Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Applications of guanine quartets in nanotechnology and chemical biology

This article has been updated

Abstract

Guanine and related nucleobases such as guanosine, deoxyguanosine and isoguanosine are notable molecular tools for designing functional supramolecular assemblies. This popularity originates in their ability to self-assemble via a unique topological pluralism — as isolated nucleobases, discrete macrocyclic quartets and virtually infinite linear ribbons — that endows them with a considerable functional versatility. Many programmes have been launched to fine-tune the chemical properties of guanine derivatives, to make them usable under different experimental conditions, such as in organic or aqueous environments, and responsive to external stimuli, such as ionic strength, pH, light or temperature. These strategies aim to translate the chemical information encoded in a basic guanine unit into programmable, higher-order supramolecular architectures. Spectacular results have been recently obtained in various chemical fields, from supramolecular chemistry to chemical biology, from soft matter to catalysis. In this Review, we detail these advances and demonstrate how these multidisciplinary investigations cast a bright light on the diversity that guanines, synthetic guanines and related nucleobases uniquely offer in terms of both structure and function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of the major steps in the discovery of DNA and G-quartets.
Fig. 2: LipoGs and their higher-order supramolecular assemblies.
Fig. 3: Tetrameric lipophilic guanosines assemblies.
Fig. 4: Structural studies of water-soluble G-assemblies.
Fig. 5: Applications of G-quartet-based devices as ionophores and ion channels.
Fig. 6: The nanotechnological applications of synthetic G-quartets-based nanostructures.
Fig. 7: DNAzyme-type catalysis performed by G-quartet molecular tools.
Fig. 8: Soft matter based on G-quartet molecular devices.
Fig. 9: Supramolecular hydrogels based on G-quartet assemblies.
Fig. 10: The chemical biology applications of SQ.

Change history

  • 11 November 2019

    This article has been corrected to add image credits to Figure 10. The permission line now reads Part b is adapted with permission from ref.147, CC-BY-4.0. Part c is adapted with permission from ref.148, OUP.

References

  1. 1.

    Davis, J. T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668–698 (2004).

    CAS  Google Scholar 

  2. 2.

    Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids. Nature 171, 737–738 (1953).

    CAS  Google Scholar 

  3. 3.

    Hoogsteen, K. The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Cryst. 12, 822–823 (1959).

    CAS  Google Scholar 

  4. 4.

    Tipson, R. S. The chemistry of the nucleic acids. Adv. Carbohydr. Chem. 1, 193–245 (1945).

    CAS  PubMed  Google Scholar 

  5. 5.

    Miescher, F. Hoppe-Seyler’s Med-chem. Untersuch 441, 502 (1871).

    Google Scholar 

  6. 6.

    Hammarsten, O. Zur Kenntniss der Nucleoproteide. Z. Phys. Chem. 19, 19–37 (1895).

    Google Scholar 

  7. 7.

    Levene, P. A. & Jacobs, W. A. Guanylic acid. Ber. Dtsch. Chem. Ges. 42, 2469–2473 (1909).

    CAS  Google Scholar 

  8. 8.

    Bang, I. Untersuchungen über die Guanylsäure. Biochem. Z. 26, 293–311 (1910).

    CAS  Google Scholar 

  9. 9.

    Buell, M. V. & Perkins, M. E. Crystalline guanine nucleotide. J. Biol. Chem. 72, 21–26 (1927).

    CAS  Google Scholar 

  10. 10.

    Gellert, M., Lipsett, M. N. & Davies, R. D. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    CAS  PubMed  Google Scholar 

  11. 11.

    Maizels, N. G4-associated human diseases. EMBO Rep. 16, 910–922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cammas, A. & Millevoi, S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res. 45, 1584–1595 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rhodes, D. & Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279–284 (2017).

    PubMed  Google Scholar 

  17. 17.

    Kwok, C. K., Marsico, G. & Balasubramanian, S. Detecting RNA G-quadruplexes (rG4s) in the transcriptome. Cold Spring Harb. Persp. Biol. 10, a032284 (2018).

    Google Scholar 

  18. 18.

    Davis, J. T., Tirumala, S., Jenssen, J. R., Radler, E. & Fabris, D. Self-assembled ionophores from isoguanosine. J. Org. Chem. 60, 4167–4176 (1995).

    CAS  Google Scholar 

  19. 19.

    Gottarelli, G., Masiero, S. & Spada, G. P. Self-assembly in organic solvents of a deoxyguanosine derivative induced by alkali metal picrates. J. Chem. Soc. Chem. Commun. 24, 2555–2557 (1995).

    Google Scholar 

  20. 20.

    Pinnavaia, T. et al. Alkali metal ion specificity in the solution ordering of a nucleotide, 5′-guanosine monophosphate. J. Am. Chem. Soc. 100, 3625–3627 (1978).

    CAS  Google Scholar 

  21. 21.

    Cai, M. et al. Binding cesium ions with nucleosides: templated self-assembly of isoguanosine pentamers. Angew. Chem. Int. Ed. 39, 1283–1285 (2000).

    Google Scholar 

  22. 22.

    Van Leeuwen, F. W., Verboom, W., Shi, X., Davis, J. T. & Reinhoudt, D. N. Selective 226Ra2+ ionophores provided by self-assembly of guanosine and isoguanosine derivatives. J. Am. Chem. Soc. 126, 16575–16581 (2004).

    PubMed  Google Scholar 

  23. 23.

    Gubala, V., Betancourt, J. E. & Rivera, J. M. Expanding the Hoogsteen edge of 2′-deoxyguanosine: consequences for G-quadruplex formation. Org. Lett. 6, 4735–4738 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Otero, R. et al. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem. Int. Ed. 44, 2270–2275 (2005).

    CAS  Google Scholar 

  25. 25.

    Martín-Hidalgo, M. & Rivera, J. M. Metallo-responsive switching between hexadecameric and octameric supramolecular G-quadruplexes. Chem. Commun. 47, 12485–12487 (2011).

    Google Scholar 

  26. 26.

    Lena, S., Neviani, P., Masiero, S., Pieraccini, S. & Spada, G. P. Triggering of guanosine self-assembly by light. Angew. Chem. Int. Ed. 49, 3657–3660 (2010).

    CAS  Google Scholar 

  27. 27.

    González-Rodríguez, D. et al. G-quadruplex self-assembly regulated by Coulombic interactions. Nat. Chem. 1, 151–155 (2009).

    PubMed  Google Scholar 

  28. 28.

    Reddy, G. M. et al. Co-existence of distinct supramolecular assemblies in solution and in the solid state. Chem. Eur. J. 23, 2315–2322 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kaucher, M. S. & Davis, J. T. N2, C8-disubstituted guanosine derivatives can form G-quartets. Tetrahedron Lett. 47, 6381–6384 (2006).

    CAS  Google Scholar 

  30. 30.

    He, Y. et al. Construction of a cross-layer linked G-octamer via conformational control: a stable G-quadruplex in H-bond competitive solvent. Chem. Sci. 10, 4192–4199 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chen, L., Sakai, N., Moshiri, S. T. & Matile, S. Toward supramolecular ion channels formed by oligonucleotide analogs: Hydrophobic guanine dimers. Tetrahedron Lett. 39, 3627–3630 (1998).

    CAS  Google Scholar 

  32. 32.

    Sidorov, V., Kotch, F. W., El-Kouedi, M. & Davis, J. T. Toward artificial ion channels: self-assembled nanotubes from calix [4] arene–guanosine conjugates. Chem. Commun. 23, 2369–2370 (2000).

    Google Scholar 

  33. 33.

    Cram, D. J., Jaeger, R. & Deshayes, K. Hemicarcerands that encapsulate hydrocarbons with molecular weights greater than two hundred. J. Am. Chem. Soc. 115, 10111–10116 (1993).

    CAS  Google Scholar 

  34. 34.

    Nikan, M. & Sherman, J. C. Template-assembled synthetic G-quartets (TASQs). Angew. Chem. Int. Ed. 47, 4900–4902 (2008).

    CAS  Google Scholar 

  35. 35.

    Nikan, M. & Sherman, J. C. Cation-complexation behavior of template-assembled synthetic G-quartets. J. Org. Chem. 74, 5211–5218 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Hightower, J. B., Olmos, D. R. & Walmsley, J. A. Supramolecular structure and polymorphism of alkali metal salts of guanosine 5′-monophosphate: SEM and NMR study. J. Phys. Chem. B 113, 12214–12219 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Wu, G., Kwan, I. C. M., Yan, Z., Huang, Y. & Ye, E. On the helical structure of guanosine 5′-monophosphate formed at pH 5: is it left- or right-handed? J. Nucleic Acids 2017, 6798759 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wu, G. & Kwan, I. C. Helical structure of disodium 5′-guanosine monophosphate self-assembly in neutral solution. J. Am. Chem. Soc. 131, 3180–3182 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Nakayama, S., Kelsey, I., Wang, J. & Sintim, H. O. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem. Commun. 47, 4766–4768 (2011).

    CAS  Google Scholar 

  40. 40.

    Nakayama, S. et al. Thiazole orange-induced c-di-GMP quadruplex formation facilitates a simple fluorescent detection of this ubiquitous biofilm regulating molecule. J. Am. Chem. Soc. 133, 4856–4864 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Bare, G. A. L., Liu, B. & Sherman, J. C. Synthesis of a single G-quartet platform in water. J. Am. Chem. Soc. 135, 11985–11989 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Gonnelli, A. et al. Small-angle X-ray scattering study of self-assembling lipophilic guanines in organic solvents: G-quadruplex formation and cation effects in cyclohexane. J. Phys. Chem. B 117, 1095–1103 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Kunstelj, K., Federiconi, F., Spindler, L. & Drevenšek-Olenik, I. Self-organization of guanosine 5′-monophosphate on mica. Colloids Surf. B Biointerfaces 59, 120–127 (2007).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhang, C. et al. Solventless formation of G-quartet complexes based on alkali and alkaline earth salts on Au(111). ChemPhysChem 16, 2099–2105 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    González-Rodríguez, D. et al. Persistent, well-defined, monodisperse, π-conjugated organic nanoparticles via G-quadruplex self-assembly. J. Am. Chem. Soc. 132, 4710–4719 (2010).

    PubMed  Google Scholar 

  46. 46.

    Gao, M. et al. Temperature and pressure limits of guanosine monophosphate self-assemblies. Sci. Rep. 7, 9864 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Azargun, M. & Fridgen, T. D. Guanine tetrads: an IRMPD spectroscopy, energy resolved SORI-CID, and computational study of M(9-ethylguanine)4 + (M = Li, Na, K, Rb, Cs) in the gas phase. Phys. Chem. Chem. Phys. 17, 25778–25785 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Azargun, M., Jami-Alahmadi, Y. & Fridgen, T. D. The intrinsic stabilities and structures of alkali metal cationized guanine quadruplexes. Phys. Chem. Chem. Phys. 19, 1281–1287 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Fraschetti, C., Montagna, M., Guarcini, L., Guidoni, L. & Filippi, A. Spectroscopic evidence for a gas-phase librating G-quartet–Na+ complex. Chem. Commun. 50, 14767–14770 (2014).

    CAS  Google Scholar 

  50. 50.

    Mudroňová, K., Římal, V. & Mojzeš, P. Effect of ribose versus 2′-deoxyribose residue in guanosine 5′-monophosphates on formation of G-quartets stabilized by potassium and sodium cations. Vib. Spectrosc. 82, 60–65 (2016).

    Google Scholar 

  51. 51.

    Panda, M. & Walmsley, J. A. Circular dichroism study of supramolecular assemblies of guanosine 5′-monophosphate. J. Phys. Chem. B 115, 6377–6383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Goncharova, I., Novotná, J. & Urbanová, M. Stacked and continuous helical self-assemblies of guanosine monophosphates detected by vibrational circular dichroism. Anal. Bioanal. Chem. 403, 2635–2644 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Kwan, I. C. M., Mo, X. & Wu, G. Probing hydrogen bonding and ion−carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet. J. Am. Chem. Soc. 129, 2398–2407 (2007).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wong, A., Kotch, F. W., Kwan, I. C. M., Davis, J. T. & Wu, G. Probing the Na+ binding site in a calix[4]arene–guanosine conjugate dimer by solid-state 23Na NMR and quantum chemical calculation. Chem. Commun. 16, 2154–2156 (2009).

    Google Scholar 

  55. 55.

    Mukhopadhyay, T. K. & Datta, A. Design rules for the generation of stable quartet phases of nucleobases over two-dimensional materials. J. Phys. Chem. C 122, 28918–28933 (2018).

    CAS  Google Scholar 

  56. 56.

    Šponer, J. et al. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta 1861, 1246–1263 (2017).

    Google Scholar 

  57. 57.

    Gresh, N. et al. Channeling through two stacked guanine quartets of one and two alkali cations in the Li+, Na+, K+, and Rb+ series. Assessment of the accuracy of the SIBFA anisotropic polarizable molecular mechanics potential. J. Phys. Chem. B 121, 3997–4014 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Zaccaria, F., Paragi, G. & Fonseca Guerra, C. F. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K+ is the best. Phys. Chem. Chem. Phys. 18, 20895–20904 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    Paragi, G. & Fonseca Guerra, C. Cooperativity in the self-assembly of the guanine nucleobase into quartet and ribbon structures on surfaces. Chem. Eur. J. 23, 3042–3050 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Kotch, F. W. et al. Water-mediated association provides an ion pair receptor. J. Am. Chem. Soc. 125, 15140–15150 (2003).

    CAS  PubMed  Google Scholar 

  61. 61.

    Davis, J. T., Okunola, O. & Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 39, 3843–3862 (2010).

    CAS  PubMed  Google Scholar 

  62. 62.

    Kaucher, M. S., Harrell, W. A. & Davis, J. T. A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. J. Am. Chem. Soc. 128, 38–39 (2006).

    CAS  PubMed  Google Scholar 

  63. 63.

    Sutyak, K. B., Lee, W., Zavalij, P. V., Gutierrez, O. & Davis, J. T. Templating and catalyzing [2+2] photocycloaddition in solution using a dynamic G-quadruplex. Angew. Chem. Int. Ed. 57, 17146–17150 (2018).

    Google Scholar 

  64. 64.

    Sakai, N. et al. Dendritic folate rosettes as ion channels in lipid bilayers. J. Am. Chem. Soc. 128, 2218–2219 (2006).

    CAS  PubMed  Google Scholar 

  65. 65.

    Ma, L., Melegari, M., Colombini, M. & Davis, J. T. Large and stable transmembrane pores from guanosine−bile acid conjugates. J. Am. Chem. Soc. 130, 2938–2939 (2008).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kumar, Y. P. et al. Triazole-tailored guanosine dinucleosides as biomimetic ion channels to modulate transmembrane potential. Chem. Eur. J. 20, 3023–3028 (2014).

    CAS  PubMed  Google Scholar 

  67. 67.

    Kumar, Y. P., Das, R. N., Schütte, O. M., Steinem, C. & Dash, J. Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels. Nat. Protoc. 11, 1039–1056 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Ghosh, A., Parasar, B., Bhattacharyya, T. & Dash, J. Chiral carbon dots derived from guanosine 5′-monophosphate form supramolecular hydrogels. Chem. Commun. 52, 11159–11162 (2016).

    CAS  Google Scholar 

  69. 69.

    Li, Z. & Mirkin, C. A. G-quartet-induced nanoparticle assembly. J. Am. Chem. Soc. 127, 11568–11569 (2005).

    CAS  PubMed  Google Scholar 

  70. 70.

    Wong, A., Ida, R., Spindler, L. & Wu, G. Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study. J. Am. Chem. Soc. 127, 6990–6998 (2005).

    CAS  PubMed  Google Scholar 

  71. 71.

    Hu, D., Ren, J. & Qu, X. Metal-mediated fabrication of new functional G-quartet-based supramolecular nanostructure and potential application as controlled drug release system. Chem. Sci. 2, 1356–1361 (2011).

    CAS  Google Scholar 

  72. 72.

    Pu, F., Wu, L., Ran, X., Ren, J. & Qu, X. G-quartet-based nanostructure for mimicking light-harvesting antenna. Angew. Chem. Int. Ed. 54, 892–896 (2015).

    CAS  Google Scholar 

  73. 73.

    Wu, Y.-L., Brown, K. E. & Wasielewski, M. R. Extending photoinduced charge separation lifetimes by using supramolecular design: guanine–perylenediimide G-quadruplex. J. Am. Chem. Soc. 135, 13322–13325 (2013).

    CAS  PubMed  Google Scholar 

  74. 74.

    Wu, Y.-L. et al. G-quadruplex organic frameworks. Nat. Chem. 9, 466–472 (2017).

    PubMed  Google Scholar 

  75. 75.

    Nakayama, S., Roelofs, K., Lee, V. T. & Sintim, H. O. A C-di-GMP–proflavine–hemin supramolecular complex has peroxidase activity—implication for a simple colorimetric detection. Mol. Biosyst. 8, 726–729 (2012).

    CAS  PubMed  Google Scholar 

  76. 76.

    Li, Y. & Sen, D. A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3, 743–747 (1996).

    CAS  PubMed  Google Scholar 

  77. 77.

    Li, Y. & Sen, D. Toward an efficient DNAzyme. Biochemistry 36, 5589–5599 (1997).

    CAS  PubMed  Google Scholar 

  78. 78.

    Travascio, P., Li, Y. & Sen, D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 5, 505–517 (1998).

    CAS  PubMed  Google Scholar 

  79. 79.

    Travascio, P., Witting, P. K., Mauk, A. G. & Sen, D. The peroxidase activity of a hemin–DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J. Am. Chem. Soc. 123, 1337–1348 (2001).

    CAS  PubMed  Google Scholar 

  80. 80.

    Stefan, L., Denat, F. & Monchaud, D. Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res. 40, 8759–8772 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Yamamoto, Y. et al. Characterization of heme–DNA complexes composed of some chemically modified hemes and parallel G-quadruplex DNAs. Biochemistry 54, 7168–7177 (2015).

    CAS  PubMed  Google Scholar 

  82. 82.

    Chen, J. et al. How proximal nucleobases regulate the catalytic activity of G-quadruplex/hemin DNAzymes. ACS Catal. 8, 11352–11361 (2018).

    CAS  Google Scholar 

  83. 83.

    Sen, D. & Poon, L. C. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit. Rev. Biochem. Mol. Biol. 46, 478–492 (2011).

    CAS  PubMed  Google Scholar 

  84. 84.

    Wang, F., Lu, C.-H. & Willner, I. From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Mergny, J.-L. & Sen, D. DNA quadruple helices in nanotechnology. Chem. Rev. 119, 6290–6325 (2019).

    CAS  PubMed  Google Scholar 

  86. 86.

    Flack, T. et al. Prefolded synthetic G-quartets display enhanced bioinspired properties. Chem. Eur. J. 22, 1760–1767 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Stefan, L., Xu, H.-J., Gros, C. P., Denat, F. & Monchaud, D. Harnessing nature’s insights: synthetic small molecules with peroxidase-mimicking DNAzyme properties. Chem. Eur. J. 17, 10857–10862 (2011).

    CAS  PubMed  Google Scholar 

  88. 88.

    Harraz, D. M. & Davis, J. T. A self-assembled peroxidase from 5′-GMP and heme. Chem. Commun. 54, 1587–1590 (2018).

    CAS  Google Scholar 

  89. 89.

    Bhattacharyya, T., Kumar, Y. P. & Dash, J. Supramolecular hydrogel inspired from DNA structures mimics peroxidase activity. ACS Biomat. Sci. Eng. 3, 2358–2365 (2017).

    CAS  Google Scholar 

  90. 90.

    Zhong, R. et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 30, 1706887 (2018).

    Google Scholar 

  91. 91.

    de Gennes, P. G. Soft matter (Nobel lecture). Angew. Chem. Int. Ed. 31, 842–845 (1992).

    Google Scholar 

  92. 92.

    Nagel, S. R. Experimental soft-matter science. Rev. Mod. Phys. 89, 025002 (2017).

    Google Scholar 

  93. 93.

    Peters, G. M. & Davis, J. T. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem. Soc. Rev. 45, 3188–3206 (2016).

    CAS  PubMed  Google Scholar 

  94. 94.

    Gottarelli, G. et al. The self-assembly of lipophilic guanosine derivatives in solution and on solid surfaces. Chem. Eur. J. 6, 3242–3248 (2000).

    CAS  PubMed  Google Scholar 

  95. 95.

    Mezzina, E. et al. The self-assembly of a lipophilic guanosine nucleoside into polymeric columnar aggregates: the nucleoside structure contains sufficient information to drive the process towards a strikingly regular polymer. Chem. Eur. J. 7, 388–395 (2001).

    CAS  PubMed  Google Scholar 

  96. 96.

    Pieraccini, S. et al. Columnar lyomesophases formed in hydrocarbon solvents by chiral lipophilic guanosine-alkali metal complexes. Chirality 13, 7–12 (2001).

    CAS  PubMed  Google Scholar 

  97. 97.

    Giorgi, T. et al. Gel-like lyomesophases formed in organic solvents by self-assembled guanine ribbons. Chem. Eur. J. 8, 2143–2152 (2002).

    CAS  PubMed  Google Scholar 

  98. 98.

    Gan, K. P., Yoshio, M., Sugihara, Y. & Kato, T. Guanine–oligothiophene conjugates: liquid-crystalline properties, photoconductivities and ion-responsive emission of their nanoscale assemblies. Chem. Sci. 9, 576–585 (2018).

    CAS  PubMed  Google Scholar 

  99. 99.

    Meng, L., Liu, K., Mo, S., Mao, Y. & Yi, T. From G-quartets to G-ribbon gel by concentration and sonication control. Org. Biomol. Chem. 11, 1525–1532 (2013).

    CAS  PubMed  Google Scholar 

  100. 100.

    Wang, X. et al. Reversible organogels triggered by dynamic K+ binding and release. J. Colloid Interface Sci. 353, 412–419 (2011).

    CAS  PubMed  Google Scholar 

  101. 101.

    Pieraccini, S., Masiero, S., Pandoli, O., Samorì, P. & Spada, G. P. Reversible interconversion between a supramolecular polymer and a discrete octameric species from a guanosine derivative by dynamic cation binding and release. Org. Lett. 8, 3125–3128 (2006).

    CAS  PubMed  Google Scholar 

  102. 102.

    Spada, G. P. et al. Guanosine-based hydrogen-bonded scaffolds: controlling the assembly of oligothiophenes. Adv. Mater. 20, 2433–2438 (2008).

    CAS  Google Scholar 

  103. 103.

    Mihai, S., Le Duc, Y., Cot, D. & Barboiu, M. Sol–gel selection of hybrid G-quadruplex architectures from dynamic supramolecular guanosine libraries. J. Mat. Chem. 20, 9443–9448 (2010).

    CAS  Google Scholar 

  104. 104.

    Meffre, A., Petit, E., Cot, D. & Barboiu, M. Kinetic selection of polymeric guanosine architectures from dynamic supramolecular libraries. C. R. Chim. 18, 960–965 (2015).

    CAS  Google Scholar 

  105. 105.

    Zhang, J. et al. GMP-quadruplex-based hydrogels stabilized by lanthanide ions. Sci. China Chem. 61, 604–612 (2018).

    CAS  Google Scholar 

  106. 106.

    Carducci, F., Yoneda, J. S., Itri, R. & Mariani, P. On the structural stability of guanosine-based supramolecular hydrogels. Soft Matter 14, 2938–2948 (2018).

    CAS  PubMed  Google Scholar 

  107. 107.

    Nava, G. et al. Quadruplex knots as network nodes: nano-partitioning of guanosine derivates in supramolecular hydrogels. Soft Matter 15, 2315–2318 (2019).

    CAS  PubMed  Google Scholar 

  108. 108.

    Yu, Y., Nakamura, D., DeBoyace, K., Neisius, A. W. & McGown, L. B. Tunable thermoassociation of binary guanosine gels. J. Phys. Chem. B 112, 1130–1134 (2008).

    CAS  PubMed  Google Scholar 

  109. 109.

    Buerkle, L. E., Li, Z., Jamieson, A. M. & Rowan, S. J. Tailoring the properties of guanosine-based supramolecular hydrogels. Langmuir 25, 8833–8840 (2009).

    CAS  PubMed  Google Scholar 

  110. 110.

    Adhikari, B., Shah, A. & Kraatz, H.-B. Self-assembly of guanosine and deoxy-guanosine into hydrogels: monovalent cation guided modulation of gelation, morphology and self-healing properties. J. Mat. Chem. B 2, 4802–4810 (2014).

    CAS  Google Scholar 

  111. 111.

    Tang, F. et al. Developing a self-healing supramolecular nucleoside hydrogel based on guanosine and isoguanosine. Chem. Asian. J. 13, 1962–1971 (2018).

    CAS  Google Scholar 

  112. 112.

    Peters, G. M. et al. A G4·K+ hydrogel stabilized by an anion. J. Am. Chem. Soc. 136, 12596–12599 (2014).

    CAS  PubMed  Google Scholar 

  113. 113.

    Peters, G. M., Skala, L. P. & Davis, J. T. A molecular chaperone for G4-quartet hydrogels. J. Am. Chem. Soc. 138, 134–139 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Pieraccini, S. et al. Playing supramolecular dominoes with light: building and breaking a photoreversible G-quadruplex made from guanosine, boric acid and an azobenzene. Org. Biomol. Chem. 17, 2759–2769 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Ghoussoub, A. & Lehn, J.-M. Dynamic sol–gel interconversion by reversible cation binding and release in G-quartet-based supramolecular polymers. Chem. Commun. 46, 5763–5765 (2005).

    Google Scholar 

  116. 116.

    Buchs, B. et al. Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation. Org. Biomol. Chem. 9, 2906–2919 (2011).

    CAS  PubMed  Google Scholar 

  117. 117.

    Buhler, E., Sreenivasachary, N., Candau, S.-J. & Lehn, J.-M. Modulation of the supramolecular structure of G-quartet assemblies by dynamic covalent decoration. J. Am. Chem. Soc. 129, 10058–10059 (2007).

    CAS  PubMed  Google Scholar 

  118. 118.

    Sreenivasachary, N. & Lehn, J.-M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc. Natl Acad. Sci. USA 102, 5938-5943 (2005).

    CAS  PubMed  Google Scholar 

  119. 119.

    Arnal-Hérault, C. et al. Functional G-quartet macroscopic membrane films. Angew. Chem. Int. Ed. 46, 8409–8413 (2007).

    Google Scholar 

  120. 120.

    Dash, J., Patil, A. J., Das, R. N., Dowdall, F. L. & Mann, S. Supramolecular hydrogels derived from silver ion-mediated self-assembly of 5′-guanosine monophosphate. Soft Matter 7, 8120–8126 (2011).

    CAS  Google Scholar 

  121. 121.

    Feng, H. et al. Silver ions blocking crystallization of guanosine-based hydrogel for potential antimicrobial applications. RSC Adv. 8, 15842–15852 (2018).

    CAS  Google Scholar 

  122. 122.

    Sreenivasachary, N. & Lehn, J.-M. Structural selection in G-quartet-based hydrogels and controlled release of bioactive molecules. Chem. Asian J. 3, 134–139 (2008).

    CAS  PubMed  Google Scholar 

  123. 123.

    Das, R. N., Kumar, Y. P., Pagoti, S., Patil, A. J. & Dash, J. Diffusion and birefringence of bioactive dyes in a supramolecular guanosine hydrogel. Chem. Eur. J. 18, 6008–6014 (2012).

    CAS  PubMed  Google Scholar 

  124. 124.

    Plank, T. N. & Davis, J. T. A G4·K+ hydrogel that self-destructs. Chem. Commun. 52, 5037–5040 (2016).

    CAS  Google Scholar 

  125. 125.

    Venkatesh, V. et al. Supramolecular photoactivatable anticancer hydrogels. J. Am. Chem. Soc. 139, 5656–5659 (2017).

    CAS  PubMed  Google Scholar 

  126. 126.

    Buerkle, L. E., von Recum, H. A. & Rowan, S. J. Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chem. Sci. 3, 564–572 (2012).

    CAS  Google Scholar 

  127. 127.

    Rotaru, A. et al. G-quartet hydrogels for effective cell growth applications. Chem. Commun. 53, 12668–12671 (2017).

    CAS  Google Scholar 

  128. 128.

    Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    CAS  PubMed  Google Scholar 

  129. 129.

    Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    PubMed  Google Scholar 

  130. 130.

    Hänsel-Hertsch, R. et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    PubMed  Google Scholar 

  131. 131.

    Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods 13, 841–844 (2016).

    CAS  PubMed  Google Scholar 

  132. 132.

    Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Monchaud, D. & Teulade-Fichou, M.-P. A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem. 6, 627–636 (2008).

    CAS  PubMed  Google Scholar 

  134. 134.

    Neidle, S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem. 1, 0041 (2017).

    CAS  Google Scholar 

  135. 135.

    Neidle, S. Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016).

    CAS  PubMed  Google Scholar 

  136. 136.

    Drygin, D. et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 69, 7653–7661 (2009).

    CAS  PubMed  Google Scholar 

  137. 137.

    Moore, M. J. B. et al. Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3,6- and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation. J. Med. Chem. 49, 582–599 (2006).

    CAS  PubMed  Google Scholar 

  138. 138.

    De Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 129, 1856–1857 (2007).

    PubMed  Google Scholar 

  139. 139.

    Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Stefan, L. et al. DOTASQ as a prototype of nature-inspired G-quadruplex ligand. Chem. Commun. 47, 4992–4994 (2011).

    CAS  Google Scholar 

  141. 141.

    Lejault, P. et al. The scope of application of macrocyclic polyamines beyond metal chelation. Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.201900870 (2019).

    CAS  Google Scholar 

  142. 142.

    Haudecoeur, R., Stefan, L., Denat, F. & Monchaud, D. A model of smart G-quadruplex ligand. J. Am. Chem. Soc. 135, 550–553 (2013).

    CAS  PubMed  Google Scholar 

  143. 143.

    Newman, M. et al. The G-quadruplex-specific RNA helicase DHX36 regulates p53 pre-mRNA 3′-end processing following UV-induced DNA damage. J. Mol. Biol. 429, 3121–3131 (2017).

    CAS  PubMed  Google Scholar 

  144. 144.

    Laguerre, A. et al. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc. 136, 12406–12414 (2014).

    CAS  PubMed  Google Scholar 

  145. 145.

    Zhou, J. et al. Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers. Sci. Rep. 6, 33888 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Laguerre, A. et al. Visualization of RNA-quadruplexes in live cells. J. Am. Chem. Soc. 137, 8521–8525 (2015).

    CAS  PubMed  Google Scholar 

  147. 147.

    Laguerre, A., Wong, J. M. Y. & Monchaud, D. Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method. Sci. Rep. 6, 32141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Roux, A. et al. Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol. Nucleic Acids Res. 47, 5502–5510 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Rivera-Sánchez, Md. C., García-Arriaga, M., Hobley, G., Morales-de-Echegaray, A. V. & Rivera, J. M. Small-molecule-based self-assembled ligands for G-quadruplex DNA surface recognition. ACS Omega 2, 6619–6627 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Pavan Kumar, Y. et al. Fluorescent dansyl-guanosine conjugates that bind c-MYC promoter G-quadruplex and downregulate c-MYC expression. ChemBioChem 17, 388–393 (2016).

    CAS  PubMed  Google Scholar 

  151. 151.

    Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281 (1987).

    CAS  PubMed  Google Scholar 

  152. 152.

    Monchaud, D. in DNA in Supramolecular Chemistry and Nanotechnology Ch. 3.5 (eds Stulz, E. & Clever, G. H.) 229-246 (Wiley, 2015).

  153. 153.

    Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the. beta.-diketone fragment. J. Am. Chem. Soc. 111, 1023–1028 (1989).

    CAS  Google Scholar 

  154. 154.

    Fonseca Guerra, C., Zijlstra, H., Paragi, G. & Bickelhaupt, F. M. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chem. Eur. J. 17, 12612–12622 (2011).

    CAS  PubMed  Google Scholar 

  155. 155.

    Davis, J. T. & Spada, G. P. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev. 36, 296–313 (2007).

    CAS  PubMed  Google Scholar 

  156. 156.

    Dahm, R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet. 122, 565–581 (2008).

    CAS  PubMed  Google Scholar 

  157. 157.

    Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79, 137–158 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    CAS  PubMed  Google Scholar 

  159. 159.

    Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.S. and D.M. thank the Centre National de la Recherche Scientifique (CNRS) for funding. D.M. thanks the Agence Nationale de la Recherche (ANR-17-CE17-0010-01), the European Research Council (H2020-MSCA-IF-2016-750368), the Université de Bourgogne, Conseil Régional de Bourgogne (PARI) and the European Union (Pharmaco-imagerie et agents théranostiques, PO FEDER-FSE Bourgogne 2014–2020 programme) for financial support. The authors also thank their collaborators for the daily passionate scientific discussions and all scientists worldwide involved in the fascinating field of research, to make it lively, thrilling and always moving.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Loic Stefan or David Monchaud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

G4ome

the G4ome comprises all G-quadruplex (G4)-forming sequences identified in the genome (G4-DNA) and both the coding and non-coding transcriptome (G4-RNA).

LipoG

lipophilic guanine derivatives aimed at being used in organic solvents, masking hydrophilic moieties (e.g. the hydroxyl groups of the guanosine’s ribose) through the use of aliphatic protecting groups.

c-di-GMP

3,3′-cyclic diguanylic acid discovered by Benziman and colleagues in 1987 (ref.151), originally as a regulator of cellulose production in bacteria and now known as a regulator of virulence factor production and biofilm formation.

G4-ligands

low-molecular-weight molecules designed to interact specifically with DNA/RNA quadruplexes (G4s), mostly through π-stacking interactions with the G4’s accessible external quartets, but groove and loop binding has also been documented.

Fluorescence upconversion

this fluorescence spectroscopy (also known as sum frequency generation), is a nonlinear, high-resolution technique characterized by an emission wavelength that is shorter than the excitation wavelength.

Organic frameworks

three-dimensional organic structures in which building blocks are associated either through covalent bonds (covalent organic framework, or COF) or metal-mediated coordination (metal organic framework, or MOF).

Logic gates

in electronics, a logic gate is a device that performs a logical operation on one or two inputs and produces a single output. Logic gates are primarily implemented as switches of different possible natures (AND, OR, NOT, INHIBIT etc.) in digital circuits.

Lyotropic liquid crystal

property of an amphiphilic material (mesogen) that exhibits phase transitions upon dissolution in a suited solvent, in a concentration-dependent manner.

Storage moduli

indications of the ability of the gel to withstand and store deformation energy in an elastic manner, being dependent on its crosslinking state.

Thixotropy

property of a material (gel, fluid), which is thick or viscous under static conditions, to become thin and liquid when shaken or sheared.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stefan, L., Monchaud, D. Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem 3, 650–668 (2019). https://doi.org/10.1038/s41570-019-0132-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing