 

  147. 147.

    Wang, C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010).

    Article  CAS  Google Scholar 

  148. 148.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Chen, D., Indris, S., Schulz, M., Gamer, B. & Mönig, R. In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J. Power Sources 196, 6382–6387 (2011).

    Article  CAS  Google Scholar 

  150. 150.

    Ghassemi, H., Au, M., Chen, N., Heiden, P. A. & Yassar, R. S. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery. Appl. Phys. Lett. 99, 123113 (2011).

    Article  CAS  Google Scholar 

  151. 151.

    Tsuda, T. et al. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy 64, 159–168 (2015).

    Article  CAS  Google Scholar 

  152. 152.

    Tsuda, T. et al. In situ electron microscopy and X-ray photoelectron spectroscopy for high capacity anodes in next-generation ionic liquid-based Li batteries. Electrochim. Acta 279, 136–142 (2018).

    Article  CAS  Google Scholar 

  153. 153.

    Proetto, M. T. et al. Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162–1165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Li, C. et al. Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation. Nanoscale 11, 2299–2305 (2019).

    Article  CAS  Google Scholar 

  155. 155.

    Ianiro, A. et al. Liquid–liquid phase separation during amphiphilic self-assembly. Nat. Chem. 11, 320–328 (2019).

    Article  CAS  Google Scholar 

  156. 156.

    Le Ferrand, H., Duchamp, M., Gabryelczyk, B., Cai, H. & Miserez, A. Time-resolved observations of liquid–liquid phase separation at the nanoscale using in situ liquid transmission electron microscopy. J. Am. Chem. Soc. 141, 7202–7210 (2019).

    Article  CAS  Google Scholar 

  157. 157.

    Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. https://doi.org/10.1038/s41570-019-0120-4 (2019).

    Article  Google Scholar 

  158. 158.

    Mansfeld, U., Hoeppener, S. & Schubert, U. S. Investigating the motion of diblock copolymer assemblies in ionic liquids by in situ electron microscopy. Adv. Mater. 25, 761–765 (2013).

    Article  CAS  Google Scholar 

  159. 159.

    Lin, X., Wang, Y., Zeng, Q., Ding, X. & Chen, J. Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst 138, 6445–6453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Chen, J., Wang, Y., Zeng, Q., Ding, X. & Huang, Y. Partition of proteins with extraction in aqueous two-phase system by hydroxyl ammonium-based ionic liquid. Anal. Methods 6, 4067–4076 (2014).

    Article  CAS  Google Scholar 

  161. 161.

    Abdolrahimi, S., Nasernejad, B. & Pazuki, G. Influence of process variables on extraction of Cefalexin in a novel biocompatible ionic liquid based-aqueous two phase system. Phys. Chem. Chem. Phys. 17, 655–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Seitkalieva, M. M., Kashin, A. S., Egorova, K. S. & Ananikov, V. P. Micro-scale processes occurring in ionic liquid–water phases during extraction. Sep. Purif. Technol. 196, 318–326 (2018).

    Article  CAS  Google Scholar 

  163. 163.

    Seitkalieva, M. M., Kashin, A. S., Egorova, K. S. & Ananikov, V. P. Ionic liquids as tunable toxicity storage media for sustainable chemical waste management. ACS Sustain. Chem. Eng. 6, 719–726 (2018).

    Article  CAS  Google Scholar 

  164. 164.

    Kashin, A. S., Galkin, K. I., Khokhlova, E. A. & Ananikov, V. P. Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids. Angew. Chem. Int. Ed. 55, 2161–2166 (2016).

    Article  CAS  Google Scholar 

  165. 165.

    Smith, B. J. et al. Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 58–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Touve, M. A. et al. Polymerization-induced self-assembly of micelles observed by liquid cell transmission electron microscopy. ACS Cent. Sci. 4, 543–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Tsuda, T. et al. SEM observation of wet biological specimens pretreated with room-temperature ionic liquid. ChemBioChem 12, 2547–2550 (2011).

    Article  CAS  Google Scholar 

  168. 168.

    Kawai, K., Kaneko, K., Kawakami, H., Narushima, T. & Yonezawa, T. Simple pretreatment of non-conductive small hydrous bio-samples with choline-type ionic liquid and membrane filter for microsample mounting. Colloids Surf. B Biointerfaces 102, 9–12 (2013).

    Article  CAS  Google Scholar 

  169. 169.

    Takahashi, C., Shirai, T. & Fuji, M. FE-SEM observation, and mechanism of interaction of wet agar gel in various swelling conditions using hydrophilic ionic liquid. Mater. Chem. Phys. 136, 816–822 (2012).

    Article  CAS  Google Scholar 

  170. 170.

    Takahashi, C., Shirai, T. & Fuji, M. Observation of interactions between hydrophilic ionic liquid and water on wet agar gels by FE-SEM and its mechanism. Mater. Chem. Phys. 133, 565–572 (2012).

    Article  CAS  Google Scholar 

  171. 171.

    Peckys, D. B. & de Jonge, N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733–1738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Chen, Q. et al. 3D motion of DNA–Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556–4561 (2013).

    Article  CAS  Google Scholar 

  173. 173.

    Peckys, D. B. & de Jonge, N. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20, 346–365 (2014).

    Article  CAS  Google Scholar 

  174. 174.

    Peckys, D. B., Mazur, P., Gould, K. L. & de Jonge, N. Fully hydrated yeast cells imaged with electron microscopy. Biophys. J. 100, 2522–2529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    de Jonge, N. & Peckys, D. B. Live cell electron microscopy is probably impossible. ACS Nano 10, 9061–9063 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Valentine P. Ananikov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashin, A.S., Ananikov, V.P. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 3, 624–637 (2019). https://doi.org/10.1038/s41570-019-0133-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing