The synergic effect of water and biomolecules in intracellular phase separation


Phase separation has long been observed within aqueous mixtures of two or more different compounds, such as proteins, salts, polysaccharides and synthetic polymers. A growing body of experimental evidence indicates that phase separation also takes place inside living cells, where intrinsically disordered proteins and other molecules such as RNA are thought to assemble into membraneless organelles. These structures represent a new paradigm of intracellular organization and compartmentalization, in which biochemical processes can be coordinated in space and time. Two thermodynamic driving forces have been proposed for phase separation: the strengths of macromolecule–macromolecule and macromolecule–H2O interactions, and the perturbation of H2O structure about different macromolecules. In this Perspective, we propose that both driving forces act in a concerted manner to promote phase separation, which we describe in the context of the well-known structural dynamics of intrinsically disordered proteins in the cellular milieu. We further suggest that this effect can be extended to explain how the partial unfolding of globular proteins can lead to intracellular phase separation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Solutions can undergo liquid–liquid phase separation to afford aqueous two-phase systems.
Fig. 2: Hydration and bulk H2O around a solute.
Fig. 3: There are different types of aqueous polymer phase separation in biology.
Fig. 4: Free energy diagram for liquid–liquid phase separation and protein aggregation.
Fig. 5: Phase separation inside cells is driven by intermolecular interactions and H2O entropy.
Fig. 6: Thermally driven phase separation of partially unfolded globular proteins.


  1. 1.

    Tolstoguzov, V. Origins of globular structure in proteins. FEBS Lett. 444, 145–148 (1999).

    CAS  PubMed  Google Scholar 

  2. 2.

    Polyakov, V. I., Grinberg, Ya. V. & Tolstoguzov, V. B. Thermodynamic incompatibility of proteins. Food Hydrocoll. 11, 171–180 (1997).

    CAS  Google Scholar 

  3. 3.

    Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Franzmann, T. M. & Alberti, S. Protein phase separation as a stress survival strategy. Cold Spring Harb. Perspect. Biol. 11, a034058 (2019).

    PubMed  Google Scholar 

  5. 5.

    Li, X.-H. et al. Function and regulation of phase-separated biological condensates. Biochemistry 57, 2452–2461 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Google Scholar 

  10. 10.

    Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Ferreon, J. C. et al. Acetylation disfavors tau phase separation. Int. J. Mol. Sci. 19, 1360 (2018).

    PubMed Central  Google Scholar 

  13. 13.

    Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Guillén-Boixet, J. et al. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. eLife 5, e19298 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kroschwald, S. et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep. 23, 3327–3339 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    PubMed  Google Scholar 

  19. 19.

    Wirth, A. J. & Gruebele, M. Quinary protein structure and the consequences of crowding in living cells: leaving the test-tube behind. Bioessays 35, 984–993 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Chien, P. & Gierasch, L. M. Challenges and dreams: physics of weak interactions essential to life. Mol. Biol. Cell 25, 3474–3477 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ribeiro, S., Ebbinghaus, S. & Marcos, J. C. Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Lett. 592, 3040–3053 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. Cell 173, 946–957 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fox, A. H. et al. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem. Sci. 43, 124–135 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Trinkle-Mulcahy, L. & Sleeman, J. E. The Cajal body and the nucleolus: “in a relationship” or “it’s complicated”? RNA Biol. 14, 739–751 (2017).

    PubMed  Google Scholar 

  29. 29.

    Perez-Pepe, M., Fernández-Alvarez, A. J. & Boccaccio, G. L. Life and work of stress granules and processing bodies: new insights into their formation and function. Biochemistry 57, 2488–2498 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Antonicka, H. & Shoubridge, E. A. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep. 10, 920–932 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Uniacke, J. & Zerges, W. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. J. Cell Biol. 182, 641–646 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Alberti, S. & Carra, S. Quality control of membraneless organelles. J. Mol. Biol. 430, 4711–4729 (2018).

    CAS  PubMed  Google Scholar 

  33. 33.

    Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  36. 36.

    Beijerinck, M. W. Über eine Eigentümlichkeit der löslichen Stärke. Zentralbl. Bakteriol. 2, 697–699 (1896).

    Google Scholar 

  37. 37.

    Albertsson, P.-Å. Chromatography and partition of cells and cell fragments. Nature 177, 771–774 (1956).

    CAS  PubMed  Google Scholar 

  38. 38.

    Albertsson, P.-Å. Partition of proteins in liquid polymer–polymer two-phase systems. Nature 182, 709–711 (1958).

    CAS  PubMed  Google Scholar 

  39. 39.

    Lee, S. Y. et al. Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep. Purif. Rev. 46, 291–304 (2017).

    CAS  Google Scholar 

  40. 40.

    Tolstoguzov, V. Compositions and phase diagrams for aqueous systems based on proteins and polysaccharides. Int. Rev. Cytol. 192, 3–31 (1999).

    Google Scholar 

  41. 41.

    Albertsson, P.-Å. Partition of Cell Particles and Macromolecules 3rd edn (Wiley-Blackwell, Weinheim, 1986).

  42. 42.

    Torres-Acosta, M. A. et al. Aqueous two-phase systems at large scale: challenges and opportunities. Biotechnol. J. 14, 1800117 (2019).

    Google Scholar 

  43. 43.

    González-González, M. & Ruiz-Ruiz, F. in Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products (eds Rito-Palomares, M. & Benavides, J.) 55–78 (Springer, Cham, 2017).

  44. 44.

    Teixeira, A. G. et al. Emerging biotechnology applications of aqueous two-phase systems. Adv. Healthcare Mater. 7, 1701036 (2018).

    Google Scholar 

  45. 45.

    Helfrich, M. R. et al. Aqueous phase separation in giant vesicles. J. Am. Chem. Soc. 124, 13374–13375 (2002).

    CAS  PubMed  Google Scholar 

  46. 46.

    Long, M. S. et al. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).

    CAS  PubMed  Google Scholar 

  47. 47.

    Long, M. S., Cans, A.-S. & Keating, C. D. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J. Am. Chem. Soc. 130, 756–762 (2008).

    CAS  PubMed  Google Scholar 

  48. 48.

    Zaslavsky, B. Y. Aqueous Two-phase Partitioning: Physical Chemistry and Bioanalytical Applications (Marcel Dekker, New York, 1995).

  49. 49.

    Walter, H. & Brooks, D. E. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett. 361, 135–139 (1995).

    CAS  PubMed  Google Scholar 

  50. 50.

    Uversky, V. N. Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 239, 97–114 (2017).

    CAS  PubMed  Google Scholar 

  51. 51.

    Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    CAS  Google Scholar 

  52. 52.

    Huggins, M. L. Thermodynamic properties of solutions of long-chain compounds. Ann. NY Acad. Sci. 43, 1–32 (1942).

    CAS  Google Scholar 

  53. 53.

    Flory, P. J. Principles of Polymer Chemistry 672 (Cornell Univ. Press, Ithaca, 1953).

  54. 54.

    Zaslavsky, B. Y. et al. Structure of water as a key factor of phase separation in aqueous mixtures of two nonionic polymers. Polymer 30, 2104–2111 (1989).

    Google Scholar 

  55. 55.

    Zaslavsky, B. Y. et al. Aqueous biphasic systems formed by nonionic polymers I. Effects of inorganic salts on phase separation. Colloid Polym. Sci. 264, 1066–1071 (1986).

    Google Scholar 

  56. 56.

    Zaslavsky, B. Y. et al. The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int. J. Biol. Macromol. 117, 1224–1251 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Ball, P. Water is an active matrix of life for cell and molecular biology. Proc. Natl Acad. Sci. USA 114, 13327–13335 (2017).

    CAS  PubMed  Google Scholar 

  59. 59.

    Das Mahanta, D. et al. Non-monotonic dynamics of water in its binary mixture with 1,2-dimethoxy ethane: a combined THz spectroscopic and MD simulation study. J. Chem. Phys. 145, 164501 (2016).

    PubMed  Google Scholar 

  60. 60.

    Samanta, N., Das Mahanta, D. & Kumar Mitra, R. Does urea alter the collective hydrogen-bond dynamics in water? A dielectric relaxation study in the terahertz-frequency region. Chem. Asian J. 9, 3457–3463 (2014).

    CAS  PubMed  Google Scholar 

  61. 61.

    Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).

    CAS  PubMed  Google Scholar 

  62. 62.

    Perticaroli, S. et al. Description of hydration water in protein (green fluorescent protein) solution. J. Am. Chem. Soc. 139, 1098–1105 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Tan, P. et al. Gradual crossover from subdiffusion to normal diffusion: a many-body effect in protein surface water. Phys. Rev. Lett. 120, 248101 (2018).

    CAS  PubMed  Google Scholar 

  64. 64.

    Aumiller, W. M. & Keating, C. D. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: reversible formation and partitioning in aqueous biphasic systems. Adv. Colloid Interface Sci. 239, 75–87 (2017).

    CAS  PubMed  Google Scholar 

  65. 65.

    Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv. Colloid Interface Sci. 167, 2–11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Burke, K. A. et al. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase ii. Mol. Cell 60, 231–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Banani, S. F. et al. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell. Biol. 18, 285–298 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Simon, J. R. et al. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Uversky, V. N. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44, 18–30 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Tombs, M. P., Newsom, B. G. & Wilding, P. Protein solubility: phase separation in arachin-salt-water systems. Int. J. Pept. Protein Res. 6, 253–277 (1974).

    CAS  PubMed  Google Scholar 

  75. 75.

    Tanaka, T., Ishimoto, C. & Chylack, L. T. Phase separation of a protein–water mixture in cold cataract in the young rat lens. Science 197, 1010–1012 (1977).

    CAS  PubMed  Google Scholar 

  76. 76.

    Tanaka, S., Ataka, M. & Ito, K. Pattern formation and coarsening during metastable phase separation in lysozyme solutions. Phys. Rev. E 65, 051804 (2002).

    Google Scholar 

  77. 77.

    Dumetz, A. C. et al. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys. J. 94, 570–583 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    McManus, J. J. et al. Altered phase diagram due to a single point mutation in human γD-crystallin. Proc. Natl Acad. Sci. USA 104, 16856–16861 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Pande, A. et al. Molecular basis of a progressive juvenile-onset hereditary cataract. Proc. Natl Acad. Sci. USA 97, 1993–1998 (2000).

    CAS  PubMed  Google Scholar 

  80. 80.

    Bergeron-Sandoval, L.-P., Safaee, N. & Michnick, S. W. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067–1079 (2016).

    CAS  PubMed  Google Scholar 

  81. 81.

    Zhou, H.-X. et al. Why do disordered and structured proteins behave differently in phase separation? Trends Biochem. Sci. 43, 499–516 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kaganovich, D. There is an inclusion for that: material properties of protein granules provide a platform for building diverse cellular functions. Trends Biochem. Sci. 42, 765–776 (2017).

    CAS  PubMed  Google Scholar 

  83. 83.

    Owen, M. C. et al. Effects of in vivo conditions on amyloid aggregation. Chem. Soc. Rev. (2019).

    Article  PubMed  Google Scholar 

  84. 84.

    Scott, R. L. The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: polymer 1–polymer 2–solvent. J. Chem. Phys. 17, 279–284 (1949).

    CAS  Google Scholar 

  85. 85.

    Gustafsson, Å., Wennerström, H. & Tjerneld, F. The nature of phase separation in aqueous two-polymer systems. Polymer 27, 1768–1770 (1986).

    CAS  Google Scholar 

  86. 86.

    Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    Lee, C. F. et al. Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys. Rev. Lett. 111, 088101 (2013).

    PubMed  Google Scholar 

  88. 88.

    Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lin, Y.-H., Forman-Kay, J. D. & Chan, H. S. Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57, 2499–2508 (2018).

    CAS  PubMed  Google Scholar 

  90. 90.

    Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).

    CAS  Google Scholar 

  91. 91.

    Lin, Y.-H. et al. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New J. Phys. 19, 115003 (2017).

    Google Scholar 

  92. 92.

    Ferreira, A. L., Uversky, N. V. & Zaslavsky, Y. B. Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes. Mol. Biosyst. 13, 2551–2563 (2017).

    CAS  PubMed  Google Scholar 

  93. 93.

    Ferreira, L. A. et al. Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn. 34, 92–103 (2016).

    CAS  PubMed  Google Scholar 

  94. 94.

    Ferreira, L. A., Uversky, V. N. & Zaslavsky, B. Y. Effects of the Hofmeister series of sodium salts on the solvent properties of water. Phys. Chem. Chem. Phys. 19, 5254–5261 (2017).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ferreira, L. A., Uversky, V. N. & Zaslavsky, B. Y. Modified binodal model describes phase separation in aqueous two-phase systems in terms of the effects of phase-forming components on the solvent features of water. J. Chromatogr. A 1567, 226–232 (2018).

    CAS  PubMed  Google Scholar 

  96. 96.

    da Silva, N. R. et al. Effects of sodium chloride and sodium perchlorate on properties and partition behavior of solutes in aqueous dextran-polyethylene glycol and polyethylene glycol–sodium sulfate two-phase systems. J. Chromatogr. A 1583, 28–38 (2019).

    PubMed  Google Scholar 

  97. 97.

    Ferreira, L. A. et al. Effect of human heat shock protein HspB6 on the solvent features of water in aqueous solutions. J. Biomol. Struct. Dyn. 36, 1520–1528 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Ferreira, L. A. et al. Effect of an intrinsically disordered plant stress protein on the properties of water. Biophys. J. 115, 1696–1706 (2018).

    CAS  PubMed  Google Scholar 

  99. 99.

    Ferreira, L. A., Uversky, V. N. & Zaslavsky, B. Y. Effects of amino acids on solvent properties of water. J. Mol. Liq. 277, 123–131 (2019).

    CAS  Google Scholar 

  100. 100.

    Zimmerman, S. B. & Trach, S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222, 599–620 (1991).

    CAS  PubMed  Google Scholar 

  101. 101.

    Bellissent-Funel, M.-C. et al. Water determines the structure and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016).

    CAS  PubMed  Google Scholar 

  102. 102.

    Ebbinghaus, S. et al. An extended dynamical hydration shell around proteins. Proc. Natl Acad. Sci. USA 104, 20749–20752 (2007).

    CAS  PubMed  Google Scholar 

  103. 103.

    Born, B. et al. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 141, 161–173 (2008).

    Google Scholar 

  104. 104.

    Persson, F., Söderhjelm, P. & Halle, B. The spatial range of protein hydration. J. Chem. Phys. 148, 215104 (2018).

    PubMed  Google Scholar 

  105. 105.

    Harada, R., Sugita, Y. & Feig, M. Protein crowding affects hydration structure and dynamics. J. Am. Chem. Soc. 134, 4842–4849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Persson, E. & Halle, B. Cell water dynamics on multiple time scales. Proc. Natl Acad. Sci. USA 105, 6266–6271 (2008).

    CAS  PubMed  Google Scholar 

  107. 107.

    Tros, M. et al. Picosecond orientational dynamics of water in living cells. Nat. Commun. 8, 904 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Vekilov, P. G. Phase transitions of folded proteins. Soft Matter 6, 5254–5272 (2010).

    CAS  Google Scholar 

  109. 109.

    Pal, S. K. & Zewail, A. H. Dynamics of water in biological recognition. Chem. Rev. 104, 2099–2124 (2004).

    CAS  PubMed  Google Scholar 

  110. 110.

    Rani, P. & Biswas, P. Diffusion of hydration water around intrinsically disordered proteins. J. Phys. Chem. B 119, 13262–13270 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Rani, P. & Biswas, P. Local structure and dynamics of hydration water in intrinsically disordered proteins. J. Phys. Chem. B 119, 10858–10867 (2015).

    CAS  PubMed  Google Scholar 

  112. 112.

    Arya, S. & Mukhopadhyay, S. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein. J. Phys. Chem. B 118, 9191–9198 (2014).

    CAS  PubMed  Google Scholar 

  113. 113.

    Arya, S. et al. Water rearrangements upon disorder-to-order amyloid transition. J. Phys. Chem. Lett. 7, 4105–4110 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Arya, S. et al. Femtosecond hydration map of intrinsically disordered α-synuclein. Biophys. J. 114, 2540–2551 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Thirumalai, D., Reddy, G. & Straub, J. E. Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45, 83–92 (2012).

    CAS  PubMed  Google Scholar 

  116. 116.

    Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell. Biol. 15, 384–396 (2014).

    CAS  PubMed  Google Scholar 

  117. 117.

    Chatani, E. & Yamamoto, N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 10, 527–534 (2018).

    CAS  PubMed  Google Scholar 

  118. 118.

    Reddy, G., Straub, J. E. & Thirumalai, D. Dynamics of locking of peptides onto growing amyloid fibrils. Proc. Natl Acad. Sci. USA 106, 11948–11953 (2009).

    CAS  PubMed  Google Scholar 

  119. 119.

    Reddy, G., Straub, J. E. & Thirumalai, D. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc. Natl Acad. Sci. USA 107, 21459–21464 (2010).

    CAS  PubMed  Google Scholar 

  120. 120.

    Fichou, Y. et al. Hydration water mobility is enhanced around tau amyloid fibers. Proc. Natl Acad. Sci. USA 112, 6365–6370 (2015).

    CAS  PubMed  Google Scholar 

  121. 121.

    Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Pavlova, A. et al. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau. Proc. Natl Acad. Sci. USA 113, E127–E136 (2016).

    CAS  PubMed  Google Scholar 

  123. 123.

    Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  124. 124.

    Ambadipudi, S. et al. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat. Commun. 8, 275 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Boyko, S. et al. Liquid–liquid phase separation of tau protein: the crucial role of electrostatic interactions. J. Biol. Chem. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Ray, S. et al. Liquid–liquid phase separation and liquid-to-solid transition mediate α-synuclein amyloid fibril containing hydrogel formation. Preprint at bioRxiv (2019).

  127. 127.

    Reichheld, S. E. et al. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl Acad. Sci. USA 114, E4408–E4415 (2017).

    CAS  PubMed  Google Scholar 

  128. 128.

    Rauscher, S. & Pomès, R. The liquid structure of elastin. eLife 6, e26526 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Lin, Y. et al. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8, e42571 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).

    CAS  Google Scholar 

  131. 131.

    Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    PubMed  Google Scholar 

  134. 134.

    Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Yoon, J. et al. Dynamical transition and heterogeneous hydration dynamics in RNA. J. Phys. Chem. B 118, 7910–7919 (2014).

    CAS  PubMed  Google Scholar 

  136. 136.

    Lammert, H. et al. RNA as a complex polymer with coupled dynamics of ions and water in the outer solvation sphere. J. Phys. Chem. B 122, 11218–11227 (2018).

    CAS  PubMed  Google Scholar 

  137. 137.

    Denisov, V. P. et al. Orientational disorder and entropy of water in protein cavities. J. Phys. Chem. B 101, 9380–9389 (1997).

    CAS  Google Scholar 

  138. 138.

    Chong, S.-H. & Ham, S. Dynamics of hydration water plays a key role in determining the binding thermodynamics of protein complexes. Sci. Rep. 7, 8744 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Broide, M. L., Tominc, T. M. & Saxowsky, M. D. Using phase transitions to investigate the effect of salts on protein interactions. Phys. Rev. E 53, 6325–6335 (1996).

    CAS  Google Scholar 

  140. 140.

    Möller, J. et al. Reentrant liquid-liquid phase separation in protein solutions at elevated hydrostatic pressures. Phys. Rev. Lett. 112, 028101 (2014).

    PubMed  Google Scholar 

  141. 141.

    Barnett, G. V. et al. Osmolyte effects on monoclonal antibody stability and concentration-dependent protein interactions with water and common osmolytes. J. Phys. Chem. B 120, 3318–3330 (2016).

    CAS  PubMed  Google Scholar 

  142. 142.

    Annunziata, O. et al. Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions. Proc. Natl Acad. Sci. USA 99, 14165–14170 (2002).

    CAS  PubMed  Google Scholar 

  143. 143.

    Protter, D. S. W. et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 22, 1401–1412 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Kaur, T. et al. Molecular crowding tunes material states of ribonucleoprotein condensates. Biomolecules 9, 71 (2019).

    CAS  PubMed Central  Google Scholar 

  145. 145.

    Samanta, N. et al. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie 104, 81–89 (2014).

    CAS  PubMed  Google Scholar 

  146. 146.

    Verma, P. K. et al. Role of hydration on the functionality of a proteolytic enzyme α-chymotrypsin under crowded environment. Biochimie 93, 1424–1433 (2011).

    CAS  PubMed  Google Scholar 

  147. 147.

    Zhang, J. in Protein–Protein interactions — Computational and Experimental Tools (eds Cai, W. & Hong, H.) 359–376 (InTechOpen, 2012).

  148. 148.

    Urry, D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J. Protein Chem. 7, 1–34 (1988).

    CAS  PubMed  Google Scholar 

  149. 149.

    Li, N. K. et al. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

    CAS  PubMed  Google Scholar 

  150. 150.

    Wuttke, R. et al. Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc. Natl Acad. Sci. USA 111, 5213–5218 (2014).

    CAS  PubMed  Google Scholar 

  151. 151.

    Wallace, E. W. J. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Narayanaswamy, R. et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl Acad. Sci. USA 106, 10147–10152 (2009).

    CAS  PubMed  Google Scholar 

  153. 153.

    Petrovska, I. et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3, e02409 (2014).

    PubMed Central  Google Scholar 

  154. 154.

    Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Kuffel, A. How water mediates the long-range interactions between remote protein molecules. Phys. Chem. Chem. Phys. 19, 5441–5448 (2017).

    CAS  PubMed  Google Scholar 

  156. 156.

    Samanta, N. et al. Effect of short chain poly(ethylene glycol)s on the hydration structure and dynamics around human serum albumin. Langmuir 32, 831–837 (2016).

    CAS  PubMed  Google Scholar 

  157. 157.

    King, J. T. et al. Crowding induced collective hydration of biological macromolecules over extended distances. J. Am. Chem. Soc. 136, 188–194 (2014).

    CAS  PubMed  Google Scholar 

  158. 158.

    Aggarwal, L. & Biswas, P. Hydration water distribution around intrinsically disordered proteins. J. Phys. Chem. B 122, 4206–4218 (2018).

    CAS  PubMed  Google Scholar 

  159. 159.

    Ditlev, J. A., Case, L. B. & Rosen, M. K. Who’s in and who’s out — compositional control of biomolecular condensates. J. Mol. Biol. 430, 4666–4684 (2018).

    CAS  PubMed  Google Scholar 

  160. 160.

    Wang, T. et al. Water distribution, dynamics, and interactions with Alzheimer’s β-amyloid fibrils investigated by solid-state NMR. J. Am. Chem. Soc. 139, 6242–6252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Yang, X. et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34, 810–824 (2016).

    CAS  PubMed  Google Scholar 

  162. 162.

    Shiraga, K. et al. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl. Phys. Lett. 106, 253701 (2015).

    Google Scholar 

  163. 163.

    Li, H.-R. et al. TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. J. Biol. Chem. 293, 6090–6098 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Vanderweyde, T. et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 15, 1455–1466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Luo, Y., Na, Z. & Slavoff, S. A. P-bodies: composition, properties, and functions. Biochemistry 57, 2424–2431 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Nakagawa, S., Yamazaki, T. & Hirose, T. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol. 8, 180150 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Li, H.-R. et al. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43. Biochim. Biophys. Acta 1866, 214–223 (2018).

    CAS  Google Scholar 

  170. 170.

    Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Dao, T. P. et al. Ubiquitin modulates liquid–liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3, e04123 (2014).

    PubMed Central  Google Scholar 

  174. 174.

    Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, e13571 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Banerjee, P. R. et al. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. 56, 11354–11359 (2017).

    CAS  Google Scholar 

  177. 177.

    Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Nguemaha, V. & Zhou, H.-X. Liquid–liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation. Sci. Rep. 8, 6728 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Kucherenko, M. M. & Shcherbata, H. R. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J. Cell Sci. 131, jcs202002 (2018).

    PubMed  Google Scholar 

  180. 180.

    Conicella, A. E. et al. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Google Scholar 

  182. 182.

    Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    CAS  Google Scholar 

  183. 183.

    Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry 57, 2415–2423 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Harmon, T. S. et al. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719 (2018).

    CAS  PubMed  Google Scholar 

  186. 186.

    Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    CAS  PubMed  Google Scholar 

  187. 187.

    Banjade, S. et al. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proc. Natl Acad. Sci. USA 112, E6426–E6435 (2015).

    CAS  PubMed  Google Scholar 

  188. 188.

    Ferrolino, M. C. et al. Compositional adaptability in NPM1-SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms. Nat. Commun. 9, 5064 (2018).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Google Scholar 

  190. 190.

    Gallo, A. et al. Structure of nucleophosmin DNA-binding domain and analysis of its complex with a G-quadruplex sequence from the c-MYC promoter. J. Biol. Chem. 287, 26539–26548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Wheeler, K. E. et al. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization “squares” and the binding of electron-transfer-reactive configurations. J. Am. Chem. Soc. 129, 3906–3917 (2007).

    CAS  PubMed  Google Scholar 

  192. 192.

    Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  193. 193.

    Fourmy, D. et al. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367–1371 (1996).

    CAS  PubMed  Google Scholar 

Download references


The authors acknowledge Michael Smith for language advice. S.S.R., N.S. and S.E. acknowledge funding from the Human Frontier Science Program (HFSP; RGP0022/2017), Deutsche Forschungsgemeinschaft (German Research Foundation; SPP 2191) and the German–Israeli Foundation for Scientific Research and Development (grant 1410). J.C.M. acknowledges the Foundation for Science and Technology (FCT), Portugal, for financial support through the Centre of Chemistry of the University of Minho (CQ-UM) (project UID/QUI/00686/2016).

Author information




All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to João C. Marcos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Amyloid fibrils

Highly ordered structures that result from protein aggregation and oligomer formation or association. These structures are bound together by interactions between β sheets. They are associated with several neurodegenerative diseases, such as Parkinson disease, amyotrophic lateral sclerosis and Alzheimer disease.


A liquid–liquid, phase-separation process that leads to the formation of a colloidal phase of concentrated solutions of charged or neutral molecules, including synthetic polymers, polyelectrolytes, polysaccharides and proteins.


Polymers and proteins that can be used in vitro to mimic the highly concentrated and heterogeneous environment within cells.


When facing conditions that are not ideal for growing, cells arrest their division cycle, entering a dormant state that involves biomolecular reorganization and diminished metabolic activity.


Solutes composed by both hydrophobic and hydrophilic sequences that solubilize hydrophobic compounds in water.

Intrinsically disordered protein

(IDP). A protein that does not have a well-defined 3D structure and exhibits high structural flexibility.

Intrinsically disordered protein region

(IDPR). A region within a protein that does not have a well-defined 3D structure and exhibits high structural flexibility.

Liquid–liquid phase separation

(LLPS). A process that involves two solutes demixing and forming two new phases of different composition. This is thought to be the basis for the formation of membraneless organelles.

Liquid-to-solid phase transition

(LSPT). Under ageing or stress conditions, the liquid compartments of membraneless organelles can change to a different, solid phase because their components (proteins) aggregate and eventually form amyloids.

Membraneless organelle

(MLO). An intracellular compartment without a membrane, formed through phase separation due to the heterogeneous distribution of biomolecules. It exhibits a liquid nature and provides a microenvironment that can serve a defined function, such as RNA metabolism.


A small molecule, such as a polyol, amino acid or methylamine, that alters protein folding and stability under osmotic stress conditions.

Protein aggregation

A phenomenon involving intermolecular interactions between misfolded proteins. This is usually the origin of amyloid formation and consequent diseases.

Quinary interactions

Weak, specific and transient interactions between proteins and other biomolecules that appear to have a crucial function in cellular organization.

Solvent regime

A polymer chemistry concept that reflects the favourability of polymer chains with the solvent relative to chain–solvent and solvent–solvent interactions. In the poor solvent regime, intramolecular and intermolecular interactions of the polymer are favoured in comparison with chain–solvent interactions and, so, the solvent is considered poor. The inverse situation applies in the good solvent regime.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, S.S., Samanta, N., Ebbinghaus, S. et al. The synergic effect of water and biomolecules in intracellular phase separation. Nat Rev Chem 3, 552–561 (2019).

Download citation

Further reading