Abstract
The importance of stereochemistry to the function of molecules is generally well understood. However, to date, control over stereochemistry and its potential to influence properties of the resulting polymers are, as yet, not fully realized. This Review focuses on the state of the art with respect to how stereochemistry in polymers has been used to influence and control their physical and mechanical properties, as well as begin to control their function. A brief overview of the synthetic methodology by which to access these materials is included, with the main focus directed towards the effect of stereochemistry on mechanical properties, biodegradation and conductivity. In addition, advances in applications of stereodefined polymers for enantioseparation and as supports for catalysts in asymmetric transformations are discussed. Finally, we consider the opportunities that the rich stereochemistry of sustainably sourced monomers might offer in this field. Where possible, we have drawn parallels between design principles in order to identify opportunities and limitations that these approaches may present in their effects on materials properties, performance and function.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Recent advances in enantioselective ring-opening polymerization and copolymerization
Communications Chemistry Open Access 29 September 2023
-
Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide
Nature Communications Open Access 20 June 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Jenkins, A. D. Stereochemical definitions and notations relating to polymers. Pure Appl. Chem. 53, 733–752 (1981).
Wulff, G. Main-chain chirality and optical activity in polymers consisting of C-C chains. Angew. Chem. Int. Ed. Engl. 28, 21–37 (1989).
Schildknecht, C. E., Gross, S. T., Davidson, H. R., Lambert, J. M. & Zoss, A. O. Polyvinyl isobutyll ethers. Ind. Eng. Chem. 40, 2104–2115 (1948).
Natta, G. et al. Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 77, 1708–1710 (1955).
Natta, G., Corradini, P. & Bassi, I. W. Crystal structure of isotactic polystyrene. Nuovo Cimento 15, 68–82 (1960).
Fox, T. G. et al. Crystalline polymers of methyl methacrylate. J. Am. Chem. Soc. 80, 1768–1769 (1958).
Coates, G. W. & Domski, G. J. in Organotransition Metal Chemistry: From Bonding to Catalysis Ch. 22 (ed. Hartwig, J. F.) 1047–1100 (Univ. Science Books, 2010).
Tabba, H. D., Hijji, Y. M. & Abu-Surrah, A. S. in Polyolefin Compounds and Materials: Fundamentals and Industrial Applications Ch. 3 (eds Al-Ali AlMa’adeed, M. & Krupa, I.) 51–77 (Springer International Publishing, 2016).
Domski, G. J., Rose, J. M., Coates, G. W., Bolig, A. D. & Brookhart, M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog. Polym. Sci. 32, 30–92 (2007).
Busico, V. & Cipullo, R. Microstructure of polypropylene. Prog. Polym. Sci. 26, 443–533 (2001).
Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 100, 1223–1252 (2000).
Resconi, L., Cavallo, L., Fait, A. & Piemontesi, F. Selectivity in propene polymerization with metallocene catalysts. Chem. Rev. 100, 1253–1346 (2000).
Brintzinger, H. H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. Engl. 34, 1143–1170 (1995).
Natta, G. Properties of isotactic, atactic, and stereoblock homopolymers, random and block copolymers of α-olefins. J. Polym. Sci. 34, 531–549 (1959).
Giller, C. et al. Synthesis, characterization, and electrospinning of architecturally-discrete isotactic–atactic–isotactic triblock stereoblock polypropene elastomers. Macromolecules 44, 471–482 (2011).
Harney, M. B., Zhang, Y. & Sita, L. R. Discrete, multiblock isotactic–atactic stereoblock polypropene microstructures of differing block architectures through programmable stereomodulated living Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 45, 2400–2404 (2006).
Tarek, T. M. & Mark, J. E. Mesoscopic modeling of the polymerization, morphology, and crystallization of stereoblock and stereoregular polypropylenes. J. Polym. Sci. B 40, 840–853 (2002).
Coates, G. W. & Waymouth, R. M. Oscillating stereocontrol: a strategy for the synthesis of thermoplastic elastomeric polypropylene. Science 267, 217–219 (1995). An excellent example of modulating tacticity to finely control mechanical properties.
Mallin, D. T., Rausch, M. D., Lin, Y. G., Dong, S. & Chien, J. C. W. rac-[Ethylidene(1-.eta.5-tetramethylcyclopentadienyl)(1-.eta.5-indenyl)]dichlorotitanium and its homopolymerization of propylene to crystalline-amorphous block thermoplastic elastomers. J. Am. Chem. Soc. 112, 2030–2031 (1990).
Collette, J. W. et al. Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts. 1. Synthesis and properties of high molecular weight stereoblock homopolymers. Macromolecules 22, 3851–3858 (1989).
Natta, G., Pasquon, I. & Zambelli, A. Stereospecific catalysts for the head-to-tail polymerization of propylene to a crystalline syndiotactic polymer. J. Am. Chem. Soc. 84, 1488–1490 (1962).
Thomann, R., Wang, C., Kressler, J., Jüngling, S. & Mülhaupt, R. Morphology of syndiotactic polypropylene. Polymer 36, 3795–3801 (1995).
Lovinger, A. J., Lotz, B., Davis, D. D. & Schumacher, M. Morphology and thermal properties of fully syndiotactic polypropylene. Macromolecules 27, 6603–6611 (1994).
De Rosa, C. & Corradini, P. Crystal structure of syndiotactic polypropylene. Macromolecules 26, 5711–5718 (1993).
Ahmad, N., Di Girolamo, R., Auriemma, F., De Rosa, C. & Grizzuti, N. Relations between stereoregularity and melt viscoelasticity of syndiotactic polypropylene. Macromolecules 46, 7940–7946 (2013).
Takebe, T., Yamasaki, K., Funaki, K. & Malanga, M. in Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications (ed. Schellenberg, J.) 267–394 (Wiley, 2009).
Ishihara, N., Seimiya, T., Kuramoto, M. & Uoi, M. Crystalline syndiotactic polystyrene. Macromolecules 19, 2464–2465 (1986). The first report of syndiotactic polystyrene, a polymer that exhibits markedly improved thermomechanical properties compared with isotactic polystyrene.
Woo, E. M., Sun, Y. S. & Yang, C. P. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene versus its miscible blends. Prog. Polym. Sci. 26, 945–983 (2001).
Wang, C., Lin, C.-C. & Tseng, L.-C. Miscibility, crystallization and morphologies of syndiotactic polystyrene blends with isotactic polystyrene and with atactic polystyrene. Polymer 47, 390–402 (2006).
Cimmino, S., Pace, E. D., Martuscelli, E. & Silvestre, C. Syndiotactic polystyrene: crystallization and melting behaviour. Polymer 32, 1080–1083 (1991).
Chen, K., Harris, K. & Vyazovkin, S. Tacticity as a factor contributing to the thermal stability of polystyrene. Macromol. Chem. Phys. 208, 2525–2532 (2007).
Ishihara, N. Syntheses and properties of syndiotactic polystyrene. Macromol. Symp. 89, 553–562 (1995).
Huang, C.-L., Chen, Y.-C., Hsiao, T.-J., Tsai, J.-C. & Wang, C. Effect of tacticity on viscoelastic properties of polystyrene. Macromolecules 44, 6155–6161 (2011).
Annunziata, L. et al. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Mater. Chem. Phys. 141, 891–902 (2013).
Annunziata, L., Sarazin, Y., Duc, M. & Carpentier, J. F. Well-defined syndiotactic polystyrene-b-atactic polystyrene stereoblock polymers. Macromol. Rapid Commun. 32, 751–757 (2011).
Banerjee, S., Paira Tapas, K. & Mandal Tarun, K. Control of molecular weight and tacticity in stereospecific living cationic polymerization of α-methylstyrene at 0 °C using FeCl3-based initiators: effect of tacticity on thermal properties. Macromol. Chem. Phys. 214, 1332–1344 (2013).
Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 109, 5157–5214 (2009).
Ute, K., Miyatake, N. & Hatada, K. Glass transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13 mer to 50 mer. Polymer 36, 1415–1419 (1995).
Biros, J., Larina, T., Trekoval, J. & Pouchlý, J. Dependence of the glass transition temperature of poly (methyl methacrylates) on their tacticity. Colloid Polym. Sci. 260, 27–30 (1982).
Bywater, S. & Toporowski, P. M. Effect of stereostructure on glass transition temperatures of poly(methyl methacrylate). Polymer 13, 94–96 (1972).
Katime, I. & Calleja Ricardo, D. Dynamic mechanical properties of isotactic PMMA. Polym. Int. 35, 281–285 (1994).
Gillham, J. K., Stadnicki, S. J. & Hazony, Y. Low-frequency thermomechanical spectrometry of polymeric materials: tactic poly(methyl methacrylates). J. Appl. Polym. Sci. 21, 401–424 (1977).
Min, K. E. & Paul, D. R. Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci. B 26, 1021–1033 (2003).
Semen, J. & Lando, J. B. The acid hydrolysis of isotactic and syndiotactic poly(methyl methacrylate). Macromolecules 2, 570–575 (1969).
Loecker, W. D. & Smets, G. Hydrolysis of methacrylic acid–methyl methacrylate copolymers. J. Polym. Sci. 40, 203–216 (1959).
Samal, S. & Thompson, B. C. Converging the hole mobility of poly(2-N-carbazoylethyl acrylate) with conjugated polymers by tuning isotacticity. ACS Macro Lett. 7, 1161–1167 (2018).
Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439–1443 (2019).
Severn, J. R. & Chadwick, J. C. Tailor-Made Polymers (Wiley-VCH Verlag, 2008).
Chen, X., Caporaso, L., Cavallo, L. & Chen, E. Y. X. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: from stereo-random to stereo-perfect polymers. J. Am. Chem. Soc. 134, 7278–7281 (2012).
Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).
Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).
Gandini, A. & Lacerda, T. M. From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015).
Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).
Dudley, B. BP statistical review of world energy. June 2017. BP https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf (2017).
Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).
Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).
Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016).
Södergård, A. & Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002).
Drumright, R. E., Gruber, P. R. & Henton, D. E. Polylactic acid technology. Adv. Mater. 12, 1841–1846 (2000).
Albertsson, A. C. & Varma, I. K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4, 1466–1486 (2003).
Ikada, Y. & Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 21, 117–132 (2000).
Dechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 104, 6147–6176 (2004).
Gross, R. A. & Kalra, B. Biodegradable polymers for the environment. Science 297, 803–807 (2002).
Dove, A. P. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem. Commun. 2008, 6446–6470 (2008).
Stanford, M. J. & Dove, A. P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 39, 486–494 (2010).
Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 39, 165–173 (2010).
Hong, M. & Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).
Chile, L.-E., Mehrkhodavandi, P. & Hatzikiriakos, S. G. A comparison of the rheological and mechanical properties of isotactic, syndiotactic, and heterotactic poly(lactide). Macromolecules 49, 909–919 (2016).
Othman, N., Acosta-Ramírez, A., Mehrkhodavandi, P., Dorgan, J. R. & Hatzikiriakos, S. G. Solution and melt viscoelastic properties of controlled microstructure poly(lactide). J. Rheol. 55, 987–1005 (2011).
Södergård, A. & Stolt, M. in Poly(Lactic Acid) Ch. 3 (eds Auras, R. et al.) 27–41 (Wiley, 2010).
Saeidlou, S., Huneault, M. A., Li, H. & Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 37, 1657–1677 (2012).
Feng, L. et al. Thermal properties of polylactides with different stereoisomers of lactides used as comonomers. Macromolecules 50, 6064–6073 (2017).
Inkinen, S., Hakkarainen, M., Albertsson, A.-C. & Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12, 523–532 (2011).
Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2001).
He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).
Sun, L. et al. Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol-ene radical reactions. Polym. Chem. 7, 2337–2341 (2016).
Pitto-Barry, A., Kirby, N., Dove, A. P. & O’Reilly, R. K. Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym. Chem. 5, 1427–1436 (2014).
Sun, L. et al. Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules 46, 9074–9082 (2013).
Petzetakis, N., Walker, D., Dove, A. P. & O’Reilly, R. K. Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter 8, 7408–7414 (2012).
Petzetakis, N., Dove, A. P. & O’Reilly, R. K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2, 955–960 (2011).
Sharma, M. & Dhingra, H. K. Poly-β-hydroxybutyrate: a biodegradable polyester, biosynthesis and biodegradation. Br. Microbiol. Res. J. 14, 1–11 (2016).
Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).
Lee Sang, Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–14 (1996).
Yokouchi, M., Chatani, Y., Tadokoro, H., Teranishi, K. & Tani, H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate). Polymer 14, 267–272 (1973).
Cornibert, J. & Marchessault, R. H. Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J. Mol. Biol. 71, 735–756 (1972).
Alper, R., Lundgren, D. G., Marchessault, R. H. & Cote, W. A. Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1, 545–556 (1963).
Tang, X. & Chen, E. Y. X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).
Bloembergen, S., Holden, D. A., Bluhm, T. L., Hamer, G. K. & Marchessault, R. H. Stereoregularity in synthetic β-hydroxybutyrate and β-hydroxyvalerate homopolyesters. Macromolecules 22, 1656–1663 (1989).
Bloembergen, S., Holden, D. A., Bluhm, T. L., Hamer, G. K. & Marchessault, R. H. Synthesis of crystalline β-hydroxybutyrate/β-hydroxyvalerate copolyesters by coordination polymerization of β-lactones. Macromolecules 20, 3086–3089 (1987).
Pearce, R. & Marchessault, R. H. Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer 35, 3990–3997 (1994).
Pearce, R., Jesudason, J., Orts, W., Marchessault, R. H. & Bloembergen, S. Blends of bacterial and synthetic poly(β-hydroxybutyrate): effect of tacticity on melting behaviour. Polymer 33, 4647–4649 (1992).
Kunze, C. et al. In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material. Biomaterials 27, 192–201 (2006).
Ligny, R., Hänninen, M. M., Guillaume, S. M. & Carpentier, J.-F. Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemic β-lactones. Angew. Chem. Int. Ed. 56, 10388–10393 (2017).
Ajellal, N. et al. Syndiotactic-enriched poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules 42, 987–993 (2009).
Amgoune, A., Thomas, C. M., Ilinca, S., Roisnel, T. & Carpentier, J. F. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Angew. Chem. Int. Ed. 45, 2782–2784 (2006).
Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 124, 15239–15248 (2002).
Kricheldorf, H. R. & Lee, S.-R. Polylactones. 35. macrocyclic and stereoselective polymerization of β-D,L-butyrolactone with cyclic dibutyltin initiators. Macromolecules 28, 6718–6725 (1995).
Hocking, P. J. & Marchessault, R. H. Syndiotactic poly[(R,S)-β-hydroxybutyrate]isolated from methylaluminoxane-catalyzed polymerization. Polym. Bull. 30, 163–170 (1993).
Abe, H., Matsubara, I., Doi, Y., Hori, Y. & Yamaguchi, A. Physical properties and enzymic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities. Macromolecules 27, 6018–6025 (1994).
Jaffredo, C. G., Chapurina, Y., Guillaume, S. M. & Carpentier, J. F. From syndiotactic homopolymers to chemically tunable alternating copolymers: highly active yttrium complexes for stereoselective ring-opening polymerization of β-malolactonates. Angew. Chem. Int. Ed. 53, 2687–2691 (2014).
Carpentier, J. F. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun. 31, 1696–1705 (2010).
Ajellal, N., Thomas, C. M. & Carpentier, J. F. Functional syndiotactic poly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J. Polym. Sci. A 47, 3177–3189 (2009).
Xu, Y.-C., Ren, W.-M., Zhou, H., Gu, G.-G. & Lu, X.-B. Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones. Macromolecules 50, 3131–3142 (2017).
Fagerland, J., Finne-Wistrand, A. & Pappalardo, D. Modulating the thermal properties of poly(hydroxybutyrate) by the copolymerization of rac-β-butyrolactone with lactide. New J. Chem. 40, 7671–7679 (2016).
Barouti, G., Jarnouen, K., Cammas-Marion, S., Loyer, P. & Guillaume, S. M. Polyhydroxyalkanoate-based amphiphilic diblock copolymers as original biocompatible nanovectors. Polym. Chem. 6, 5414–5429 (2015).
Jaffredo, C. G. & Guillaume, S. M. Benzyl β-malolactonate polymers: a long story with recent advances. Polym. Chem. 5, 4168–4194 (2014).
Jaffredo, C. G., Carpentier, J.-F. & Guillaume, S. M. Organocatalyzed controlled ROP of β-lactones towards poly(hydroxyalkanoate)s: from β-butyrolactone to benzyl β-malolactone polymers. Polym. Chem. 4, 3837–3850 (2013).
Jaffredo, C. G., Carpentier, J.-F. & Guillaume, S. M. Poly(hydroxyalkanoate) block or random copolymers of β-butyrolactone and benzyl β-malolactone: a matter of catalytic tuning. Macromolecules 46, 6765–6776 (2013).
Ajellal, N., Thomas, C. M., Aubry, T., Grohens, Y. & Carpentier, J.-F. Encapsulation and controlled release of l-leuprolide from poly(β-hydroxyalkanoate)s: impact of microstructure and chemical functionalities. New J. Chem. 35, 876–880 (2011).
Benvenuti, M. & Lenz Robert, W. Polymerization and copolymerization of β-butyrolactone and benzyl-β-malolactonate by aluminoxane catalysts. J. Polym. Sci. A 29, 793–805 (1991).
Yu, I., Ebrahimi, T., Hatzikiriakos, S. G. & Mehrkhodavandi, P. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts. Dalton Trans. 44, 14248–14254 (2015).
MacDonald, J. P. et al. Tuning thermal properties and microphase separation in aliphatic polyester ABA copolymers. Polym. Chem. 6, 1445–1453 (2015).
Aluthge, D. C. et al. PLA–PHB–PLA triblock copolymers: synthesis by sequential addition and investigation of mechanical and rheological properties. Macromolecules 46, 3965–3974 (2013).
Cross, E. D., Allan, L. E. N., Decken, A. & Shaver, M. P. Aluminum salen and salan complexes in the ring-opening polymerization of cyclic esters: controlled immortal and copolymerization of rac-β-butyrolactone and rac-lactide. J. Polym. Sci. A 51, 1137–1146 (2012).
Jeffery, B. J. et al. Group 4 initiators for the stereoselective ROP of rac-β-butyrolactone and its copolymerization with rac-lactide. Chem. Commun. 47, 12328–12330 (2011).
Hiki, S., Miyamoto, M. & Kimura, Y. Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer. Polymer 41, 7369–7379 (2000).
Barouti, G., Jaffredo, C. G. & Guillaume, S. M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog. Polym. Sci. 73, 1–31 (2017).
Paul, S. et al. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 51, 6459–6479 (2015).
Klein, R. & Wurm, F. R. Aliphatic polyethers: classical polymers for the 21st century. Macromol. Rapid Commun. 36, 1147–1165 (2015).
Childers, M. I., Longo, J. M., Van Zee, N. J., LaPointe, A. M. & Coates, G. W. Stereoselective epoxide polymerization and copolymerization. Chem. Rev. 114, 8129–8152 (2014).
Kielland, N., Whiteoak, C. J. & Kleij, A. W. Stereoselective synthesis with carbon dioxide. Adv. Synth. Catal. 355, 2115–2138 (2013).
Lu, X.-B., Ren, W.-M. & Wu, G.-P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721–1735 (2012).
Ajiro, H., Widger, P. C. B., Ahmed, S. M., Allen, S. D. & Coates, G. W. in Polymer Science: A Comprehensive Reference (ed. Möller, M.) 165–181 (Elsevier, 2012).
Vaccarello, D. N. et al. Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc. 140, 6208–6211 (2018).
Childers, M. I. et al. Isospecific, chain shuttling polymerization of propylene oxide using a bimetallic chromium catalyst: a new route to semicrystalline polyols. J. Am. Chem. Soc. 139, 11048–11054 (2017).
Ghosh, S., Lund, H., Jiao, H. & Mejía, E. Rediscovering the isospecific ring-opening polymerization of racemic propylene oxide with dibutylmagnesium. Macromolecules 50, 1245–1250 (2017).
Widger, P. C. B. et al. Isospecific polymerization of racemic epoxides: a catalyst system for the synthesis of highly isotactic polyethers. Chem. Commun. 46, 2935–2937 (2010).
Thomas, R. M. et al. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J. Am. Chem. Soc. 132, 16520–16525 (2010).
Hirahata, W., Thomas, R. M., Lobkovsky, E. B. & Coates, G. W. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides. J. Am. Chem. Soc. 130, 17658–17659 (2008).
Peretti, K. L., Ajiro, H., Cohen, C. T., Lobkovsky, E. B. & Coates, G. W. A highly active, isospecific cobalt catalyst for propylene oxide polymerization. J. Am. Chem. Soc. 127, 11566–11567 (2005).
Wu, B., Harlan, C. J., Lenz, R. W. & Barron, A. R. Stereoregular polymerization of (R,S)-propylene oxide by an alumoxane–propylene oxide complex. Macromolecules 30, 316–318 (1997).
Lal, J. & Trick, G. S. Glass transformation temperatures of polymers of olefin oxides and olefin sulfides. J. Polym. Sci. A 8, 2339–2350 (1970).
Cesari, M., Perego, G. & Marconi, W. The crystal structure of isotactic poly (propylene oxide). Makromol. Chem. 94, 194–204 (1966).
Stanley, E. & Litt, M. Crystal structure of d,l-poly(propylene oxide). J. Polym. Sci. 43, 453–458 (1960).
McGrath, A. J. et al. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers. Polym. Chem. 6, 1465–1473 (2015).
Zhang, X.-H., Wei, R.-J., Zhang, Y. Y., Du, B.-Y. & Fan, Z.-Q. Carbon dioxide/epoxide copolymerization via a nanosized zinc–cobalt(III) double metal cyanide complex: substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures. Macromolecules 48, 536–544 (2015).
Li, B., Zhang, R. & Lu, X.-B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 40, 2303–2307 (2007).
Lu, X.-B. et al. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc. 128, 1664–1674 (2006).
Cohen, C. T., Chu, T. & Coates, G. W. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J. Am. Chem. Soc. 127, 10869–10878 (2005).
Lu, X. B. & Wang, Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed. 43, 3574–3577 (2004).
Qin, Z., Thomas, C. M., Lee, S. & Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 42, 5484–5487 (2003).
Longo, J. M., DiCiccio, A. M. & Coates, G. W. Poly(propylene succinate): a new polymer stereocomplex. J. Am. Chem. Soc. 136, 15897–15900 (2014).
Ellis, W. C. et al. Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 5, 4004–4011 (2014).
Hua, Y. Z. et al. Highly enantioselective catalytic system for asymmetric copolymerization of carbon dioxide and cyclohexene oxide. Chem. Eur. J. 20, 12394–12398 (2014).
Liu, Y., Ren, W. M., Liu, J. & Lu, X. B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed. 52, 11594–11598 (2013).
Wu, G.-P. et al. Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure salen Co(III) complexes: synthesis of crystalline CO2-based polycarbonate. J. Am. Chem. Soc. 134, 5682–5688 (2012).
Ren, W.-M. et al. Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules 43, 1396–1402 (2010).
Nakano, K., Nakamura, M. & Nozaki, K. Alternating copolymerization of cyclohexene oxide with carbon dioxide catalyzed by (salalen)CrCl complexes. Macromolecules 42, 6972–6980 (2009).
Shi, L. et al. Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39, 5679–5685 (2006).
Xiao, Y., Wang, Z. & Ding, K. Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts. Chem. Eur. J. 11, 3668–3678 (2005).
Nakano, K., Nozaki, K. & Hiyama, T. Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes. J. Am. Chem. Soc. 125, 5501–5510 (2003).
Cheng, M., Darling, N. A., Lobkovsky, E. B. & Coates, G. W. Enantiomerically-enriched organic reagents via polymer synthesis: enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts. Chem. Commun. 2000, 2007–2008 (2000).
Nozaki, K., Nakano, K. & Hiyama, T. Optically active polycarbonates: asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. J. Am. Chem. Soc. 121, 11008–11009 (1999).
Cohen, C. T., Thomas, C. M., Peretti, K. L., Lobkovsky, E. B. & Coates, G. W. Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(III) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate). Dalton Trans. 2006, 237–249 (2006).
Ciardelli, F., Benedetti, E. & Pieroni, O. Polymerization of racemic and optically active 4-methyl-1-hexyne. Makromol. Chem. 103, 1–18 (1967).
Pu, L. The study of chiral conjugated polymers. Acta Polym. 48, 116–141 (2003).
Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).
Balint, R., Cassidy, N. J. & Cartmell, S. H. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341–2353 (2014).
Ibanez, J. G. et al. Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem. Rev. 118, 4731–4816 (2018).
Kane-Maguire, L. A. P. & Wallace, G. G. Chiral conducting polymers. Chem. Soc. Rev. 39, 2545–2576 (2010).
Torsi, L. et al. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 7, 412–417 (2008).
Yao, Y., Dong, H. & Hu, W. Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197–5205 (2013).
Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).
Tessler, N., Preezant, Y., Rappaport, N. & Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009).
Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).
Schwartz, B. J. Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).
Zheng, C. et al. Relationships between main-chain chirality and photophysical properties in chiral conjugated polymers. J. Mater. Chem. C 2, 7336–7347 (2014).
Amabilino, D. B. in Chirality in Supramolecular Assemblies: Causes and Consequences Ch. 6 (ed. Keene, R. F.) (John Wiley & Sons, 2017).
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).
Miyake, J., Tsuji, Y., Nagai, A. & Chujo, Y. Nanofiber formation via the self-assembly of a chiral regioregular poly(azomethine). Chem. Commun. 2009, 2183–2185 (2009).
Dai, X. M., Goto, H., Akagi, K. & Shirakawa, H. Synthesis and properties of novel ferroelectric liquid crystalline polyacetylene derivatives. Synth. Met. 102, 1289–1290 (1999).
Larossi, D. et al. Synthesis and spectroscopic and electrochemical characterisation of a conducting polythiophene bearing a chiral β-substituent: polymerisation of (+)-4,4΄-bis[(S)-2-methylbutylsulfanyl]-2,2΄-bithiophene. Chem. Eur. J. 7, 676–685 (2001).
Zou, W. et al. Biomimetic superhelical conducting microfibers with homochirality for enantioselective sensing. J. Am. Chem. Soc. 136, 578–581 (2014).
Yan, Y., Fang, J., Liang, J., Zhang, Y. & Wei, Z. Helical heterojunctions originating from helical inversion of conducting polymer nanofibers. Chem. Commun. 48, 2843–2845 (2012).
Weng, S., Lin, Z., Chen, L. & Zhou, J. Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochim. Acta 55, 2727–2733 (2010).
Yan, Y., Yu, Z., Huang, Y. W., Yuan, W. X. & Wei, Z. X. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv. Mater. 19, 3353–3357 (2007).
Tao, Y. et al. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity. Nanoscale 4, 3729–3733 (2012).
Yan, Y., Wang, R., Qiu, X. & Wei, Z. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking β-sheet proteins with anisotropic electrical transport. J. Am. Chem. Soc. 132, 12006–12012 (2010).
Arias, S., Freire, F., Quiñoá, E. & Riguera, R. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality. Angew. Chem. Int. Ed. 53, 13720–13724 (2014).
Zhang, C., Li, M., Lu, H.-Y. & Chen, C.-F. Synthesis, chiroptical properties, and self-assembled nanoparticles of chiral conjugated polymers based on optically stable helical aromatic esters. RSC Adv. 8, 1014–1021 (2018).
Pleus, S. & Schulte, B. Poly(pyrroles) containing chiral side chains: effect of substituents on the chiral recognition in the doped as well as in the undoped state of the polymer film. J. Solid State Electrochem. 5, 522–530 (2001).
Fronk, S. L. et al. Chiroptical properties of a benzotriazole–thiophene copolymer bearing chiral ethylhexyl side chains. Macromolecules 49, 9301–9308 (2016).
Fronk, S. L. et al. Effect of chiral 2-ethylhexyl side chains on chiroptical properties of the narrow bandgap conjugated polymers PCPDTBT and PCDTPT. Chem. Sci. 7, 5313–5321 (2016).
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).
Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).
Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).
Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).
Christofferson, A. J. et al. Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chem. Sci. 6, 1370–1378 (2015).
Kawauchi, T., Kitaura, A., Kumaki, J., Kusanagi, H. & Yashima, E. Helix-sense-controlled synthesis of optically active poly(methyl methacrylate) stereocomplexes. J. Am. Chem. Soc. 130, 11889–11891 (2008).
Nolte, R. J. M., Van Beijnen, A. J. M. & Drenth, W. Chirality in polyisocyanides. J. Am. Chem. Soc. 96, 5932–5933 (1974).
Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).
Green, M. M. et al. Majority rules in the copolymerization of mirror-image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).
Okamoto, Y., Nakano, T., Habaue, S., Shiohara, K. & Maeda, K. Synthesis and chiral recognition of helical polymers. J. Macromol. Sci. A34, 1771–1783 (1997).
Song, C., Zhang, C. H., Wang, F. J., Yang, W. T. & Deng, J. P. Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polym. Chem. 4, 645–652 (2013).
Tamura, K., Miyabe, T., Iida, H. & Yashima, E. Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing L-alanine pendants immobilized on silica gel by HPLC. Polym. Chem. 2, 91–98 (2011).
Liu, L. et al. New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials. Macromolecules 43, 9268–9276 (2010).
Nakano, T., Satoh, Y. & Okamoto, Y. Synthesis and chiral recognition ability of a cross-linked polymer gel prepared by a molecular imprint method using chiral helical polymers as templates. Macromolecules 34, 2405–2407 (2001).
Miyabe, T., Iida, H., Ohnishi, A. & Yashima, E. Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC. Chem. Sci. 3, 863–867 (2012).
Okamoto, Y. Precision synthesis, structure and function of helical polymers. Proc. Jpn Acad. B 91, 246–261 (2015).
Okamoto, Y. et al. Novel packing material for optical resolution: (+)-poly(triphenylmethyl methacrylate) coated on macroporous silica gel. J. Am. Chem. Soc. 103, 6971–6973 (1981).
Yuki, H., Okamoto, Y. & Okamoto, I. Resolution of racemic compounds by optically active poly(triphenylmethyl methacrylate). J. Am. Chem. Soc. 102, 6356–6358 (1980).
Maeda, K. & Yashima, E. Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top. Curr. Chem. 375, 72 (2017).
Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).
Yamamoto, T., Murakami, R., Komatsu, S. & Suginome, M. Chirality-amplifying, dynamic induction of single-handed helix by chiral guests to macromolecular chiral catalysts bearing boronyl pendants as receptor sites. J. Am. Chem. Soc. 140, 3867–3870 (2018).
Reggelin, M., Doerr, S., Klussmann, M., Schultz, M. & Holbach, M. Helically chiral polymers: a class of ligands for asymmetric catalysis. Proc. Natl Acad. Sci. USA 101, 5461–5466 (2004).
Yoshinaga, Y., Yamamoto, T. & Suginome, M. Chirality-switchable 2,2΄-bipyridine ligands attached to helical poly(quinoxaline-2,3-diyl)s for copper-catalyzed asymmetric cyclopropanation of alkenes. ACS Macro Lett. 6, 705–710 (2017).
Zhou, L. et al. Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric aldol reaction using helical polyisocyanides bearing proline pendants. ACS Macro Lett. 6, 824–829 (2017).
Zhang, H. Y., Yang, W. T. & Deng, J. P. Optically active helical polymers with pendent thiourea groups: chiral organocatalyst for asymmetric Michael addition reaction. J. Polym. Sci. A 53, 1816–1823 (2015).
Zhang, D., Ren, C., Yang, W. & Deng, J. Helical polymer as mimetic enzyme catalyzing asymmetric aldol reaction. Macromol. Rapid Commun. 33, 652–657 (2012).
Tang, Z. L., Iida, H., Hu, H. Y. & Yashima, E. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric Henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage. ACS Macro Lett. 1, 261–265 (2012).
Yamamoto, T., Murakami, R. & Suginome, M. Single-handed helical poly(quinoxaline-2,3-diyl)s bearing achiral 4-aminopyrid-3-yl pendants as highly enantioselective, reusable chiral nucleophilic organocatalysts in the Steglich reaction. J. Am. Chem. Soc. 139, 2557–2560 (2017).
Miyabe, T., Hase, Y., Iida, H., Maeda, K. & Yashima, E. Synthesis of functional poly(phenyl isocyanide)s with macromolecular helicity memory and their use as asymmetric organocatalysts. Chirality 21, 44–50 (2009).
Cornelissen, J. J. et al. β-Helical polymers from isocyanopeptides. Science 293, 676–680 (2001). A great example of bioinspired chemistry and demonstrates the critical aspect of stereochemistry (helicity) in order to achieve functional, high-order structures.
Mayer, S. & Zentel, R. Switching of the helical polymer conformation in a solid polymer film. Macromol. Rapid Commun. 21, 927–930 (2000).
Ohira, A. et al. Versatile helical polymer films: chiroptical inversion switching and memory with re-writable (RW) and write-once read-many (WORM) modes. Adv. Mater. 16, 1645–1650 (2004).
Ousaka, N., Mamiya, F., Iwata, Y., Nishimura, K. & Yashima, E. “Helix-in-helix” superstructure formation through encapsulation of fullerene-bound helical peptides within a helical poly(methyl methacrylate) cavity. Angew. Chem. Int. Ed. 56, 791–795 (2016).
Furusho, Y. & Yashima, E. Development of synthetic double helical polymers and oligomers. J. Polym. Sci. A 47, 5195–5207 (2009).
Kumaki, J., Kawauchi, T., Okoshi, K., Kusanagi, H. & Yashima, E. Supramolecular helical structure of the stereocomplex composed of complementary isotactic and syndiotactic poly(methyl methacrylate)s as revealed by atomic force microscopy. Angew. Chem. Int. Ed. 46, 5348–5351 (2007).
Kumaki, J., Kawauchi, T., Ute, K., Kitayama, T. & Yashima, E. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer–monomer interaction. J. Am. Chem. Soc. 130, 6373–6380 (2008).
Ren, J. M. et al. Controlled formation and binding selectivity of discrete oligo(methyl methacrylate) stereocomplexes. J. Am. Chem. Soc. 140, 1945–1951 (2018).
Semegen, S. T. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 381–394 (Academic Press, 2003).
Mark, J. E. Polymer Data Handbook 2nd edn (Oxford Univ. Press, 2009).
Porri, L. & Giarrusso, A. in Comprehensive Polymer Science and Supplements Ch. 5 (ed. Bevington, J. C.) 53–108 (Pergamon, 1989).
Phuphuak, Y., Bonnet, F., Stoclet, G., Bria, M. & Zinck, P. Isoprene chain shuttling polymerisation between cis and trans regulating catalysts: straightforward access to a new material. Chem. Commun. 53, 5330–5333 (2017).
Tanaka, R. et al. Synthesis of stereodiblock polyisoprene consisting of cis-1,4 and trans-1,4 sequences by using a neodymium catalyst: change of the stereospecificity triggered by an aluminum compound. Polym. Chem. 7, 1239–1243 (2016).
Ricci, G., Leone, G., Boglia, A., Boccia, A. C. & Zetta, L. Cis-1,4-alt-3,4 polyisoprene: synthesis and characterization. Macromolecules 42, 9263–9267 (2009).
Annunziata, L., Duc, M. & Carpentier, J.-F. Chain growth polymerization of isoprene and stereoselective isoprene–styrene copolymerization promoted by an ansa-bis(indenyl)allyl–yttrium complex. Macromolecules 44, 7158–7166 (2011).
Zhang, X., Zhang, C., Wang, Y. & Li, Y. Synthesis and characterization of symmetrical triblock copolymers containing crystallizable high-trans-1,4-polybutadiene. Polym. Bull. 65, 201–213 (2010).
Bunn, C. W. Molecular structure and rubber-like elasticity — III. Molecular movements in rubber-like polymers. Proc. R. Soc. A 180, 82–99 (1942).
Bunn, C. W. Molecular structure and rubber-like elasticity I. The crystal structures of β gutta-percha, rubber and polychloroprene. Proc. R. Soc. A 180, 40–66 (1942).
MacGregor, E. A. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 207–245 (Academic Press, 2003).
Nie, Y., Gu, Z., Wei, Y., Hao, T. & Zhou, Z. Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polym. J. 49, 309–317 (2017).
Huneau, B. Strain-induced crystallisation of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84, 425–452 (2011).
Coran, A. Y. in The Science and Technology of Rubber 4th edn Ch. 7 (eds Mark, J. E., Erman, B. & Roland, C. M.) 337–381 (Academic Press, 2013).
Semegen, S. T. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 395–405 (Academic Press, 2003).
Aufdermarsh, C. A. & Pariser, R. cis-Polychloroprene. J. Polym. Sci. A 2, 4727–4733 (1964).
Ricci, G. & Leone, G. Recent advances in the polymerization of butadiene over the last decade. Polyolefins J. 1, 43–60 (1999).
Kuntz, I. & Gerber, A. The butyllithium-initiated polymerization of 1,3-butadiene. J. Polym. Sci. 42, 299–308 (1960).
Rodgers, B. & Waddell, W. in The Science and Technology of Rubber 4th edn Ch. 9 (eds Mark, J. E., Erman, B. & Roland, C. M.) 417–471 (Academic Press, 2013).
Laur, E., Kirillov, E. & Carpentier, J.-F. Engineering of syndiotactic and isotactic polystyrene-based copolymers via stereoselective catalytic polymerization. Molecules 22, E594 (2017).
Guo, F., Meng, R., Li, Y. & Hou, Z. Highly cis-1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C5H5-ligated scandium catalyst. Polymer 76, 159–167 (2015).
Jian, Z., Tang, S. & Cui, D. Highly regio- and stereoselective terpolymerization of styrene, isoprene and butadiene with lutetium-based coordination catalyst. Macromolecules 44, 7675–7681 (2011).
Milione, S. et al. Stereoselective polymerization of conjugated dienes and styrene–butadiene copolymerization promoted by octahedral titanium catalyst. Macromolecules 40, 5638–5643 (2007).
Ban, H. T. et al. A new approach to styrenic thermoplastic elastomers: Synthesis and characterization of crystalline styrene–butadiene–styrene triblock copolymers. Macromolecules 39, 171–176 (2006). One of the first and few examples to consider cis – trans isomerism ( cis -polybutadiene) and optical isomerism (syndiotactic polystyrene) together in the same polymer.
Caprio, M., Serra, M. C., Bowen, D. E. & Grassi, A. Structural characterization of novel styrene–butadiene block copolymers containing syndiotactic styrene homosequences. Macromolecules 35, 9315–9322 (2002).
Kaita, S., Hou, Z. & Wakatsuki, Y. Random- and block-copolymerization of 1,3-butadiene with styrene based on the stereospecific living system: (C5Me5)2Sm(μ-Me)2AlMe2/Al(i-Bu)3/[Ph3C][B(C6F5)4]1. Macromolecules 34, 1539–1541 (2001).
Zambelli, A., Caprio, M., Grassi, A. & Bowen, D. E. Syndiotactic styrene-butadiene block copolymers synthesized with CpTiX3/MAO (Cp = C5H5, X = Cl, F; Cp = C5Me5, X = Me) and TiXn/MAO (n = 3, X = acac; n = 4, X = O-tert-Bu). Macromol. Chem. Phys. 201, 393–400 (2000).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
Lowe, A. B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 55, 5517–5549 (2014).
Yao, B., Sun, J., Qin, A. & Tang, B. Z. Thiol-yne click polymerization. Chin. Sci. Bull. 58, 2711–2718 (2013).
Lowe, A. B., Hoyle, C. E. & Bowman, C. N. Thiol-yne click chemistry: a powerful and versatile methodology for materials synthesis. J. Mater. Chem. 20, 4745–4750 (2010).
Richard, H. Thiol–yne chemistry: a powerful tool for creating highly functional materials. Angew. Chem. Int. Ed. 49, 3415–3417 (2010).
Liu, J., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009).
Di Giuseppe, A. et al. Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts. J. Am. Chem. Soc. 134, 8171–8183 (2012).
Liu, J. et al. Thiol–yne click polymerization: regio- and stereoselective synthesis of sulfur-rich acetylenic polymers with controllable chain conformations and tunable optical properties. Macromolecules 44, 68–79 (2011).
Nair, D. P. et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).
Truong, V. X. & Dove, A. P. Organocatalytic, regioselective nucleophilic “click” addition of thiols to propiolic acid esters for polymer–polymer coupling. Angew. Chem. Int. Ed. 52, 4132–4136 (2013).
Bell, C. A. et al. Independent control of elastomer properties through stereocontrolled synthesis. Angew. Chem. Int. Ed. 55, 13076–13080 (2016). A striking example of modulating thermomechanical properties by simple cis – trans isomerism of an alkene in the polymer backbone.
Kuroda, H., Tomita, I. & Endo, T. A novel phosphine-catalysed polyaddition of terminal acetylenes bearing electron-withdrawing groups with dithiolts. Synthesis of polymers having dithioacetal moieties in the main chain. Polymer 38, 6049–6054 (1997).
Jim, C. K. J. et al. Metal-free alkyne polyhydrothiolation: synthesis of functional poly(vinylenesulfide)s with high stereoregularity by regioselective thioclick polymerization. Adv. Funct. Mater. 20, 1319–1328 (2010).
Gunay, U. S. et al. Ultrafast and efficient aza- and thiol-Michael reactions on a polyester scaffold with internal electron deficient triple bonds. Polym. Chem. 9, 3037–3054 (2018).
Shi, Y. et al. Phenol-yne click polymerization: an efficient technique to facilely access regio- and stereoregular poly(vinylene ether ketone)s. Chem. Eur. J. 23, 10725–10731 (2017).
Yao, B. et al. Catalyst-free thiol–yne click polymerization: a powerful and facile tool for preparation of functional poly(vinylene sulfide)s. Macromolecules 47, 1325–1333 (2014).
He, B. et al. Spontaneous amino-yne click polymerization: a powerful tool toward regio- and stereospecific poly(β-aminoacrylate)s. J. Am. Chem. Soc. 139, 5437–5443 (2017).
He, B., Wu, Y., Qin, A. & Tang, B. Z. Copper-catalyzed electrophilic polyhydroamination of internal alkynes. Macromolecules 50, 5719–5728 (2017).
He, B. et al. Cu(I)-catalyzed amino-yne click polymerization. Polym. Chem. 7, 7375–7382 (2016).
Deng, H. et al. Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polym. Chem. 6, 4436–4446 (2015).
Deng, H., He, Z., Lam, J. W. Y. & Tang, B. Z. Regio- and stereoselective construction of stimuli-responsive macromolecules by a sequential coupling-hydroamination polymerization route. Polym. Chem. 6, 8297–8305 (2015).
Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).
Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).
Brydson, J. A. in Plastics Materials 7th edn Ch. 11 247–310 (Butterworth-Heinemann, 1999).
Mane, S. R., Sathyan, A. & Shunmugam, R. Synthesis of norbornene derived helical copolymer by simple molecular marriage approach to produce smart nanocarrier. Sci. Rep. 7, 44857 (2017).
Autenrieth, B. & Schrock, R. R. Stereospecific ring-opening metathesis polymerization (ROMP) of norbornene and tetracyclododecene by Mo and W initiators. Macromolecules 48, 2493–2503 (2015).
Schrock, R. R. Synthesis of stereoregular ROMP polymers using molybdenum and tungsten imido alkylidene initiators. Dalton Trans. 40, 7484–7495 (2011).
Ahmed, S., Bidstrup, S. A., Kohl, P. & Ludovice, P. Stereochemical structure-property relationships in polynorbornene from simulation. Macromol. Symp. 133, 1–10 (1998).
Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).
Shirakawa, H., Ito, T. & Ikeda, S. Electrical properties of polyacetylene with various cis–trans compositions. Makromol. Chem. 179, 1565–1573 (1978).
MacDiarmid, A. G. & Heeger, A. J. Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1, 101–118 (1980).
Basescu, N. et al. High electrical conductivity in doped polyacetylene. Nature 327, 403–405 (1987).
Likhtenshtein, G. in Stilbenes: Applications in Chemistry, Life Sciences and Materials Science Ch. 6 (ed. Likhtenshtein, G.) (Wiley-VCH Verlag, 2009).
Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).
Bourgeaux, M. & Skene, W. G. A highly conjugated p- and n-type polythiophenoazomethine: synthesis, spectroscopic, and electrochemical investigation. Macromolecules 40, 1792–1795 (2007).
Skene, W. G. & Dufresne, S. Easy one-pot synthesis of energy transfer cassettes. Org. Lett. 6, 2949–2952 (2004).
Thomas, O., Inganäs, O. & Andersson, M. R. Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 31, 2676–2678 (1998).
Yang, C.-J. & Jenekhe, S. A. Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules 28, 1180–1196 (1995).
Yang, C. J. & Jenekhe, S. A. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem. Mater. 3, 878–887 (1991).
Miyake, J. & Chujo, Y. aza-Wittig polymerization: a simple method for the synthesis of regioregular poly(azomethine)s. Macromolecules 41, 9677–9682 (2008).
Guarìn, S. A. P., Bourgeaux, M., Dufresne, S. & Skene, W. G. Photophysical, crystallographic, and electrochemical characterization of symmetric and unsymmetric self-assembled conjugated thiopheno azomethines. J. Org. Chem. 72, 2631–2643 (2007).
Berti, C. et al. Bio-based terephthalate polyesters. US Patent 20100168372A1 (2015).
Wang, J. et al. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units. Polymer 137, 173–185 (2018). An extremely thorough analysis of stereochemical structure–property relationships (thermal, mechanical and barrier) for polymers containing rigid rings.
Vanhaecht, B., Rimez, B., Willem, R., Biesemans, M. & Koning, C. E. Influence of stereochemistry on the thermal properties of partially cycloaliphatic polyamides. J. Polym. Sci. A 40, 1962–1971 (2002).
Annamaria, C. et al. Effect of 1,4-cyclohexylene units on thermal properties of poly(1,4-cyclohexylenedimethylene adipate) and similar aliphatic polyesters. Polym. Int. 62, 1210–1217 (2013).
Celli, A., Marchese, P., Sullalti, S., Berti, C. & Barbiroli, G. Eco-friendly poly(butylene 1,4-cyclohexanedicarboxylate): relationships between stereochemistry and crystallization behavior. Macromol. Chem. Phys. 212, 1524–1534 (2011).
Berti, C. et al. Environmentally friendly copolyesters containing 1,4-cyclohexane dicarboxylate units, 1-relationships between chemical structure and thermal properties. Macromol. Chem. Phys. 211, 1559–1571 (2010).
Berti, C. et al. Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J. Polym. Sci. B 46, 619–630 (2008).
Berti, C. et al. Influence of molecular structure and stereochemistry of the 1,4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1,4-cyclohexanedicarboxylate). Macromol. Chem. Phys. 209, 1333–1344 (2008).
Liu, F. et al. Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Adv. 6, 65889–65897 (2016).
Galbis, J. A., García-Martín, M.d. G., de Paz, M. V. & Galbis, E. Synthetic polymers from sugar-based monomers. Chem. Rev. 116, 1600–1636 (2016).
Marcus, R. & Regina, P. Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem 5, 167–176 (2012).
Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R. & Pascault, J. P. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog. Polym. Sci. 35, 578–622 (2010).
Nôtre, J. L., van Haveren, J. & van Es, D. S. Synthesis of isoidide through epimerization of isosorbide using ruthenium on carbon. ChemSusChem 6, 693–700 (2013).
Dillon, G. P. et al. Isosorbide-based cholinesterase inhibitors; replacement of 5-ester groups leading to increased stability. Bioorg. Med. Chem. 18, 1045–1053 (2010).
Dillon, G. The Synthesis and Biological Evaluation of a Novel Class of Butyrylcholinesterase Inhibitors Using Isosorbide as a Building Block. Thesis, Trinity College, Dublin, Ireland (2007).
Cope, A. C. & Shen, T. Y. The stereochemistry of 1,4: 3,6-dianhydrohexitol derivatives. J. Am. Chem. Soc. 78, 3177–3182 (1956).
Thiem, J. & Bachmann, F. Synthesis and properties of polyamides derived from anhydro- and dianhydroalditols. Makromol. Chem. 192, 2163–2182 (1991).
Rajput, B. S., Gaikwad, S. R., Menon, S. K. & Chikkali, S. H. Sustainable polyacetals from isohexides. Green Chem. 16, 3810–3818 (2014).
Wu, J. et al. Fully isohexide-based polyesters: synthesis, characterization, and structure–properties relations. Macromolecules 46, 384–394 (2013). A great analysis of stereochemical structure–property relationships for renewable polymers with cis – trans isomerism.
Reinhard, S., Matthias, R. & Matthias, B. Synthesis and properties of high-molecular-weight polyesters based on 1,4:3,6-dianhydrohexitols and terephthalic acid. Makromol. Chem. 194, 53–64 (1993).
Bachmann, F., Reimer, J., Ruppenstein, M. & Thiem, J. Synthesis of novel polyurethanes and polyureas by polyaddition reactions of dianhydrohexitol configurated diisocyanates. Macromol. Chem. Phys. 202, 3410–3419 (2001).
Zenner, M. D., Xia, Y., Chen, J. S. & Kessler, M. R. Polyurethanes from isosorbide-based diisocyanates. ChemSusChem 6, 1182–1185 (2013).
Hashimoto, K., Wibullucksanakul, S., Matsuura, M. & Okada, M. Macromolecular synthesis from saccharic lactones. Ring-opening polyaddition of D-glucaro- and D-mannaro-1,4:6,3-dilactones with alkylenediamines. J. Polym. Sci. A 31, 3141–3149 (1993).
Raytchev Pascal, D. et al. 1,4:3,6-Dianhydrohexitols: original platform for the design of biobased polymers using robust, efficient, and orthogonal chemistry. Pure Appl. Chem. 85, 511–520 (2012).
Besset, C., Pascault, J.-P., Fleury, E., Drockenmuller, E. & Bernard, J. Structure–properties relationship of biosourced stereocontrolled polytriazoles from click chemistry step growth polymerization of diazide and dialkyne dianhydrohexitols. Biomacromolecules 11, 2797–2803 (2010).
Kieber, R. J., Silver, S. A. & Kennemur, J. G. Stereochemical effects on the mechanical and viscoelastic properties of renewable polyurethanes derived from isohexides and hydroxymethylfurfural. Polym. Chem. 8, 4822–4829 (2017).
Feng, X., East, A. J., Hammond, W. & Jaffe, M. in Contemporary Science of Polymeric Materials Ch. 1 (ed. Korugic-Karasz, L.) 3–27 (American Chemical Society, 2010).
Thiyagarajan, S. et al. Isohexide hydroxy esters: synthesis and application of a new class of biobased AB-type building blocks. RSC Adv. 4, 47937–47950 (2014).
Lillie, L. M., Tolman, W. B. & Reineke, T. M. Degradable and renewably-sourced poly(ester-thioethers) by photo-initiated thiol–ene polymerization. Polym. Chem. 9, 3272–3278 (2018).
Wilbon, P. A. et al. Degradable thermosets erived from an isosorbide/succinic anhydride monomer and glycerol. ACS Sustain. Chem. Eng. 5, 9185–9190 (2017).
Shearouse, W. C., Lillie, L. M., Reineke, T. M. & Tolman, W. B. Sustainable polyesters derived from glucose and castor oil: building block structure impacts properties. ACS Macro Lett. 4, 284–288 (2015).
Gallagher, J. J., Hillmyer, M. A. & Reineke, T. M. Degradable thermosets from sugar-derived dilactones. Macromolecules 47, 498–505 (2014).
Fuoss, R. M. & Sadek, H. Mutual interaction of polyelectrolytes. Science 110, 552–554 (1949).
Liquori, A. M. et al. Complementary stereospecific interaction between isotactic and syndiotactic polymer molecules. Nature 206, 358–362 (1965).
Watanabe, W. H., Ryan, C. F., Fleischer, P. C. & Garrett, B. S. Measurement of the tacticity of syndiotactic poly-(methylmethacrylate) by the gel melting point. J. Phys. Chem. 65, 896–896 (1961).
Xie, Q., Yu, C. & Pan, P. in Crystallization in Multiphase Polymer Systems Ch. 17 (eds Thomas, S. et al.) 535–573 (Elsevier, 2018).
Slager, J. & Domb, A. J. Biopolymer stereocomplexes. Adv. Drug Deliv. Rev. 55, 549–583 (2003).
Hatada, K. & Kitayama, T. Structurally controlled polymerizations of methacrylates and acrylates. Polym. Int. 49, 11–47 (2000).
Spevácek, J. & Schneider, B. Aggregation of stereoregular poly(methyl methacrylates). Adv. Colloid Interface Sci. 27, 81–150 (1987).
Miyamoto, T. & Inagaki, H. The stereocomplex formation in poly(methyl methacrylate) and the stereospecific polymerization of its monomer. Polym. J. 1, 46–54 (1970).
Yu, J. M., Yu, Y.-S., Dubois, P. & Jerome, R. Stereocomplexation of sPMMA-PBD-sPMMA triblock copolymers with isotactic PMMA: 1. Thermal and mechanical properties of stereocomplexes. Polymer 38, 2143–2154 (1997).
Yu, Y. S., Dubois, P., Jérôme, R. & Teyssié, P. Difunctional initiator based on 1,3-diisopropenylbenzene. IV. Synthesis and modification of poly(alkyl methacrylate-b-styrene-b-butadiene-b-styrene-b-alkyl methacrylate (MSBSM)) thermoplastic elastomers. J. Polym. Sci. A 34, 2221–2228 (1996).
Deuring, H., Alberda van Ekenstein, G. O. R., Challa, G., Mason, J. P. & Hogen-Esch, T. E. Stereocomplex formation in blends of block copolymers of syndiotactic poly(methyl methacrylate) (PMMA)-poly(dimethylsiloxane) (PDMS) and isotactic PMMA. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Macromolecules 28, 1952–1958 (1995).
Berkoukchi, M. P., Hélary, G., Bélorgey, G. & Hogen-Esch, T. E. Stereocomplex formation in polybutadiene-syndiotactic poly(methyl methacrylate) block copolymers blended with isotactic poly(methyl methacrylate). Polym. Bull. 32, 297–303 (1994).
Helary, G., Belorgey, G. & Hogen-Esch, T. E. Stereocomplex formation in polybutadiene-syndiotactic poly (methyl methacrylate) block copolymers blended with isotactic poly (methyl methacrylate). Polymer 33, 1953–1958 (1992).
Kennedy, J. P., Price, J. L. & Koshimura, K. Novel thermoplastic elastomer triblocks of a soft polyisobutylene midblock connected to two hard PMMA stereocomplex outer blocks. Macromolecules 24, 6567–6571 (1991).
Kitayama, T., Nishiura, T. & Hatada, K. PMMA-block-polyisobutylene-block-PMMA prepared with α, ω-dilithiated polyisobutylene and its characterization. Polym. Bull. 26, 513–520 (1991).
Escudé, N. C., Ning, Y. & Chen, E. Y. X. In situ stereocomplexing polymerization of methyl methacrylate by diastereospecific metallocene catalyst pairs. Polym. Chem. 3, 3247–3255 (2012).
Crne, M., Park, J. O. & Srinivasarao, M. Electrospinning physical gels: the case of stereocomplex PMMA. Macromolecules 42, 4353–4355 (2009).
Kawauchi, T., Kumaki, J., Okoshi, K. & Yashima, E. Stereocomplex formation of isotactic and syndiotactic poly(methyl methacrylate)s in ionic liquids leading to thermoreversible ion gels. Macromolecules 38, 9155–9160 (2005).
Kawauchi, T., Kumaki, J. & Yashima, E. Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128, 10560–10567 (2006).
Serizawa, T., Hamada, K.-i & Akashi, M. Polymerization within a molecular-scale stereoregular template. Nature 429, 52–55 (2004).
Goh, T. K. et al. Nano-to-macroscale poly(methyl methacrylate) stereocomplex assemblies. Angew. Chem. Int. Ed. 48, 8707–8711 (2009).
Vidal, F., Falivene, L., Caporaso, L., Cavallo, L. & Chen, E. Y. X. Robust cross-linked stereocomplexes and C60 inclusion complexes of vinyl-functionalized stereoregular polymers derived from chemo/stereoselective coordination polymerization. J. Am. Chem. Soc. 138, 9533–9547 (2016). Alludes to the potential of stereoechemistry in nanotechnology applications (host–guest chemistry) or biomimetics (synthetic peptides) because of the well-defined negative space (pockets) in stereochemically precise architectures.
Raquez, J.-M., Habibi, Y., Murariu, M. & Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013).
Gao, C., Yu, L., Liu, H. & Chen, L. Development of self-reinforced polymer composites. Prog. Polym. Sci. 37, 767–780 (2012).
Ikada, Y., Jamshidi, K., Tsuji, H. & Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904–906 (1987).
Tsuji, H. & Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40, 6699–6708 (1999).
Hirata, M. & Kimura, Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer 49, 2656–2661 (2008).
Pan, P. et al. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(l-lactic acid)/poly(d-lactic acid) racemic blends: molecular weight effects. J. Phys. Chem. B. 119, 6462–6470 (2015).
Andersson, S. R., Hakkarainen, M., Inkinen, S., Södergård, A. & Albertsson, A.-C. Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11, 1067–1073 (2010).
Anderson, K. S. & Hillmyer, M. A. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47, 2030–2035 (2006).
Tsuji, H., Takai, H. & Saha, S. K. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47, 3826–3837 (2006).
Xie, Q., Han, L., Shan, G., Bao, Y. & Pan, P. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain. Chem. Eng. 4, 2680–2688 (2016).
Han, L., Pan, P., Shan, G. & Bao, Y. Stereocomplex crystallization of high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) racemic blends promoted by a selective nucleator. Polymer 63, 144–153 (2015).
Bao, R.-Y., Yang, W., Wei, X.-F., Xie, B.-H. & Yang, M.-B. Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain. Chem. Eng. 2, 2301–2309 (2014).
Fukushima, K. & Kimura, Y. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Int. 55, 626–642 (2006).
Platel, R. H., Hodgson, L. M. & Williams, C. K. Biocompatible initiators for lactide polymerization. Polym. Rev. 48, 11–63 (2008).
Lin, T., Liu, X.-Y. & He, C. Calculation of infrared/Raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method. J. Phys. Chem. B 116, 1524–1535 (2012).
Lin, T. T., Liu, X. Y. & He, C. A. DFT study on poly(lactic acid) polymorphs. Polymer 51, 2779–2785 (2010).
Tsuji, H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107, 97–135 (2016).
Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597 (2005).
Tsuji, H. & Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44, 2891–2896 (2003).
Li, W., Chen, X., Ma, Y. & Fan, Z. The accelerating effect of the star-shaped poly(d-lactide)-block-poly (l-lactide) stereoblock copolymer on PLLA melt crystallization. CrystEngComm 18, 1242–1250 (2016).
Sarasua, J. R., Arraiza, A. L., Balerdi, P. & Maiza, I. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym. Eng. Sci. 45, 745–753 (2005).
Tsuji, H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41, 3621–3630 (2000).
Li, Y. et al. Stereocomplex crystallite network in poly(d, l-lactide): formation, structure and the effect on shape memory behaviors and enzymatic hydrolysis of poly(d, l-lactide). RSC Adv. 5, 24352–24362 (2015).
Li, Z., Tan, B. H., Lin, T. & He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 62, 22–72 (2016).
Tan, B. H., Muiruri, J. K., Li, Z. & He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 4, 5370–5391 (2016).
Soleymani Abyaneh, H., Vakili, M. R., Shafaati, A. & Lavasanifar, A. Block copolymer stereoregularity and its impact on polymeric micellar nanodrug delivery. Mol. Pharm. 14, 2487–2502 (2017).
Brzezinski, M. & Biela, T. Micro- and nanostructures of polylactide stereocomplexes and their biomedical applications. Polym. Int. 64, 1667–1675 (2015).
Ajiro, H., Kuroda, A., Kan, K. & Akashi, M. Stereocomplex film using triblock copolymers of polylactide and poly(ethylene glycol) retain paxlitaxel on substrates by an aqueous inkjet system. Langmuir 31, 10583–10589 (2015).
Ma, C. et al. Core–shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Langmuir 31, 1527–1536 (2015).
Agatemor, C. & Shaver, M. P. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers. Biomacromolecules 14, 699–708 (2013).
Yang, L., Wu, X., Liu, F., Duan, Y. & Li, S. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm. Res. 26, 2332–2342 (2009).
Nederberg, F. et al. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10, 1460–1468 (2009).
Fukushima, K. et al. Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly. Biomacromolecules 9, 3051–3056 (2008).
Chen, L., Xie, Z., Hu, J., Chen, X. & Jing, X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res. 9, 777–785 (2007).
Oh, J. K. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7, 5096–5108 (2011).
Zhao, Z. et al. Biodegradable stereocomplex micelles based on dextran-block-polylactide as efficient drug deliveries. Langmuir 29, 13072–13080 (2013).
Ishii, D., Ying, T., Yamaoka, T. & Iwata, T. Characterization and biocompatibility of biopolyester nanofibers. Mater 2, 1520–1546 (2009).
Monticelli, O. et al. New stereocomplex PLA-based fibers: effect of POSS on polymer functionalization and properties. Macromolecules 47, 4718–4727 (2014).
Spasova, M. et al. Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules 11, 151–159 (2010).
Fundador, N. G. V., Takemura, A. & Iwata, T. Structural properties and enzymatic degradation behavior of PLLA and stereocomplexed PLA nanofibers. Macromol. Mater. Eng. 295, 865–871 (2010).
Zhang, X., Kotaki, M., Okubayashi, S. & Sukigara, S. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Acta Biomater. 6, 123–129 (2010).
Ishii, D. et al. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules 10, 237–242 (2009).
Tsuji, H. et al. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 7, 3316–3320 (2006).
Li, Y. et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew. Chem. Int. Ed. 52, 674–678 (2013).
Buwalda, S. J., Calucci, L., Forte, C., Dijkstra, P. J. & Feijen, J. Stereocomplexed 8-armed poly(ethylene glycol)–poly(lactide) star block copolymer hydrogels: gelation mechanism, mechanical properties and degradation behavior. Polymer 53, 2809–2817 (2012).
Abebe, D. G. & Fujiwara, T. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths. Biomacromolecules 13, 1828–1836 (2012).
Zhang, Y. et al. Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. Int. J. Pharm. 386, 15–22 (2010).
Nagahama, K., Fujiura, K., Enami, S., Ouchi, T. & Ohya, Y. Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA. J. Polym. Sci. A 46, 6317–6332 (2008).
Jun, Y. J., Park, K. M., Joung, Y. K., Park, K. D. & Lee, S. J. In situ gel forming stereocomplex composed of four-arm PEG-PDLA and PEG-PLLA block copolymers. Macromol. Res. 16, 704–710 (2008).
Hiemstra, C. et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J. Control. Release 119, 320–327 (2007).
Hiemstra, C., Zhong, Z., Li, L., Dijkstra, P. J. & Feijen, J. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG–(PLLA)8 and PEG– (PDLA)8 star block copolymers. Biomacromolecules 7, 2790–2795 (2006).
Fujiwara, T. et al. Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol. Biosci. 1, 204–208 (2001).
Sun, L. et al. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nat. Commun. 5, 5746 (2014). This work demonstrates the potential of stereochemistry to determine function (morphological reorganization of nanostructures) beyond just controlling molecular and/or macroscopic properties of polymers.
Kim, S. H. et al. Hierarchical assembly of nanostructured organosilicate networks via stereocomplexation of block copolymers. Nano Lett. 8, 294–301 (2008).
Wang, H. et al. Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer 137, 1–12 (2018).
Watts, A., Kurokawa, N. & Hillmyer, M. A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 18, 1845–1854 (2017).
Huang, Y. et al. ABA-type thermoplastic elastomers composed of poly(ε-caprolactone-co-δ-valerolactone) soft midblock and polymorphic poly(lactic acid) hard end blocks. ACS Sustain. Chem. Eng. 4, 121–128 (2016).
Wanamaker, C. L. et al. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers. Biomacromolecules 10, 2904–2911 (2009).
Zhang, Z., Grijpma, D. W. & Feijen, J. Triblock copolymers based on 1,3-trimethylene carbonate and lactide as biodegradable thermoplastic elastomers. Macromol. Chem. Phys. 205, 867–875 (2004).
Marín, R. et al. Spectroscopic evidence for stereocomplex formation by enantiomeric polyamides derived from tartaric acid. Macromolecules 41, 3734–3738 (2008).
Marín, R., Alla, A. & Muñoz-Guerra, S. Stereocomplex formation from enantiomeric polyamides derived from tartaric acid. Macromol. Rapid Commun. 27, 1955–1961 (2006).
Iribarren, I. et al. Stereocopolyamides derived from 2,3-di-O-methyl-D− and -L-tartaric acids and hexamethylenediamine. 2. Influence of the configurational composition on the crystal structure of optically compensated systems. Macromolecules 29, 8413–8424 (1996).
Nakano, K., Hashimoto, S., Nakamura, M., Kamada, T. & Nozaki, K. Stereocomplex of poly(propylene carbonate): synthesis of stereogradient poly(propylene carbonate) by regio- and enantioselective copolymerization of propylene oxide with carbon dioxide. Angew. Chem. Int. Ed. 50, 4868–4871 (2011).
Auriemma, F., De Rosa, C., Di Caprio, M. R., Di Girolamo, R. & Coates, G. W. Crystallization of alternating limonene oxide/carbon dioxide copolymers: determination of the crystal structure of stereocomplex poly(limonene carbonate). Macromolecules 48, 2534–2550 (2015).
Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed. 54, 1215–1218 (2014). An excellent example of leveraging stereocomplexation to greatly improve the properties of a biosourced polymer.
Zhu, J.-B. & Chen, E. Y. X. Catalyst-sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 58, 1178–1182 (2019).
Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).
Jing, Y., Quan, C., Liu, B., Jiang, Q. & Zhang, C. A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym. Rev. 56, 262–286 (2016).
Tsuji, H., Noda, S., Kimura, T., Sobue, T. & Arakawa, Y. Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers. Sci. Rep. 7, 45170 (2017).
Tsuji, H. & Hayakawa, T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Macromol. Chem. Phys. 217, 2483–2493 (2016).
Tsuji, H. & Hayakawa, T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Polymer 55, 721–726 (2014).
Tsuji, H., Yamamoto, S., Okumura, A. & Sugiura, Y. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Biomacromolecules 11, 252–258 (2010).
Schuster, N. J. et al. A helicene nanoribbon with greatly amplified chirality. J. Am. Chem. Soc. 140, 6235–6239 (2018).
Khokhlov, K., Schuster, N. J., Ng, F. & Nuckolls, C. Functionalized helical building blocks for nanoelectronics. Org. Lett. 20, 1991–1994 (2018).
Zhong, Y. et al. Helical nanoribbons for ultra-narrowband photodetectors. J. Am. Chem. Soc. 139, 5644–5647 (2017).
Zhang, B. et al. Hollow organic capsules assemble into cellular semiconductors. Nat. Commun. 9, 1957 (2018).
Zhang, B. et al. Rigid, conjugated macrocycles for high performance organic photodetectors. J. Am. Chem. Soc. 138, 16426–16431 (2016).
Ball, M. et al. Macrocyclization in the design of organic n-type electronic materials. J. Am. Chem. Soc. 138, 12861–12867 (2016).
Ball, M. et al. Chiral conjugated corrals. J. Am. Chem. Soc. 137, 9982–9987 (2015).
Shin, S. et al. Living light-induced crystallization-driven self-assembly for rapid preparation of semiconducting nanofibers. J. Am. Chem. Soc. 140, 6088–6094 (2018). Demonstrates the massive potential in the field by creating nanostructured materials via dynamic stereochemistry along the polymer backbone.
Li, S., Han, G. & Zhang, W. Concise synthesis of photoresponsive polyureas containing bridged azobenzenes as visible-light-driven actuators and reversible photopatterning. Macromolecules 51, 4290–4297 (2018).
Zhou, H. et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9, 145–151 (2016).
Accardo, J. V. & Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9, 5987–5993 (2018).
Roppolo, I. et al. 3D printable light-responsive polymers. Mater. Horiz. 4, 396–401 (2017).
Nehls, E. M., Rosales, A. M. & Anseth, K. S. Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. J. Mater. Chem. B 4, 1035–1039 (2016).
Rosales, A. M., Mabry, K. M., Nehls, E. M. & Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015).
Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010).
Zhao, Y.-L. & Stoddart, J. F. Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009).
Donovan, B. R., Matavulj, V. M., Ahn, S.-k., Guin, T. & White, T. J. All-optical control of shape. Adv. Mater. 31, 1805750 (2019).
Hassan, F., Sassa, T., Hirose, T., Ito, Y. & Kawamoto, M. Light-driven molecular switching of atropisomeric polymers containing azo-binaphthyl groups in their side chains. Polym. J. 50, 455–465 (2018).
Yang, D. et al. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. Soft Matter 13, 6129–6136 (2017).
Yang, D., Duan, P., Zhang, L. & Liu, M. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 8, 15727 (2017).
Cobos, K., Quiñoá, E., Riguera, R. & Freire, F. Chiral-to-chiral communication in polymers: a unique approach to control both helical sense and chirality at the periphery. J. Am. Chem. Soc. 140, 12239–12246 (2018).
Acknowledgements
A.P.D. gratefully acknowledges financial support from the European Research Council (ERC, grant no 681559). J.C.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no 751150. S.J. and P.B. thank the European Commission for the financial support through SUSPOL-EJD 64267, while H.P. thanks The Leverhulme Trust (grant no RPG-2015-120) for financial support. M.L.B. acknowledges support from the National Science Foundation (DMR BMAT 1507420) and the W. Gerald Austen Endowed Chair from the John S. and James L. Knight Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of this manuscript. J.C.W., A.P.D. and M.L.B. edited the manuscript into its final form.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks F. Leibfarth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Entanglement molecular weight
-
(Me). The molecular weight above which the material displays the characteristic properties of a plastic.
- Ring-opening polymerization
-
(ROP). A type of chain growth polymerization in which the end of the growing polymer chain reacts with a cyclic monomer, resulting in ring opening.
- Step-growth polycondensation
-
Multifunctional monomers combine to form dimers, trimers and oligomers before these ultimately combine to produce polymers.
- Chain-growth polymerization
-
Polymer chains are formed and grow by the addition of monomers one at a time to the end of a chain.
Rights and permissions
About this article
Cite this article
Worch, J.C., Prydderch, H., Jimaja, S. et al. Stereochemical enhancement of polymer properties. Nat Rev Chem 3, 514–535 (2019). https://doi.org/10.1038/s41570-019-0117-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-019-0117-z
This article is cited by
-
Recent advances in enantioselective ring-opening polymerization and copolymerization
Communications Chemistry (2023)
-
Stereocontrolled acyclic diene metathesis polymerization
Nature Chemistry (2023)
-
Editing of polymer backbones
Nature Reviews Chemistry (2023)
-
Porphyrins pave the way to precision polymers
Nature Synthesis (2023)
-
Spiro-salen catalysts enable the chemical synthesis of stereoregular polyhydroxyalkanoates
Nature Catalysis (2023)