Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stereochemical enhancement of polymer properties

Abstract

The importance of stereochemistry to the function of molecules is generally well understood. However, to date, control over stereochemistry and its potential to influence properties of the resulting polymers are, as yet, not fully realized. This Review focuses on the state of the art with respect to how stereochemistry in polymers has been used to influence and control their physical and mechanical properties, as well as begin to control their function. A brief overview of the synthetic methodology by which to access these materials is included, with the main focus directed towards the effect of stereochemistry on mechanical properties, biodegradation and conductivity. In addition, advances in applications of stereodefined polymers for enantioseparation and as supports for catalysts in asymmetric transformations are discussed. Finally, we consider the opportunities that the rich stereochemistry of sustainably sourced monomers might offer in this field. Where possible, we have drawn parallels between design principles in order to identify opportunities and limitations that these approaches may present in their effects on materials properties, performance and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the relationship between polymer stereochemistry and crystallinity.
Fig. 2: Polymer stereochemistry has been crucial to the development of thermoplastic elastomers.
Fig. 3: Degradable polymers with defined stereochemistry as replacements for vinyl polymers.
Fig. 4: Synthetic helical polymers with biomimetic behaviour.
Fig. 5: Structures of rubber, gutta-percha and chloroprene.
Fig. 6: Stereocomplexation and higher-order structures.

Similar content being viewed by others

References

  1. Jenkins, A. D. Stereochemical definitions and notations relating to polymers. Pure Appl. Chem. 53, 733–752 (1981).

    Google Scholar 

  2. Wulff, G. Main-chain chirality and optical activity in polymers consisting of C-C chains. Angew. Chem. Int. Ed. Engl. 28, 21–37 (1989).

    Google Scholar 

  3. Schildknecht, C. E., Gross, S. T., Davidson, H. R., Lambert, J. M. & Zoss, A. O. Polyvinyl isobutyll ethers. Ind. Eng. Chem. 40, 2104–2115 (1948).

    CAS  Google Scholar 

  4. Natta, G. et al. Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 77, 1708–1710 (1955).

    CAS  Google Scholar 

  5. Natta, G., Corradini, P. & Bassi, I. W. Crystal structure of isotactic polystyrene. Nuovo Cimento 15, 68–82 (1960).

    CAS  Google Scholar 

  6. Fox, T. G. et al. Crystalline polymers of methyl methacrylate. J. Am. Chem. Soc. 80, 1768–1769 (1958).

    CAS  Google Scholar 

  7. Coates, G. W. & Domski, G. J. in Organotransition Metal Chemistry: From Bonding to Catalysis Ch. 22 (ed. Hartwig, J. F.) 1047–1100 (Univ. Science Books, 2010).

  8. Tabba, H. D., Hijji, Y. M. & Abu-Surrah, A. S. in Polyolefin Compounds and Materials: Fundamentals and Industrial Applications Ch. 3 (eds Al-Ali AlMa’adeed, M. & Krupa, I.) 51–77 (Springer International Publishing, 2016).

  9. Domski, G. J., Rose, J. M., Coates, G. W., Bolig, A. D. & Brookhart, M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog. Polym. Sci. 32, 30–92 (2007).

    CAS  Google Scholar 

  10. Busico, V. & Cipullo, R. Microstructure of polypropylene. Prog. Polym. Sci. 26, 443–533 (2001).

    CAS  Google Scholar 

  11. Coates, G. W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem. Rev. 100, 1223–1252 (2000).

    CAS  PubMed  Google Scholar 

  12. Resconi, L., Cavallo, L., Fait, A. & Piemontesi, F. Selectivity in propene polymerization with metallocene catalysts. Chem. Rev. 100, 1253–1346 (2000).

    CAS  PubMed  Google Scholar 

  13. Brintzinger, H. H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. Engl. 34, 1143–1170 (1995).

    CAS  Google Scholar 

  14. Natta, G. Properties of isotactic, atactic, and stereoblock homopolymers, random and block copolymers of α-olefins. J. Polym. Sci. 34, 531–549 (1959).

    CAS  Google Scholar 

  15. Giller, C. et al. Synthesis, characterization, and electrospinning of architecturally-discrete isotactic–atactic–isotactic triblock stereoblock polypropene elastomers. Macromolecules 44, 471–482 (2011).

    CAS  Google Scholar 

  16. Harney, M. B., Zhang, Y. & Sita, L. R. Discrete, multiblock isotactic–atactic stereoblock polypropene microstructures of differing block architectures through programmable stereomodulated living Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 45, 2400–2404 (2006).

    CAS  Google Scholar 

  17. Tarek, T. M. & Mark, J. E. Mesoscopic modeling of the polymerization, morphology, and crystallization of stereoblock and stereoregular polypropylenes. J. Polym. Sci. B 40, 840–853 (2002).

    Google Scholar 

  18. Coates, G. W. & Waymouth, R. M. Oscillating stereocontrol: a strategy for the synthesis of thermoplastic elastomeric polypropylene. Science 267, 217–219 (1995). An excellent example of modulating tacticity to finely control mechanical properties.

    CAS  PubMed  Google Scholar 

  19. Mallin, D. T., Rausch, M. D., Lin, Y. G., Dong, S. & Chien, J. C. W. rac-[Ethylidene(1-.eta.5-tetramethylcyclopentadienyl)(1-.eta.5-indenyl)]dichlorotitanium and its homopolymerization of propylene to crystalline-amorphous block thermoplastic elastomers. J. Am. Chem. Soc. 112, 2030–2031 (1990).

    CAS  Google Scholar 

  20. Collette, J. W. et al. Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts. 1. Synthesis and properties of high molecular weight stereoblock homopolymers. Macromolecules 22, 3851–3858 (1989).

    CAS  Google Scholar 

  21. Natta, G., Pasquon, I. & Zambelli, A. Stereospecific catalysts for the head-to-tail polymerization of propylene to a crystalline syndiotactic polymer. J. Am. Chem. Soc. 84, 1488–1490 (1962).

    CAS  Google Scholar 

  22. Thomann, R., Wang, C., Kressler, J., Jüngling, S. & Mülhaupt, R. Morphology of syndiotactic polypropylene. Polymer 36, 3795–3801 (1995).

    CAS  Google Scholar 

  23. Lovinger, A. J., Lotz, B., Davis, D. D. & Schumacher, M. Morphology and thermal properties of fully syndiotactic polypropylene. Macromolecules 27, 6603–6611 (1994).

    CAS  Google Scholar 

  24. De Rosa, C. & Corradini, P. Crystal structure of syndiotactic polypropylene. Macromolecules 26, 5711–5718 (1993).

    Google Scholar 

  25. Ahmad, N., Di Girolamo, R., Auriemma, F., De Rosa, C. & Grizzuti, N. Relations between stereoregularity and melt viscoelasticity of syndiotactic polypropylene. Macromolecules 46, 7940–7946 (2013).

    CAS  Google Scholar 

  26. Takebe, T., Yamasaki, K., Funaki, K. & Malanga, M. in Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications (ed. Schellenberg, J.) 267–394 (Wiley, 2009).

  27. Ishihara, N., Seimiya, T., Kuramoto, M. & Uoi, M. Crystalline syndiotactic polystyrene. Macromolecules 19, 2464–2465 (1986). The first report of syndiotactic polystyrene, a polymer that exhibits markedly improved thermomechanical properties compared with isotactic polystyrene.

    CAS  Google Scholar 

  28. Woo, E. M., Sun, Y. S. & Yang, C. P. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene versus its miscible blends. Prog. Polym. Sci. 26, 945–983 (2001).

    CAS  Google Scholar 

  29. Wang, C., Lin, C.-C. & Tseng, L.-C. Miscibility, crystallization and morphologies of syndiotactic polystyrene blends with isotactic polystyrene and with atactic polystyrene. Polymer 47, 390–402 (2006).

    CAS  Google Scholar 

  30. Cimmino, S., Pace, E. D., Martuscelli, E. & Silvestre, C. Syndiotactic polystyrene: crystallization and melting behaviour. Polymer 32, 1080–1083 (1991).

    CAS  Google Scholar 

  31. Chen, K., Harris, K. & Vyazovkin, S. Tacticity as a factor contributing to the thermal stability of polystyrene. Macromol. Chem. Phys. 208, 2525–2532 (2007).

    CAS  Google Scholar 

  32. Ishihara, N. Syntheses and properties of syndiotactic polystyrene. Macromol. Symp. 89, 553–562 (1995).

    CAS  Google Scholar 

  33. Huang, C.-L., Chen, Y.-C., Hsiao, T.-J., Tsai, J.-C. & Wang, C. Effect of tacticity on viscoelastic properties of polystyrene. Macromolecules 44, 6155–6161 (2011).

    CAS  Google Scholar 

  34. Annunziata, L. et al. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Mater. Chem. Phys. 141, 891–902 (2013).

    CAS  Google Scholar 

  35. Annunziata, L., Sarazin, Y., Duc, M. & Carpentier, J. F. Well-defined syndiotactic polystyrene-b-atactic polystyrene stereoblock polymers. Macromol. Rapid Commun. 32, 751–757 (2011).

    CAS  PubMed  Google Scholar 

  36. Banerjee, S., Paira Tapas, K. & Mandal Tarun, K. Control of molecular weight and tacticity in stereospecific living cationic polymerization of α-methylstyrene at 0 °C using FeCl3-based initiators: effect of tacticity on thermal properties. Macromol. Chem. Phys. 214, 1332–1344 (2013).

    CAS  Google Scholar 

  37. Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 109, 5157–5214 (2009).

    CAS  PubMed  Google Scholar 

  38. Ute, K., Miyatake, N. & Hatada, K. Glass transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13 mer to 50 mer. Polymer 36, 1415–1419 (1995).

    CAS  Google Scholar 

  39. Biros, J., Larina, T., Trekoval, J. & Pouchlý, J. Dependence of the glass transition temperature of poly (methyl methacrylates) on their tacticity. Colloid Polym. Sci. 260, 27–30 (1982).

    CAS  Google Scholar 

  40. Bywater, S. & Toporowski, P. M. Effect of stereostructure on glass transition temperatures of poly(methyl methacrylate). Polymer 13, 94–96 (1972).

    CAS  Google Scholar 

  41. Katime, I. & Calleja Ricardo, D. Dynamic mechanical properties of isotactic PMMA. Polym. Int. 35, 281–285 (1994).

    CAS  Google Scholar 

  42. Gillham, J. K., Stadnicki, S. J. & Hazony, Y. Low-frequency thermomechanical spectrometry of polymeric materials: tactic poly(methyl methacrylates). J. Appl. Polym. Sci. 21, 401–424 (1977).

    CAS  Google Scholar 

  43. Min, K. E. & Paul, D. R. Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci. B 26, 1021–1033 (2003).

    Google Scholar 

  44. Semen, J. & Lando, J. B. The acid hydrolysis of isotactic and syndiotactic poly(methyl methacrylate). Macromolecules 2, 570–575 (1969).

    CAS  Google Scholar 

  45. Loecker, W. D. & Smets, G. Hydrolysis of methacrylic acid–methyl methacrylate copolymers. J. Polym. Sci. 40, 203–216 (1959).

    Google Scholar 

  46. Samal, S. & Thompson, B. C. Converging the hole mobility of poly(2-N-carbazoylethyl acrylate) with conjugated polymers by tuning isotacticity. ACS Macro Lett. 7, 1161–1167 (2018).

    CAS  Google Scholar 

  47. Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439–1443 (2019).

    CAS  PubMed  Google Scholar 

  48. Severn, J. R. & Chadwick, J. C. Tailor-Made Polymers (Wiley-VCH Verlag, 2008).

  49. Chen, X., Caporaso, L., Cavallo, L. & Chen, E. Y. X. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: from stereo-random to stereo-perfect polymers. J. Am. Chem. Soc. 134, 7278–7281 (2012).

    CAS  PubMed  Google Scholar 

  50. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    CAS  Google Scholar 

  51. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    CAS  PubMed  Google Scholar 

  52. Gandini, A. & Lacerda, T. M. From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015).

    CAS  Google Scholar 

  53. Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    CAS  Google Scholar 

  54. Dudley, B. BP statistical review of world energy. June 2017. BP https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf (2017).

  55. Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    PubMed  Google Scholar 

  57. Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016).

    CAS  PubMed  Google Scholar 

  58. Södergård, A. & Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002).

    Google Scholar 

  59. Drumright, R. E., Gruber, P. R. & Henton, D. E. Polylactic acid technology. Adv. Mater. 12, 1841–1846 (2000).

    CAS  Google Scholar 

  60. Albertsson, A. C. & Varma, I. K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4, 1466–1486 (2003).

    CAS  PubMed  Google Scholar 

  61. Ikada, Y. & Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 21, 117–132 (2000).

    CAS  Google Scholar 

  62. Dechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 104, 6147–6176 (2004).

    CAS  PubMed  Google Scholar 

  63. Gross, R. A. & Kalra, B. Biodegradable polymers for the environment. Science 297, 803–807 (2002).

    CAS  PubMed  Google Scholar 

  64. Dove, A. P. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem. Commun. 2008, 6446–6470 (2008).

    Google Scholar 

  65. Stanford, M. J. & Dove, A. P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 39, 486–494 (2010).

    CAS  PubMed  Google Scholar 

  66. Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 39, 165–173 (2010).

    CAS  PubMed  Google Scholar 

  67. Hong, M. & Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    CAS  Google Scholar 

  68. Chile, L.-E., Mehrkhodavandi, P. & Hatzikiriakos, S. G. A comparison of the rheological and mechanical properties of isotactic, syndiotactic, and heterotactic poly(lactide). Macromolecules 49, 909–919 (2016).

    CAS  Google Scholar 

  69. Othman, N., Acosta-Ramírez, A., Mehrkhodavandi, P., Dorgan, J. R. & Hatzikiriakos, S. G. Solution and melt viscoelastic properties of controlled microstructure poly(lactide). J. Rheol. 55, 987–1005 (2011).

    CAS  Google Scholar 

  70. Södergård, A. & Stolt, M. in Poly(Lactic Acid) Ch. 3 (eds Auras, R. et al.) 27–41 (Wiley, 2010).

  71. Saeidlou, S., Huneault, M. A., Li, H. & Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 37, 1657–1677 (2012).

    CAS  Google Scholar 

  72. Feng, L. et al. Thermal properties of polylactides with different stereoisomers of lactides used as comonomers. Macromolecules 50, 6064–6073 (2017).

    CAS  Google Scholar 

  73. Inkinen, S., Hakkarainen, M., Albertsson, A.-C. & Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12, 523–532 (2011).

    CAS  PubMed  Google Scholar 

  74. Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2001).

    CAS  Google Scholar 

  75. He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).

    CAS  PubMed  Google Scholar 

  76. Sun, L. et al. Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol-ene radical reactions. Polym. Chem. 7, 2337–2341 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pitto-Barry, A., Kirby, N., Dove, A. P. & O’Reilly, R. K. Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym. Chem. 5, 1427–1436 (2014).

    CAS  Google Scholar 

  78. Sun, L. et al. Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules 46, 9074–9082 (2013).

    CAS  Google Scholar 

  79. Petzetakis, N., Walker, D., Dove, A. P. & O’Reilly, R. K. Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter 8, 7408–7414 (2012).

    CAS  Google Scholar 

  80. Petzetakis, N., Dove, A. P. & O’Reilly, R. K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2, 955–960 (2011).

    CAS  Google Scholar 

  81. Sharma, M. & Dhingra, H. K. Poly-β-hydroxybutyrate: a biodegradable polyester, biosynthesis and biodegradation. Br. Microbiol. Res. J. 14, 1–11 (2016).

    Google Scholar 

  82. Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).

    CAS  Google Scholar 

  83. Lee Sang, Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–14 (1996).

    Google Scholar 

  84. Yokouchi, M., Chatani, Y., Tadokoro, H., Teranishi, K. & Tani, H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate). Polymer 14, 267–272 (1973).

    CAS  Google Scholar 

  85. Cornibert, J. & Marchessault, R. H. Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J. Mol. Biol. 71, 735–756 (1972).

    CAS  PubMed  Google Scholar 

  86. Alper, R., Lundgren, D. G., Marchessault, R. H. & Cote, W. A. Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occurring polymer. Biopolymers 1, 545–556 (1963).

    CAS  Google Scholar 

  87. Tang, X. & Chen, E. Y. X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Bloembergen, S., Holden, D. A., Bluhm, T. L., Hamer, G. K. & Marchessault, R. H. Stereoregularity in synthetic β-hydroxybutyrate and β-hydroxyvalerate homopolyesters. Macromolecules 22, 1656–1663 (1989).

    CAS  Google Scholar 

  89. Bloembergen, S., Holden, D. A., Bluhm, T. L., Hamer, G. K. & Marchessault, R. H. Synthesis of crystalline β-hydroxybutyrate/β-hydroxyvalerate copolyesters by coordination polymerization of β-lactones. Macromolecules 20, 3086–3089 (1987).

    CAS  Google Scholar 

  90. Pearce, R. & Marchessault, R. H. Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer 35, 3990–3997 (1994).

    CAS  Google Scholar 

  91. Pearce, R., Jesudason, J., Orts, W., Marchessault, R. H. & Bloembergen, S. Blends of bacterial and synthetic poly(β-hydroxybutyrate): effect of tacticity on melting behaviour. Polymer 33, 4647–4649 (1992).

    CAS  Google Scholar 

  92. Kunze, C. et al. In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material. Biomaterials 27, 192–201 (2006).

    CAS  PubMed  Google Scholar 

  93. Ligny, R., Hänninen, M. M., Guillaume, S. M. & Carpentier, J.-F. Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemic β-lactones. Angew. Chem. Int. Ed. 56, 10388–10393 (2017).

    CAS  Google Scholar 

  94. Ajellal, N. et al. Syndiotactic-enriched poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules 42, 987–993 (2009).

    CAS  Google Scholar 

  95. Amgoune, A., Thomas, C. M., Ilinca, S., Roisnel, T. & Carpentier, J. F. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Angew. Chem. Int. Ed. 45, 2782–2784 (2006).

    CAS  Google Scholar 

  96. Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 124, 15239–15248 (2002).

    CAS  PubMed  Google Scholar 

  97. Kricheldorf, H. R. & Lee, S.-R. Polylactones. 35. macrocyclic and stereoselective polymerization of β-D,L-butyrolactone with cyclic dibutyltin initiators. Macromolecules 28, 6718–6725 (1995).

    CAS  Google Scholar 

  98. Hocking, P. J. & Marchessault, R. H. Syndiotactic poly[(R,S)-β-hydroxybutyrate]isolated from methylaluminoxane-catalyzed polymerization. Polym. Bull. 30, 163–170 (1993).

    CAS  Google Scholar 

  99. Abe, H., Matsubara, I., Doi, Y., Hori, Y. & Yamaguchi, A. Physical properties and enzymic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities. Macromolecules 27, 6018–6025 (1994).

    CAS  Google Scholar 

  100. Jaffredo, C. G., Chapurina, Y., Guillaume, S. M. & Carpentier, J. F. From syndiotactic homopolymers to chemically tunable alternating copolymers: highly active yttrium complexes for stereoselective ring-opening polymerization of β-malolactonates. Angew. Chem. Int. Ed. 53, 2687–2691 (2014).

    CAS  Google Scholar 

  101. Carpentier, J. F. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun. 31, 1696–1705 (2010).

    CAS  PubMed  Google Scholar 

  102. Ajellal, N., Thomas, C. M. & Carpentier, J. F. Functional syndiotactic poly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J. Polym. Sci. A 47, 3177–3189 (2009).

    CAS  Google Scholar 

  103. Xu, Y.-C., Ren, W.-M., Zhou, H., Gu, G.-G. & Lu, X.-B. Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones. Macromolecules 50, 3131–3142 (2017).

    CAS  Google Scholar 

  104. Fagerland, J., Finne-Wistrand, A. & Pappalardo, D. Modulating the thermal properties of poly(hydroxybutyrate) by the copolymerization of rac-β-butyrolactone with lactide. New J. Chem. 40, 7671–7679 (2016).

    CAS  Google Scholar 

  105. Barouti, G., Jarnouen, K., Cammas-Marion, S., Loyer, P. & Guillaume, S. M. Polyhydroxyalkanoate-based amphiphilic diblock copolymers as original biocompatible nanovectors. Polym. Chem. 6, 5414–5429 (2015).

    CAS  Google Scholar 

  106. Jaffredo, C. G. & Guillaume, S. M. Benzyl β-malolactonate polymers: a long story with recent advances. Polym. Chem. 5, 4168–4194 (2014).

    CAS  Google Scholar 

  107. Jaffredo, C. G., Carpentier, J.-F. & Guillaume, S. M. Organocatalyzed controlled ROP of β-lactones towards poly(hydroxyalkanoate)s: from β-butyrolactone to benzyl β-malolactone polymers. Polym. Chem. 4, 3837–3850 (2013).

    CAS  Google Scholar 

  108. Jaffredo, C. G., Carpentier, J.-F. & Guillaume, S. M. Poly(hydroxyalkanoate) block or random copolymers of β-butyrolactone and benzyl β-malolactone: a matter of catalytic tuning. Macromolecules 46, 6765–6776 (2013).

    CAS  Google Scholar 

  109. Ajellal, N., Thomas, C. M., Aubry, T., Grohens, Y. & Carpentier, J.-F. Encapsulation and controlled release of l-leuprolide from poly(β-hydroxyalkanoate)s: impact of microstructure and chemical functionalities. New J. Chem. 35, 876–880 (2011).

    CAS  Google Scholar 

  110. Benvenuti, M. & Lenz Robert, W. Polymerization and copolymerization of β-butyrolactone and benzyl-β-malolactonate by aluminoxane catalysts. J. Polym. Sci. A 29, 793–805 (1991).

    CAS  Google Scholar 

  111. Yu, I., Ebrahimi, T., Hatzikiriakos, S. G. & Mehrkhodavandi, P. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts. Dalton Trans. 44, 14248–14254 (2015).

    CAS  PubMed  Google Scholar 

  112. MacDonald, J. P. et al. Tuning thermal properties and microphase separation in aliphatic polyester ABA copolymers. Polym. Chem. 6, 1445–1453 (2015).

    CAS  Google Scholar 

  113. Aluthge, D. C. et al. PLA–PHB–PLA triblock copolymers: synthesis by sequential addition and investigation of mechanical and rheological properties. Macromolecules 46, 3965–3974 (2013).

    CAS  Google Scholar 

  114. Cross, E. D., Allan, L. E. N., Decken, A. & Shaver, M. P. Aluminum salen and salan complexes in the ring-opening polymerization of cyclic esters: controlled immortal and copolymerization of rac-β-butyrolactone and rac-lactide. J. Polym. Sci. A 51, 1137–1146 (2012).

    Google Scholar 

  115. Jeffery, B. J. et al. Group 4 initiators for the stereoselective ROP of rac-β-butyrolactone and its copolymerization with rac-lactide. Chem. Commun. 47, 12328–12330 (2011).

    CAS  Google Scholar 

  116. Hiki, S., Miyamoto, M. & Kimura, Y. Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer. Polymer 41, 7369–7379 (2000).

    CAS  Google Scholar 

  117. Barouti, G., Jaffredo, C. G. & Guillaume, S. M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog. Polym. Sci. 73, 1–31 (2017).

    CAS  Google Scholar 

  118. Paul, S. et al. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 51, 6459–6479 (2015).

    CAS  Google Scholar 

  119. Klein, R. & Wurm, F. R. Aliphatic polyethers: classical polymers for the 21st century. Macromol. Rapid Commun. 36, 1147–1165 (2015).

    CAS  PubMed  Google Scholar 

  120. Childers, M. I., Longo, J. M., Van Zee, N. J., LaPointe, A. M. & Coates, G. W. Stereoselective epoxide polymerization and copolymerization. Chem. Rev. 114, 8129–8152 (2014).

    CAS  PubMed  Google Scholar 

  121. Kielland, N., Whiteoak, C. J. & Kleij, A. W. Stereoselective synthesis with carbon dioxide. Adv. Synth. Catal. 355, 2115–2138 (2013).

    CAS  Google Scholar 

  122. Lu, X.-B., Ren, W.-M. & Wu, G.-P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721–1735 (2012).

    CAS  PubMed  Google Scholar 

  123. Ajiro, H., Widger, P. C. B., Ahmed, S. M., Allen, S. D. & Coates, G. W. in Polymer Science: A Comprehensive Reference (ed. Möller, M.) 165–181 (Elsevier, 2012).

  124. Vaccarello, D. N. et al. Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc. 140, 6208–6211 (2018).

    CAS  PubMed  Google Scholar 

  125. Childers, M. I. et al. Isospecific, chain shuttling polymerization of propylene oxide using a bimetallic chromium catalyst: a new route to semicrystalline polyols. J. Am. Chem. Soc. 139, 11048–11054 (2017).

    CAS  PubMed  Google Scholar 

  126. Ghosh, S., Lund, H., Jiao, H. & Mejía, E. Rediscovering the isospecific ring-opening polymerization of racemic propylene oxide with dibutylmagnesium. Macromolecules 50, 1245–1250 (2017).

    CAS  Google Scholar 

  127. Widger, P. C. B. et al. Isospecific polymerization of racemic epoxides: a catalyst system for the synthesis of highly isotactic polyethers. Chem. Commun. 46, 2935–2937 (2010).

    CAS  Google Scholar 

  128. Thomas, R. M. et al. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J. Am. Chem. Soc. 132, 16520–16525 (2010).

    CAS  PubMed  Google Scholar 

  129. Hirahata, W., Thomas, R. M., Lobkovsky, E. B. & Coates, G. W. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides. J. Am. Chem. Soc. 130, 17658–17659 (2008).

    CAS  PubMed  Google Scholar 

  130. Peretti, K. L., Ajiro, H., Cohen, C. T., Lobkovsky, E. B. & Coates, G. W. A highly active, isospecific cobalt catalyst for propylene oxide polymerization. J. Am. Chem. Soc. 127, 11566–11567 (2005).

    CAS  PubMed  Google Scholar 

  131. Wu, B., Harlan, C. J., Lenz, R. W. & Barron, A. R. Stereoregular polymerization of (R,S)-propylene oxide by an alumoxane–propylene oxide complex. Macromolecules 30, 316–318 (1997).

    CAS  Google Scholar 

  132. Lal, J. & Trick, G. S. Glass transformation temperatures of polymers of olefin oxides and olefin sulfides. J. Polym. Sci. A 8, 2339–2350 (1970).

    CAS  Google Scholar 

  133. Cesari, M., Perego, G. & Marconi, W. The crystal structure of isotactic poly (propylene oxide). Makromol. Chem. 94, 194–204 (1966).

    CAS  Google Scholar 

  134. Stanley, E. & Litt, M. Crystal structure of d,l-poly(propylene oxide). J. Polym. Sci. 43, 453–458 (1960).

    CAS  Google Scholar 

  135. McGrath, A. J. et al. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers. Polym. Chem. 6, 1465–1473 (2015).

    CAS  PubMed  Google Scholar 

  136. Zhang, X.-H., Wei, R.-J., Zhang, Y. Y., Du, B.-Y. & Fan, Z.-Q. Carbon dioxide/epoxide copolymerization via a nanosized zinc–cobalt(III) double metal cyanide complex: substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures. Macromolecules 48, 536–544 (2015).

    CAS  Google Scholar 

  137. Li, B., Zhang, R. & Lu, X.-B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 40, 2303–2307 (2007).

    CAS  Google Scholar 

  138. Lu, X.-B. et al. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc. 128, 1664–1674 (2006).

    CAS  PubMed  Google Scholar 

  139. Cohen, C. T., Chu, T. & Coates, G. W. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J. Am. Chem. Soc. 127, 10869–10878 (2005).

    CAS  PubMed  Google Scholar 

  140. Lu, X. B. & Wang, Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed. 43, 3574–3577 (2004).

    CAS  Google Scholar 

  141. Qin, Z., Thomas, C. M., Lee, S. & Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 42, 5484–5487 (2003).

    CAS  Google Scholar 

  142. Longo, J. M., DiCiccio, A. M. & Coates, G. W. Poly(propylene succinate): a new polymer stereocomplex. J. Am. Chem. Soc. 136, 15897–15900 (2014).

    CAS  PubMed  Google Scholar 

  143. Ellis, W. C. et al. Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 5, 4004–4011 (2014).

    CAS  Google Scholar 

  144. Hua, Y. Z. et al. Highly enantioselective catalytic system for asymmetric copolymerization of carbon dioxide and cyclohexene oxide. Chem. Eur. J. 20, 12394–12398 (2014).

    CAS  PubMed  Google Scholar 

  145. Liu, Y., Ren, W. M., Liu, J. & Lu, X. B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed. 52, 11594–11598 (2013).

    CAS  Google Scholar 

  146. Wu, G.-P. et al. Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure salen Co(III) complexes: synthesis of crystalline CO2-based polycarbonate. J. Am. Chem. Soc. 134, 5682–5688 (2012).

    CAS  PubMed  Google Scholar 

  147. Ren, W.-M. et al. Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules 43, 1396–1402 (2010).

    CAS  Google Scholar 

  148. Nakano, K., Nakamura, M. & Nozaki, K. Alternating copolymerization of cyclohexene oxide with carbon dioxide catalyzed by (salalen)CrCl complexes. Macromolecules 42, 6972–6980 (2009).

    CAS  Google Scholar 

  149. Shi, L. et al. Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39, 5679–5685 (2006).

    CAS  Google Scholar 

  150. Xiao, Y., Wang, Z. & Ding, K. Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts. Chem. Eur. J. 11, 3668–3678 (2005).

    CAS  PubMed  Google Scholar 

  151. Nakano, K., Nozaki, K. & Hiyama, T. Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes. J. Am. Chem. Soc. 125, 5501–5510 (2003).

    CAS  PubMed  Google Scholar 

  152. Cheng, M., Darling, N. A., Lobkovsky, E. B. & Coates, G. W. Enantiomerically-enriched organic reagents via polymer synthesis: enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts. Chem. Commun. 2000, 2007–2008 (2000).

    Google Scholar 

  153. Nozaki, K., Nakano, K. & Hiyama, T. Optically active polycarbonates: asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. J. Am. Chem. Soc. 121, 11008–11009 (1999).

    CAS  Google Scholar 

  154. Cohen, C. T., Thomas, C. M., Peretti, K. L., Lobkovsky, E. B. & Coates, G. W. Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(III) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate). Dalton Trans. 2006, 237–249 (2006).

    Google Scholar 

  155. Ciardelli, F., Benedetti, E. & Pieroni, O. Polymerization of racemic and optically active 4-methyl-1-hexyne. Makromol. Chem. 103, 1–18 (1967).

    CAS  Google Scholar 

  156. Pu, L. The study of chiral conjugated polymers. Acta Polym. 48, 116–141 (2003).

    Google Scholar 

  157. Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

    CAS  PubMed  Google Scholar 

  158. Balint, R., Cassidy, N. J. & Cartmell, S. H. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341–2353 (2014).

    CAS  PubMed  Google Scholar 

  159. Ibanez, J. G. et al. Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem. Rev. 118, 4731–4816 (2018).

    CAS  PubMed  Google Scholar 

  160. Kane-Maguire, L. A. P. & Wallace, G. G. Chiral conducting polymers. Chem. Soc. Rev. 39, 2545–2576 (2010).

    CAS  PubMed  Google Scholar 

  161. Torsi, L. et al. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 7, 412–417 (2008).

    CAS  PubMed  Google Scholar 

  162. Yao, Y., Dong, H. & Hu, W. Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197–5205 (2013).

    CAS  Google Scholar 

  163. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).

    CAS  Google Scholar 

  164. Tessler, N., Preezant, Y., Rappaport, N. & Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009).

    CAS  Google Scholar 

  165. Shirota, Y. & Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007).

    CAS  PubMed  Google Scholar 

  166. Schwartz, B. J. Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).

    CAS  PubMed  Google Scholar 

  167. Zheng, C. et al. Relationships between main-chain chirality and photophysical properties in chiral conjugated polymers. J. Mater. Chem. C 2, 7336–7347 (2014).

    CAS  Google Scholar 

  168. Amabilino, D. B. in Chirality in Supramolecular Assemblies: Causes and Consequences Ch. 6 (ed. Keene, R. F.) (John Wiley & Sons, 2017).

  169. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    CAS  PubMed  Google Scholar 

  170. Miyake, J., Tsuji, Y., Nagai, A. & Chujo, Y. Nanofiber formation via the self-assembly of a chiral regioregular poly(azomethine). Chem. Commun. 2009, 2183–2185 (2009).

    Google Scholar 

  171. Dai, X. M., Goto, H., Akagi, K. & Shirakawa, H. Synthesis and properties of novel ferroelectric liquid crystalline polyacetylene derivatives. Synth. Met. 102, 1289–1290 (1999).

    CAS  Google Scholar 

  172. Larossi, D. et al. Synthesis and spectroscopic and electrochemical characterisation of a conducting polythiophene bearing a chiral β-substituent: polymerisation of (+)-4,4΄-bis[(S)-2-methylbutylsulfanyl]-2,2΄-bithiophene. Chem. Eur. J. 7, 676–685 (2001).

    Google Scholar 

  173. Zou, W. et al. Biomimetic superhelical conducting microfibers with homochirality for enantioselective sensing. J. Am. Chem. Soc. 136, 578–581 (2014).

    CAS  PubMed  Google Scholar 

  174. Yan, Y., Fang, J., Liang, J., Zhang, Y. & Wei, Z. Helical heterojunctions originating from helical inversion of conducting polymer nanofibers. Chem. Commun. 48, 2843–2845 (2012).

    CAS  Google Scholar 

  175. Weng, S., Lin, Z., Chen, L. & Zhou, J. Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochim. Acta 55, 2727–2733 (2010).

    CAS  Google Scholar 

  176. Yan, Y., Yu, Z., Huang, Y. W., Yuan, W. X. & Wei, Z. X. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv. Mater. 19, 3353–3357 (2007).

    CAS  Google Scholar 

  177. Tao, Y. et al. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity. Nanoscale 4, 3729–3733 (2012).

    CAS  PubMed  Google Scholar 

  178. Yan, Y., Wang, R., Qiu, X. & Wei, Z. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking β-sheet proteins with anisotropic electrical transport. J. Am. Chem. Soc. 132, 12006–12012 (2010).

    CAS  PubMed  Google Scholar 

  179. Arias, S., Freire, F., Quiñoá, E. & Riguera, R. Nanospheres, nanotubes, toroids, and gels with controlled macroscopic chirality. Angew. Chem. Int. Ed. 53, 13720–13724 (2014).

    CAS  Google Scholar 

  180. Zhang, C., Li, M., Lu, H.-Y. & Chen, C.-F. Synthesis, chiroptical properties, and self-assembled nanoparticles of chiral conjugated polymers based on optically stable helical aromatic esters. RSC Adv. 8, 1014–1021 (2018).

    CAS  Google Scholar 

  181. Pleus, S. & Schulte, B. Poly(pyrroles) containing chiral side chains: effect of substituents on the chiral recognition in the doped as well as in the undoped state of the polymer film. J. Solid State Electrochem. 5, 522–530 (2001).

    CAS  Google Scholar 

  182. Fronk, S. L. et al. Chiroptical properties of a benzotriazole–thiophene copolymer bearing chiral ethylhexyl side chains. Macromolecules 49, 9301–9308 (2016).

    CAS  Google Scholar 

  183. Fronk, S. L. et al. Effect of chiral 2-ethylhexyl side chains on chiroptical properties of the narrow bandgap conjugated polymers PCPDTBT and PCDTPT. Chem. Sci. 7, 5313–5321 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    CAS  PubMed  Google Scholar 

  185. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  186. Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    CAS  PubMed  Google Scholar 

  187. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    CAS  PubMed  Google Scholar 

  188. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    CAS  PubMed  Google Scholar 

  189. Christofferson, A. J. et al. Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chem. Sci. 6, 1370–1378 (2015).

    CAS  PubMed  Google Scholar 

  190. Kawauchi, T., Kitaura, A., Kumaki, J., Kusanagi, H. & Yashima, E. Helix-sense-controlled synthesis of optically active poly(methyl methacrylate) stereocomplexes. J. Am. Chem. Soc. 130, 11889–11891 (2008).

    CAS  PubMed  Google Scholar 

  191. Nolte, R. J. M., Van Beijnen, A. J. M. & Drenth, W. Chirality in polyisocyanides. J. Am. Chem. Soc. 96, 5932–5933 (1974).

    CAS  Google Scholar 

  192. Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Google Scholar 

  193. Green, M. M. et al. Majority rules in the copolymerization of mirror-image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).

    CAS  Google Scholar 

  194. Okamoto, Y., Nakano, T., Habaue, S., Shiohara, K. & Maeda, K. Synthesis and chiral recognition of helical polymers. J. Macromol. Sci. A34, 1771–1783 (1997).

    CAS  Google Scholar 

  195. Song, C., Zhang, C. H., Wang, F. J., Yang, W. T. & Deng, J. P. Chiral polymeric microspheres grafted with optically active helical polymer chains: a new class of materials for chiral recognition and chirally controlled release. Polym. Chem. 4, 645–652 (2013).

    CAS  Google Scholar 

  196. Tamura, K., Miyabe, T., Iida, H. & Yashima, E. Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing L-alanine pendants immobilized on silica gel by HPLC. Polym. Chem. 2, 91–98 (2011).

    CAS  Google Scholar 

  197. Liu, L. et al. New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials. Macromolecules 43, 9268–9276 (2010).

    CAS  Google Scholar 

  198. Nakano, T., Satoh, Y. & Okamoto, Y. Synthesis and chiral recognition ability of a cross-linked polymer gel prepared by a molecular imprint method using chiral helical polymers as templates. Macromolecules 34, 2405–2407 (2001).

    CAS  Google Scholar 

  199. Miyabe, T., Iida, H., Ohnishi, A. & Yashima, E. Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC. Chem. Sci. 3, 863–867 (2012).

    CAS  Google Scholar 

  200. Okamoto, Y. Precision synthesis, structure and function of helical polymers. Proc. Jpn Acad. B 91, 246–261 (2015).

    CAS  PubMed  Google Scholar 

  201. Okamoto, Y. et al. Novel packing material for optical resolution: (+)-poly(triphenylmethyl methacrylate) coated on macroporous silica gel. J. Am. Chem. Soc. 103, 6971–6973 (1981).

    CAS  Google Scholar 

  202. Yuki, H., Okamoto, Y. & Okamoto, I. Resolution of racemic compounds by optically active poly(triphenylmethyl methacrylate). J. Am. Chem. Soc. 102, 6356–6358 (1980).

    CAS  Google Scholar 

  203. Maeda, K. & Yashima, E. Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top. Curr. Chem. 375, 72 (2017).

    Google Scholar 

  204. Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).

    CAS  PubMed  Google Scholar 

  205. Yamamoto, T., Murakami, R., Komatsu, S. & Suginome, M. Chirality-amplifying, dynamic induction of single-handed helix by chiral guests to macromolecular chiral catalysts bearing boronyl pendants as receptor sites. J. Am. Chem. Soc. 140, 3867–3870 (2018).

    CAS  PubMed  Google Scholar 

  206. Reggelin, M., Doerr, S., Klussmann, M., Schultz, M. & Holbach, M. Helically chiral polymers: a class of ligands for asymmetric catalysis. Proc. Natl Acad. Sci. USA 101, 5461–5466 (2004).

    CAS  PubMed  Google Scholar 

  207. Yoshinaga, Y., Yamamoto, T. & Suginome, M. Chirality-switchable 2,2΄-bipyridine ligands attached to helical poly(quinoxaline-2,3-diyl)s for copper-catalyzed asymmetric cyclopropanation of alkenes. ACS Macro Lett. 6, 705–710 (2017).

    CAS  Google Scholar 

  208. Zhou, L. et al. Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric aldol reaction using helical polyisocyanides bearing proline pendants. ACS Macro Lett. 6, 824–829 (2017).

    CAS  Google Scholar 

  209. Zhang, H. Y., Yang, W. T. & Deng, J. P. Optically active helical polymers with pendent thiourea groups: chiral organocatalyst for asymmetric Michael addition reaction. J. Polym. Sci. A 53, 1816–1823 (2015).

    CAS  Google Scholar 

  210. Zhang, D., Ren, C., Yang, W. & Deng, J. Helical polymer as mimetic enzyme catalyzing asymmetric aldol reaction. Macromol. Rapid Commun. 33, 652–657 (2012).

    CAS  PubMed  Google Scholar 

  211. Tang, Z. L., Iida, H., Hu, H. Y. & Yashima, E. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric Henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage. ACS Macro Lett. 1, 261–265 (2012).

    CAS  Google Scholar 

  212. Yamamoto, T., Murakami, R. & Suginome, M. Single-handed helical poly(quinoxaline-2,3-diyl)s bearing achiral 4-aminopyrid-3-yl pendants as highly enantioselective, reusable chiral nucleophilic organocatalysts in the Steglich reaction. J. Am. Chem. Soc. 139, 2557–2560 (2017).

    CAS  PubMed  Google Scholar 

  213. Miyabe, T., Hase, Y., Iida, H., Maeda, K. & Yashima, E. Synthesis of functional poly(phenyl isocyanide)s with macromolecular helicity memory and their use as asymmetric organocatalysts. Chirality 21, 44–50 (2009).

    CAS  PubMed  Google Scholar 

  214. Cornelissen, J. J. et al. β-Helical polymers from isocyanopeptides. Science 293, 676–680 (2001). A great example of bioinspired chemistry and demonstrates the critical aspect of stereochemistry (helicity) in order to achieve functional, high-order structures.

    CAS  PubMed  Google Scholar 

  215. Mayer, S. & Zentel, R. Switching of the helical polymer conformation in a solid polymer film. Macromol. Rapid Commun. 21, 927–930 (2000).

    CAS  Google Scholar 

  216. Ohira, A. et al. Versatile helical polymer films: chiroptical inversion switching and memory with re-writable (RW) and write-once read-many (WORM) modes. Adv. Mater. 16, 1645–1650 (2004).

    CAS  Google Scholar 

  217. Ousaka, N., Mamiya, F., Iwata, Y., Nishimura, K. & Yashima, E. “Helix-in-helix” superstructure formation through encapsulation of fullerene-bound helical peptides within a helical poly(methyl methacrylate) cavity. Angew. Chem. Int. Ed. 56, 791–795 (2016).

    Google Scholar 

  218. Furusho, Y. & Yashima, E. Development of synthetic double helical polymers and oligomers. J. Polym. Sci. A 47, 5195–5207 (2009).

    CAS  Google Scholar 

  219. Kumaki, J., Kawauchi, T., Okoshi, K., Kusanagi, H. & Yashima, E. Supramolecular helical structure of the stereocomplex composed of complementary isotactic and syndiotactic poly(methyl methacrylate)s as revealed by atomic force microscopy. Angew. Chem. Int. Ed. 46, 5348–5351 (2007).

    CAS  Google Scholar 

  220. Kumaki, J., Kawauchi, T., Ute, K., Kitayama, T. & Yashima, E. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer–monomer interaction. J. Am. Chem. Soc. 130, 6373–6380 (2008).

    CAS  PubMed  Google Scholar 

  221. Ren, J. M. et al. Controlled formation and binding selectivity of discrete oligo(methyl methacrylate) stereocomplexes. J. Am. Chem. Soc. 140, 1945–1951 (2018).

    CAS  PubMed  Google Scholar 

  222. Semegen, S. T. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 381–394 (Academic Press, 2003).

  223. Mark, J. E. Polymer Data Handbook 2nd edn (Oxford Univ. Press, 2009).

  224. Porri, L. & Giarrusso, A. in Comprehensive Polymer Science and Supplements Ch. 5 (ed. Bevington, J. C.) 53–108 (Pergamon, 1989).

  225. Phuphuak, Y., Bonnet, F., Stoclet, G., Bria, M. & Zinck, P. Isoprene chain shuttling polymerisation between cis and trans regulating catalysts: straightforward access to a new material. Chem. Commun. 53, 5330–5333 (2017).

    CAS  Google Scholar 

  226. Tanaka, R. et al. Synthesis of stereodiblock polyisoprene consisting of cis-1,4 and trans-1,4 sequences by using a neodymium catalyst: change of the stereospecificity triggered by an aluminum compound. Polym. Chem. 7, 1239–1243 (2016).

    CAS  Google Scholar 

  227. Ricci, G., Leone, G., Boglia, A., Boccia, A. C. & Zetta, L. Cis-1,4-alt-3,4 polyisoprene: synthesis and characterization. Macromolecules 42, 9263–9267 (2009).

    CAS  Google Scholar 

  228. Annunziata, L., Duc, M. & Carpentier, J.-F. Chain growth polymerization of isoprene and stereoselective isoprene–styrene copolymerization promoted by an ansa-bis(indenyl)allyl–yttrium complex. Macromolecules 44, 7158–7166 (2011).

    CAS  Google Scholar 

  229. Zhang, X., Zhang, C., Wang, Y. & Li, Y. Synthesis and characterization of symmetrical triblock copolymers containing crystallizable high-trans-1,4-polybutadiene. Polym. Bull. 65, 201–213 (2010).

    CAS  Google Scholar 

  230. Bunn, C. W. Molecular structure and rubber-like elasticity — III. Molecular movements in rubber-like polymers. Proc. R. Soc. A 180, 82–99 (1942).

    CAS  Google Scholar 

  231. Bunn, C. W. Molecular structure and rubber-like elasticity I. The crystal structures of β gutta-percha, rubber and polychloroprene. Proc. R. Soc. A 180, 40–66 (1942).

    CAS  Google Scholar 

  232. MacGregor, E. A. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 207–245 (Academic Press, 2003).

  233. Nie, Y., Gu, Z., Wei, Y., Hao, T. & Zhou, Z. Features of strain-induced crystallization of natural rubber revealed by experiments and simulations. Polym. J. 49, 309–317 (2017).

    CAS  Google Scholar 

  234. Huneau, B. Strain-induced crystallisation of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84, 425–452 (2011).

    CAS  Google Scholar 

  235. Coran, A. Y. in The Science and Technology of Rubber 4th edn Ch. 7 (eds Mark, J. E., Erman, B. & Roland, C. M.) 337–381 (Academic Press, 2013).

  236. Semegen, S. T. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R. A.) 395–405 (Academic Press, 2003).

  237. Aufdermarsh, C. A. & Pariser, R. cis-Polychloroprene. J. Polym. Sci. A 2, 4727–4733 (1964).

    CAS  Google Scholar 

  238. Ricci, G. & Leone, G. Recent advances in the polymerization of butadiene over the last decade. Polyolefins J. 1, 43–60 (1999).

    Google Scholar 

  239. Kuntz, I. & Gerber, A. The butyllithium-initiated polymerization of 1,3-butadiene. J. Polym. Sci. 42, 299–308 (1960).

    CAS  Google Scholar 

  240. Rodgers, B. & Waddell, W. in The Science and Technology of Rubber 4th edn Ch. 9 (eds Mark, J. E., Erman, B. & Roland, C. M.) 417–471 (Academic Press, 2013).

  241. Laur, E., Kirillov, E. & Carpentier, J.-F. Engineering of syndiotactic and isotactic polystyrene-based copolymers via stereoselective catalytic polymerization. Molecules 22, E594 (2017).

    PubMed  Google Scholar 

  242. Guo, F., Meng, R., Li, Y. & Hou, Z. Highly cis-1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C5H5-ligated scandium catalyst. Polymer 76, 159–167 (2015).

    CAS  Google Scholar 

  243. Jian, Z., Tang, S. & Cui, D. Highly regio- and stereoselective terpolymerization of styrene, isoprene and butadiene with lutetium-based coordination catalyst. Macromolecules 44, 7675–7681 (2011).

    CAS  Google Scholar 

  244. Milione, S. et al. Stereoselective polymerization of conjugated dienes and styrene–butadiene copolymerization promoted by octahedral titanium catalyst. Macromolecules 40, 5638–5643 (2007).

    CAS  Google Scholar 

  245. Ban, H. T. et al. A new approach to styrenic thermoplastic elastomers: Synthesis and characterization of crystalline styrene–butadiene–styrene triblock copolymers. Macromolecules 39, 171–176 (2006). One of the first and few examples to consider cis trans isomerism ( cis -polybutadiene) and optical isomerism (syndiotactic polystyrene) together in the same polymer.

    CAS  Google Scholar 

  246. Caprio, M., Serra, M. C., Bowen, D. E. & Grassi, A. Structural characterization of novel styrene–butadiene block copolymers containing syndiotactic styrene homosequences. Macromolecules 35, 9315–9322 (2002).

    CAS  Google Scholar 

  247. Kaita, S., Hou, Z. & Wakatsuki, Y. Random- and block-copolymerization of 1,3-butadiene with styrene based on the stereospecific living system: (C5Me5)2Sm(μ-Me)2AlMe2/Al(i-Bu)3/[Ph3C][B(C6F5)4]1. Macromolecules 34, 1539–1541 (2001).

    CAS  Google Scholar 

  248. Zambelli, A., Caprio, M., Grassi, A. & Bowen, D. E. Syndiotactic styrene-butadiene block copolymers synthesized with CpTiX3/MAO (Cp = C5H5, X = Cl, F; Cp = C5Me5, X = Me) and TiXn/MAO (n = 3, X = acac; n = 4, X = O-tert-Bu). Macromol. Chem. Phys. 201, 393–400 (2000).

    CAS  Google Scholar 

  249. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Google Scholar 

  250. Lowe, A. B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 55, 5517–5549 (2014).

    CAS  Google Scholar 

  251. Yao, B., Sun, J., Qin, A. & Tang, B. Z. Thiol-yne click polymerization. Chin. Sci. Bull. 58, 2711–2718 (2013).

    CAS  Google Scholar 

  252. Lowe, A. B., Hoyle, C. E. & Bowman, C. N. Thiol-yne click chemistry: a powerful and versatile methodology for materials synthesis. J. Mater. Chem. 20, 4745–4750 (2010).

    CAS  Google Scholar 

  253. Richard, H. Thiol–yne chemistry: a powerful tool for creating highly functional materials. Angew. Chem. Int. Ed. 49, 3415–3417 (2010).

    Google Scholar 

  254. Liu, J., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009).

    CAS  PubMed  Google Scholar 

  255. Di Giuseppe, A. et al. Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts. J. Am. Chem. Soc. 134, 8171–8183 (2012).

    PubMed  Google Scholar 

  256. Liu, J. et al. Thiol–yne click polymerization: regio- and stereoselective synthesis of sulfur-rich acetylenic polymers with controllable chain conformations and tunable optical properties. Macromolecules 44, 68–79 (2011).

    CAS  Google Scholar 

  257. Nair, D. P. et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).

    CAS  Google Scholar 

  258. Truong, V. X. & Dove, A. P. Organocatalytic, regioselective nucleophilic “click” addition of thiols to propiolic acid esters for polymer–polymer coupling. Angew. Chem. Int. Ed. 52, 4132–4136 (2013).

    CAS  Google Scholar 

  259. Bell, C. A. et al. Independent control of elastomer properties through stereocontrolled synthesis. Angew. Chem. Int. Ed. 55, 13076–13080 (2016). A striking example of modulating thermomechanical properties by simple cis trans isomerism of an alkene in the polymer backbone.

    CAS  Google Scholar 

  260. Kuroda, H., Tomita, I. & Endo, T. A novel phosphine-catalysed polyaddition of terminal acetylenes bearing electron-withdrawing groups with dithiolts. Synthesis of polymers having dithioacetal moieties in the main chain. Polymer 38, 6049–6054 (1997).

    CAS  Google Scholar 

  261. Jim, C. K. J. et al. Metal-free alkyne polyhydrothiolation: synthesis of functional poly(vinylenesulfide)s with high stereoregularity by regioselective thioclick polymerization. Adv. Funct. Mater. 20, 1319–1328 (2010).

    CAS  Google Scholar 

  262. Gunay, U. S. et al. Ultrafast and efficient aza- and thiol-Michael reactions on a polyester scaffold with internal electron deficient triple bonds. Polym. Chem. 9, 3037–3054 (2018).

    CAS  Google Scholar 

  263. Shi, Y. et al. Phenol-yne click polymerization: an efficient technique to facilely access regio- and stereoregular poly(vinylene ether ketone)s. Chem. Eur. J. 23, 10725–10731 (2017).

    CAS  PubMed  Google Scholar 

  264. Yao, B. et al. Catalyst-free thiol–yne click polymerization: a powerful and facile tool for preparation of functional poly(vinylene sulfide)s. Macromolecules 47, 1325–1333 (2014).

    CAS  Google Scholar 

  265. He, B. et al. Spontaneous amino-yne click polymerization: a powerful tool toward regio- and stereospecific poly(β-aminoacrylate)s. J. Am. Chem. Soc. 139, 5437–5443 (2017).

    CAS  PubMed  Google Scholar 

  266. He, B., Wu, Y., Qin, A. & Tang, B. Z. Copper-catalyzed electrophilic polyhydroamination of internal alkynes. Macromolecules 50, 5719–5728 (2017).

    CAS  Google Scholar 

  267. He, B. et al. Cu(I)-catalyzed amino-yne click polymerization. Polym. Chem. 7, 7375–7382 (2016).

    CAS  Google Scholar 

  268. Deng, H. et al. Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polym. Chem. 6, 4436–4446 (2015).

    CAS  Google Scholar 

  269. Deng, H., He, Z., Lam, J. W. Y. & Tang, B. Z. Regio- and stereoselective construction of stimuli-responsive macromolecules by a sequential coupling-hydroamination polymerization route. Polym. Chem. 6, 8297–8305 (2015).

    CAS  Google Scholar 

  270. Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).

    CAS  Google Scholar 

  271. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    CAS  Google Scholar 

  272. Brydson, J. A. in Plastics Materials 7th edn Ch. 11 247–310 (Butterworth-Heinemann, 1999).

  273. Mane, S. R., Sathyan, A. & Shunmugam, R. Synthesis of norbornene derived helical copolymer by simple molecular marriage approach to produce smart nanocarrier. Sci. Rep. 7, 44857 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Autenrieth, B. & Schrock, R. R. Stereospecific ring-opening metathesis polymerization (ROMP) of norbornene and tetracyclododecene by Mo and W initiators. Macromolecules 48, 2493–2503 (2015).

    CAS  Google Scholar 

  275. Schrock, R. R. Synthesis of stereoregular ROMP polymers using molybdenum and tungsten imido alkylidene initiators. Dalton Trans. 40, 7484–7495 (2011).

    CAS  PubMed  Google Scholar 

  276. Ahmed, S., Bidstrup, S. A., Kohl, P. & Ludovice, P. Stereochemical structure-property relationships in polynorbornene from simulation. Macromol. Symp. 133, 1–10 (1998).

    CAS  Google Scholar 

  277. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    CAS  Google Scholar 

  278. Shirakawa, H., Ito, T. & Ikeda, S. Electrical properties of polyacetylene with various cistrans compositions. Makromol. Chem. 179, 1565–1573 (1978).

    CAS  Google Scholar 

  279. MacDiarmid, A. G. & Heeger, A. J. Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1, 101–118 (1980).

    CAS  Google Scholar 

  280. Basescu, N. et al. High electrical conductivity in doped polyacetylene. Nature 327, 403–405 (1987).

    CAS  Google Scholar 

  281. Likhtenshtein, G. in Stilbenes: Applications in Chemistry, Life Sciences and Materials Science Ch. 6 (ed. Likhtenshtein, G.) (Wiley-VCH Verlag, 2009).

  282. Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).

    CAS  Google Scholar 

  283. Bourgeaux, M. & Skene, W. G. A highly conjugated p- and n-type polythiophenoazomethine: synthesis, spectroscopic, and electrochemical investigation. Macromolecules 40, 1792–1795 (2007).

    CAS  Google Scholar 

  284. Skene, W. G. & Dufresne, S. Easy one-pot synthesis of energy transfer cassettes. Org. Lett. 6, 2949–2952 (2004).

    CAS  PubMed  Google Scholar 

  285. Thomas, O., Inganäs, O. & Andersson, M. R. Synthesis and properties of a soluble conjugated poly(azomethine) with high molecular weight. Macromolecules 31, 2676–2678 (1998).

    CAS  Google Scholar 

  286. Yang, C.-J. & Jenekhe, S. A. Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules 28, 1180–1196 (1995).

    CAS  Google Scholar 

  287. Yang, C. J. & Jenekhe, S. A. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem. Mater. 3, 878–887 (1991).

    CAS  Google Scholar 

  288. Miyake, J. & Chujo, Y. aza-Wittig polymerization: a simple method for the synthesis of regioregular poly(azomethine)s. Macromolecules 41, 9677–9682 (2008).

    CAS  Google Scholar 

  289. Guarìn, S. A. P., Bourgeaux, M., Dufresne, S. & Skene, W. G. Photophysical, crystallographic, and electrochemical characterization of symmetric and unsymmetric self-assembled conjugated thiopheno azomethines. J. Org. Chem. 72, 2631–2643 (2007).

    PubMed  Google Scholar 

  290. Berti, C. et al. Bio-based terephthalate polyesters. US Patent 20100168372A1 (2015).

  291. Wang, J. et al. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units. Polymer 137, 173–185 (2018). An extremely thorough analysis of stereochemical structure–property relationships (thermal, mechanical and barrier) for polymers containing rigid rings.

    Google Scholar 

  292. Vanhaecht, B., Rimez, B., Willem, R., Biesemans, M. & Koning, C. E. Influence of stereochemistry on the thermal properties of partially cycloaliphatic polyamides. J. Polym. Sci. A 40, 1962–1971 (2002).

    CAS  Google Scholar 

  293. Annamaria, C. et al. Effect of 1,4-cyclohexylene units on thermal properties of poly(1,4-cyclohexylenedimethylene adipate) and similar aliphatic polyesters. Polym. Int. 62, 1210–1217 (2013).

    Google Scholar 

  294. Celli, A., Marchese, P., Sullalti, S., Berti, C. & Barbiroli, G. Eco-friendly poly(butylene 1,4-cyclohexanedicarboxylate): relationships between stereochemistry and crystallization behavior. Macromol. Chem. Phys. 212, 1524–1534 (2011).

    CAS  Google Scholar 

  295. Berti, C. et al. Environmentally friendly copolyesters containing 1,4-cyclohexane dicarboxylate units, 1-relationships between chemical structure and thermal properties. Macromol. Chem. Phys. 211, 1559–1571 (2010).

    CAS  Google Scholar 

  296. Berti, C. et al. Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J. Polym. Sci. B 46, 619–630 (2008).

    CAS  Google Scholar 

  297. Berti, C. et al. Influence of molecular structure and stereochemistry of the 1,4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1,4-cyclohexanedicarboxylate). Macromol. Chem. Phys. 209, 1333–1344 (2008).

    CAS  Google Scholar 

  298. Liu, F. et al. Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Adv. 6, 65889–65897 (2016).

    CAS  Google Scholar 

  299. Galbis, J. A., García-Martín, M.d. G., de Paz, M. V. & Galbis, E. Synthetic polymers from sugar-based monomers. Chem. Rev. 116, 1600–1636 (2016).

    CAS  PubMed  Google Scholar 

  300. Marcus, R. & Regina, P. Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem 5, 167–176 (2012).

    Google Scholar 

  301. Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R. & Pascault, J. P. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog. Polym. Sci. 35, 578–622 (2010).

    CAS  Google Scholar 

  302. Nôtre, J. L., van Haveren, J. & van Es, D. S. Synthesis of isoidide through epimerization of isosorbide using ruthenium on carbon. ChemSusChem 6, 693–700 (2013).

    PubMed  Google Scholar 

  303. Dillon, G. P. et al. Isosorbide-based cholinesterase inhibitors; replacement of 5-ester groups leading to increased stability. Bioorg. Med. Chem. 18, 1045–1053 (2010).

    CAS  PubMed  Google Scholar 

  304. Dillon, G. The Synthesis and Biological Evaluation of a Novel Class of Butyrylcholinesterase Inhibitors Using Isosorbide as a Building Block. Thesis, Trinity College, Dublin, Ireland (2007).

  305. Cope, A. C. & Shen, T. Y. The stereochemistry of 1,4: 3,6-dianhydrohexitol derivatives. J. Am. Chem. Soc. 78, 3177–3182 (1956).

    CAS  Google Scholar 

  306. Thiem, J. & Bachmann, F. Synthesis and properties of polyamides derived from anhydro- and dianhydroalditols. Makromol. Chem. 192, 2163–2182 (1991).

    CAS  Google Scholar 

  307. Rajput, B. S., Gaikwad, S. R., Menon, S. K. & Chikkali, S. H. Sustainable polyacetals from isohexides. Green Chem. 16, 3810–3818 (2014).

    CAS  Google Scholar 

  308. Wu, J. et al. Fully isohexide-based polyesters: synthesis, characterization, and structure–properties relations. Macromolecules 46, 384–394 (2013). A great analysis of stereochemical structure–property relationships for renewable polymers with cis trans isomerism.

    CAS  Google Scholar 

  309. Reinhard, S., Matthias, R. & Matthias, B. Synthesis and properties of high-molecular-weight polyesters based on 1,4:3,6-dianhydrohexitols and terephthalic acid. Makromol. Chem. 194, 53–64 (1993).

    Google Scholar 

  310. Bachmann, F., Reimer, J., Ruppenstein, M. & Thiem, J. Synthesis of novel polyurethanes and polyureas by polyaddition reactions of dianhydrohexitol configurated diisocyanates. Macromol. Chem. Phys. 202, 3410–3419 (2001).

    CAS  Google Scholar 

  311. Zenner, M. D., Xia, Y., Chen, J. S. & Kessler, M. R. Polyurethanes from isosorbide-based diisocyanates. ChemSusChem 6, 1182–1185 (2013).

    CAS  PubMed  Google Scholar 

  312. Hashimoto, K., Wibullucksanakul, S., Matsuura, M. & Okada, M. Macromolecular synthesis from saccharic lactones. Ring-opening polyaddition of D-glucaro- and D-mannaro-1,4:6,3-dilactones with alkylenediamines. J. Polym. Sci. A 31, 3141–3149 (1993).

    CAS  Google Scholar 

  313. Raytchev Pascal, D. et al. 1,4:3,6-Dianhydrohexitols: original platform for the design of biobased polymers using robust, efficient, and orthogonal chemistry. Pure Appl. Chem. 85, 511–520 (2012).

    Google Scholar 

  314. Besset, C., Pascault, J.-P., Fleury, E., Drockenmuller, E. & Bernard, J. Structure–properties relationship of biosourced stereocontrolled polytriazoles from click chemistry step growth polymerization of diazide and dialkyne dianhydrohexitols. Biomacromolecules 11, 2797–2803 (2010).

    CAS  PubMed  Google Scholar 

  315. Kieber, R. J., Silver, S. A. & Kennemur, J. G. Stereochemical effects on the mechanical and viscoelastic properties of renewable polyurethanes derived from isohexides and hydroxymethylfurfural. Polym. Chem. 8, 4822–4829 (2017).

    CAS  Google Scholar 

  316. Feng, X., East, A. J., Hammond, W. & Jaffe, M. in Contemporary Science of Polymeric Materials Ch. 1 (ed. Korugic-Karasz, L.) 3–27 (American Chemical Society, 2010).

  317. Thiyagarajan, S. et al. Isohexide hydroxy esters: synthesis and application of a new class of biobased AB-type building blocks. RSC Adv. 4, 47937–47950 (2014).

    CAS  Google Scholar 

  318. Lillie, L. M., Tolman, W. B. & Reineke, T. M. Degradable and renewably-sourced poly(ester-thioethers) by photo-initiated thiol–ene polymerization. Polym. Chem. 9, 3272–3278 (2018).

    CAS  Google Scholar 

  319. Wilbon, P. A. et al. Degradable thermosets erived from an isosorbide/succinic anhydride monomer and glycerol. ACS Sustain. Chem. Eng. 5, 9185–9190 (2017).

    CAS  Google Scholar 

  320. Shearouse, W. C., Lillie, L. M., Reineke, T. M. & Tolman, W. B. Sustainable polyesters derived from glucose and castor oil: building block structure impacts properties. ACS Macro Lett. 4, 284–288 (2015).

    CAS  Google Scholar 

  321. Gallagher, J. J., Hillmyer, M. A. & Reineke, T. M. Degradable thermosets from sugar-derived dilactones. Macromolecules 47, 498–505 (2014).

    CAS  Google Scholar 

  322. Fuoss, R. M. & Sadek, H. Mutual interaction of polyelectrolytes. Science 110, 552–554 (1949).

    CAS  PubMed  Google Scholar 

  323. Liquori, A. M. et al. Complementary stereospecific interaction between isotactic and syndiotactic polymer molecules. Nature 206, 358–362 (1965).

    CAS  Google Scholar 

  324. Watanabe, W. H., Ryan, C. F., Fleischer, P. C. & Garrett, B. S. Measurement of the tacticity of syndiotactic poly-(methylmethacrylate) by the gel melting point. J. Phys. Chem. 65, 896–896 (1961).

    CAS  Google Scholar 

  325. Xie, Q., Yu, C. & Pan, P. in Crystallization in Multiphase Polymer Systems Ch. 17 (eds Thomas, S. et al.) 535–573 (Elsevier, 2018).

  326. Slager, J. & Domb, A. J. Biopolymer stereocomplexes. Adv. Drug Deliv. Rev. 55, 549–583 (2003).

    CAS  PubMed  Google Scholar 

  327. Hatada, K. & Kitayama, T. Structurally controlled polymerizations of methacrylates and acrylates. Polym. Int. 49, 11–47 (2000).

    CAS  Google Scholar 

  328. Spevácek, J. & Schneider, B. Aggregation of stereoregular poly(methyl methacrylates). Adv. Colloid Interface Sci. 27, 81–150 (1987).

    Google Scholar 

  329. Miyamoto, T. & Inagaki, H. The stereocomplex formation in poly(methyl methacrylate) and the stereospecific polymerization of its monomer. Polym. J. 1, 46–54 (1970).

    CAS  Google Scholar 

  330. Yu, J. M., Yu, Y.-S., Dubois, P. & Jerome, R. Stereocomplexation of sPMMA-PBD-sPMMA triblock copolymers with isotactic PMMA: 1. Thermal and mechanical properties of stereocomplexes. Polymer 38, 2143–2154 (1997).

    CAS  Google Scholar 

  331. Yu, Y. S., Dubois, P., Jérôme, R. & Teyssié, P. Difunctional initiator based on 1,3-diisopropenylbenzene. IV. Synthesis and modification of poly(alkyl methacrylate-b-styrene-b-butadiene-b-styrene-b-alkyl methacrylate (MSBSM)) thermoplastic elastomers. J. Polym. Sci. A 34, 2221–2228 (1996).

    CAS  Google Scholar 

  332. Deuring, H., Alberda van Ekenstein, G. O. R., Challa, G., Mason, J. P. & Hogen-Esch, T. E. Stereocomplex formation in blends of block copolymers of syndiotactic poly(methyl methacrylate) (PMMA)-poly(dimethylsiloxane) (PDMS) and isotactic PMMA. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Macromolecules 28, 1952–1958 (1995).

    CAS  Google Scholar 

  333. Berkoukchi, M. P., Hélary, G., Bélorgey, G. & Hogen-Esch, T. E. Stereocomplex formation in polybutadiene-syndiotactic poly(methyl methacrylate) block copolymers blended with isotactic poly(methyl methacrylate). Polym. Bull. 32, 297–303 (1994).

    CAS  Google Scholar 

  334. Helary, G., Belorgey, G. & Hogen-Esch, T. E. Stereocomplex formation in polybutadiene-syndiotactic poly (methyl methacrylate) block copolymers blended with isotactic poly (methyl methacrylate). Polymer 33, 1953–1958 (1992).

    CAS  Google Scholar 

  335. Kennedy, J. P., Price, J. L. & Koshimura, K. Novel thermoplastic elastomer triblocks of a soft polyisobutylene midblock connected to two hard PMMA stereocomplex outer blocks. Macromolecules 24, 6567–6571 (1991).

    CAS  Google Scholar 

  336. Kitayama, T., Nishiura, T. & Hatada, K. PMMA-block-polyisobutylene-block-PMMA prepared with α, ω-dilithiated polyisobutylene and its characterization. Polym. Bull. 26, 513–520 (1991).

    CAS  Google Scholar 

  337. Escudé, N. C., Ning, Y. & Chen, E. Y. X. In situ stereocomplexing polymerization of methyl methacrylate by diastereospecific metallocene catalyst pairs. Polym. Chem. 3, 3247–3255 (2012).

    Google Scholar 

  338. Crne, M., Park, J. O. & Srinivasarao, M. Electrospinning physical gels: the case of stereocomplex PMMA. Macromolecules 42, 4353–4355 (2009).

    CAS  Google Scholar 

  339. Kawauchi, T., Kumaki, J., Okoshi, K. & Yashima, E. Stereocomplex formation of isotactic and syndiotactic poly(methyl methacrylate)s in ionic liquids leading to thermoreversible ion gels. Macromolecules 38, 9155–9160 (2005).

    CAS  Google Scholar 

  340. Kawauchi, T., Kumaki, J. & Yashima, E. Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128, 10560–10567 (2006).

    CAS  PubMed  Google Scholar 

  341. Serizawa, T., Hamada, K.-i & Akashi, M. Polymerization within a molecular-scale stereoregular template. Nature 429, 52–55 (2004).

    CAS  PubMed  Google Scholar 

  342. Goh, T. K. et al. Nano-to-macroscale poly(methyl methacrylate) stereocomplex assemblies. Angew. Chem. Int. Ed. 48, 8707–8711 (2009).

    CAS  Google Scholar 

  343. Vidal, F., Falivene, L., Caporaso, L., Cavallo, L. & Chen, E. Y. X. Robust cross-linked stereocomplexes and C60 inclusion complexes of vinyl-functionalized stereoregular polymers derived from chemo/stereoselective coordination polymerization. J. Am. Chem. Soc. 138, 9533–9547 (2016). Alludes to the potential of stereoechemistry in nanotechnology applications (host–guest chemistry) or biomimetics (synthetic peptides) because of the well-defined negative space (pockets) in stereochemically precise architectures.

    CAS  PubMed  Google Scholar 

  344. Raquez, J.-M., Habibi, Y., Murariu, M. & Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013).

    CAS  Google Scholar 

  345. Gao, C., Yu, L., Liu, H. & Chen, L. Development of self-reinforced polymer composites. Prog. Polym. Sci. 37, 767–780 (2012).

    CAS  Google Scholar 

  346. Ikada, Y., Jamshidi, K., Tsuji, H. & Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904–906 (1987).

    CAS  Google Scholar 

  347. Tsuji, H. & Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40, 6699–6708 (1999).

    CAS  Google Scholar 

  348. Hirata, M. & Kimura, Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer 49, 2656–2661 (2008).

    CAS  Google Scholar 

  349. Pan, P. et al. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(l-lactic acid)/poly(d-lactic acid) racemic blends: molecular weight effects. J. Phys. Chem. B. 119, 6462–6470 (2015).

    CAS  PubMed  Google Scholar 

  350. Andersson, S. R., Hakkarainen, M., Inkinen, S., Södergård, A. & Albertsson, A.-C. Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11, 1067–1073 (2010).

    CAS  PubMed  Google Scholar 

  351. Anderson, K. S. & Hillmyer, M. A. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47, 2030–2035 (2006).

    CAS  Google Scholar 

  352. Tsuji, H., Takai, H. & Saha, S. K. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47, 3826–3837 (2006).

    CAS  Google Scholar 

  353. Xie, Q., Han, L., Shan, G., Bao, Y. & Pan, P. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain. Chem. Eng. 4, 2680–2688 (2016).

    CAS  Google Scholar 

  354. Han, L., Pan, P., Shan, G. & Bao, Y. Stereocomplex crystallization of high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) racemic blends promoted by a selective nucleator. Polymer 63, 144–153 (2015).

    CAS  Google Scholar 

  355. Bao, R.-Y., Yang, W., Wei, X.-F., Xie, B.-H. & Yang, M.-B. Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain. Chem. Eng. 2, 2301–2309 (2014).

    CAS  Google Scholar 

  356. Fukushima, K. & Kimura, Y. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Int. 55, 626–642 (2006).

    CAS  Google Scholar 

  357. Platel, R. H., Hodgson, L. M. & Williams, C. K. Biocompatible initiators for lactide polymerization. Polym. Rev. 48, 11–63 (2008).

    CAS  Google Scholar 

  358. Lin, T., Liu, X.-Y. & He, C. Calculation of infrared/Raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method. J. Phys. Chem. B 116, 1524–1535 (2012).

    CAS  PubMed  Google Scholar 

  359. Lin, T. T., Liu, X. Y. & He, C. A. DFT study on poly(lactic acid) polymorphs. Polymer 51, 2779–2785 (2010).

    CAS  Google Scholar 

  360. Tsuji, H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107, 97–135 (2016).

    CAS  PubMed  Google Scholar 

  361. Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597 (2005).

    CAS  PubMed  Google Scholar 

  362. Tsuji, H. & Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44, 2891–2896 (2003).

    CAS  Google Scholar 

  363. Li, W., Chen, X., Ma, Y. & Fan, Z. The accelerating effect of the star-shaped poly(d-lactide)-block-poly (l-lactide) stereoblock copolymer on PLLA melt crystallization. CrystEngComm 18, 1242–1250 (2016).

    CAS  Google Scholar 

  364. Sarasua, J. R., Arraiza, A. L., Balerdi, P. & Maiza, I. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym. Eng. Sci. 45, 745–753 (2005).

    CAS  Google Scholar 

  365. Tsuji, H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41, 3621–3630 (2000).

    CAS  Google Scholar 

  366. Li, Y. et al. Stereocomplex crystallite network in poly(d, l-lactide): formation, structure and the effect on shape memory behaviors and enzymatic hydrolysis of poly(d, l-lactide). RSC Adv. 5, 24352–24362 (2015).

    CAS  Google Scholar 

  367. Li, Z., Tan, B. H., Lin, T. & He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 62, 22–72 (2016).

    Google Scholar 

  368. Tan, B. H., Muiruri, J. K., Li, Z. & He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 4, 5370–5391 (2016).

    CAS  Google Scholar 

  369. Soleymani Abyaneh, H., Vakili, M. R., Shafaati, A. & Lavasanifar, A. Block copolymer stereoregularity and its impact on polymeric micellar nanodrug delivery. Mol. Pharm. 14, 2487–2502 (2017).

    CAS  PubMed  Google Scholar 

  370. Brzezinski, M. & Biela, T. Micro- and nanostructures of polylactide stereocomplexes and their biomedical applications. Polym. Int. 64, 1667–1675 (2015).

    CAS  Google Scholar 

  371. Ajiro, H., Kuroda, A., Kan, K. & Akashi, M. Stereocomplex film using triblock copolymers of polylactide and poly(ethylene glycol) retain paxlitaxel on substrates by an aqueous inkjet system. Langmuir 31, 10583–10589 (2015).

    CAS  PubMed  Google Scholar 

  372. Ma, C. et al. Core–shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Langmuir 31, 1527–1536 (2015).

    CAS  PubMed  Google Scholar 

  373. Agatemor, C. & Shaver, M. P. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers. Biomacromolecules 14, 699–708 (2013).

    CAS  PubMed  Google Scholar 

  374. Yang, L., Wu, X., Liu, F., Duan, Y. & Li, S. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm. Res. 26, 2332–2342 (2009).

    CAS  PubMed  Google Scholar 

  375. Nederberg, F. et al. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10, 1460–1468 (2009).

    CAS  PubMed  Google Scholar 

  376. Fukushima, K. et al. Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly. Biomacromolecules 9, 3051–3056 (2008).

    CAS  PubMed  Google Scholar 

  377. Chen, L., Xie, Z., Hu, J., Chen, X. & Jing, X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res. 9, 777–785 (2007).

    Google Scholar 

  378. Oh, J. K. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7, 5096–5108 (2011).

    CAS  Google Scholar 

  379. Zhao, Z. et al. Biodegradable stereocomplex micelles based on dextran-block-polylactide as efficient drug deliveries. Langmuir 29, 13072–13080 (2013).

    CAS  PubMed  Google Scholar 

  380. Ishii, D., Ying, T., Yamaoka, T. & Iwata, T. Characterization and biocompatibility of biopolyester nanofibers. Mater 2, 1520–1546 (2009).

    CAS  Google Scholar 

  381. Monticelli, O. et al. New stereocomplex PLA-based fibers: effect of POSS on polymer functionalization and properties. Macromolecules 47, 4718–4727 (2014).

    CAS  Google Scholar 

  382. Spasova, M. et al. Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules 11, 151–159 (2010).

    CAS  PubMed  Google Scholar 

  383. Fundador, N. G. V., Takemura, A. & Iwata, T. Structural properties and enzymatic degradation behavior of PLLA and stereocomplexed PLA nanofibers. Macromol. Mater. Eng. 295, 865–871 (2010).

    CAS  Google Scholar 

  384. Zhang, X., Kotaki, M., Okubayashi, S. & Sukigara, S. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Acta Biomater. 6, 123–129 (2010).

    CAS  PubMed  Google Scholar 

  385. Ishii, D. et al. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules 10, 237–242 (2009).

    CAS  PubMed  Google Scholar 

  386. Tsuji, H. et al. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 7, 3316–3320 (2006).

    CAS  PubMed  Google Scholar 

  387. Li, Y. et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew. Chem. Int. Ed. 52, 674–678 (2013).

    CAS  Google Scholar 

  388. Buwalda, S. J., Calucci, L., Forte, C., Dijkstra, P. J. & Feijen, J. Stereocomplexed 8-armed poly(ethylene glycol)–poly(lactide) star block copolymer hydrogels: gelation mechanism, mechanical properties and degradation behavior. Polymer 53, 2809–2817 (2012).

    CAS  Google Scholar 

  389. Abebe, D. G. & Fujiwara, T. Controlled thermoresponsive hydrogels by stereocomplexed PLA-PEG-PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths. Biomacromolecules 13, 1828–1836 (2012).

    CAS  PubMed  Google Scholar 

  390. Zhang, Y. et al. Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. Int. J. Pharm. 386, 15–22 (2010).

    CAS  PubMed  Google Scholar 

  391. Nagahama, K., Fujiura, K., Enami, S., Ouchi, T. & Ohya, Y. Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA. J. Polym. Sci. A 46, 6317–6332 (2008).

    CAS  Google Scholar 

  392. Jun, Y. J., Park, K. M., Joung, Y. K., Park, K. D. & Lee, S. J. In situ gel forming stereocomplex composed of four-arm PEG-PDLA and PEG-PLLA block copolymers. Macromol. Res. 16, 704–710 (2008).

    CAS  Google Scholar 

  393. Hiemstra, C. et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J. Control. Release 119, 320–327 (2007).

    CAS  PubMed  Google Scholar 

  394. Hiemstra, C., Zhong, Z., Li, L., Dijkstra, P. J. & Feijen, J. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG–(PLLA)8 and PEG– (PDLA)8 star block copolymers. Biomacromolecules 7, 2790–2795 (2006).

    CAS  PubMed  Google Scholar 

  395. Fujiwara, T. et al. Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol. Biosci. 1, 204–208 (2001).

    CAS  Google Scholar 

  396. Sun, L. et al. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nat. Commun. 5, 5746 (2014). This work demonstrates the potential of stereochemistry to determine function (morphological reorganization of nanostructures) beyond just controlling molecular and/or macroscopic properties of polymers.

    CAS  PubMed  PubMed Central  Google Scholar 

  397. Kim, S. H. et al. Hierarchical assembly of nanostructured organosilicate networks via stereocomplexation of block copolymers. Nano Lett. 8, 294–301 (2008).

    CAS  PubMed  Google Scholar 

  398. Wang, H. et al. Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer 137, 1–12 (2018).

    Google Scholar 

  399. Watts, A., Kurokawa, N. & Hillmyer, M. A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 18, 1845–1854 (2017).

    CAS  PubMed  Google Scholar 

  400. Huang, Y. et al. ABA-type thermoplastic elastomers composed of poly(ε-caprolactone-co-δ-valerolactone) soft midblock and polymorphic poly(lactic acid) hard end blocks. ACS Sustain. Chem. Eng. 4, 121–128 (2016).

    CAS  Google Scholar 

  401. Wanamaker, C. L. et al. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers. Biomacromolecules 10, 2904–2911 (2009).

    CAS  PubMed  Google Scholar 

  402. Zhang, Z., Grijpma, D. W. & Feijen, J. Triblock copolymers based on 1,3-trimethylene carbonate and lactide as biodegradable thermoplastic elastomers. Macromol. Chem. Phys. 205, 867–875 (2004).

    CAS  Google Scholar 

  403. Marín, R. et al. Spectroscopic evidence for stereocomplex formation by enantiomeric polyamides derived from tartaric acid. Macromolecules 41, 3734–3738 (2008).

    Google Scholar 

  404. Marín, R., Alla, A. & Muñoz-Guerra, S. Stereocomplex formation from enantiomeric polyamides derived from tartaric acid. Macromol. Rapid Commun. 27, 1955–1961 (2006).

    Google Scholar 

  405. Iribarren, I. et al. Stereocopolyamides derived from 2,3-di-O-methyl-D and -L-tartaric acids and hexamethylenediamine. 2. Influence of the configurational composition on the crystal structure of optically compensated systems. Macromolecules 29, 8413–8424 (1996).

    CAS  Google Scholar 

  406. Nakano, K., Hashimoto, S., Nakamura, M., Kamada, T. & Nozaki, K. Stereocomplex of poly(propylene carbonate): synthesis of stereogradient poly(propylene carbonate) by regio- and enantioselective copolymerization of propylene oxide with carbon dioxide. Angew. Chem. Int. Ed. 50, 4868–4871 (2011).

    CAS  Google Scholar 

  407. Auriemma, F., De Rosa, C., Di Caprio, M. R., Di Girolamo, R. & Coates, G. W. Crystallization of alternating limonene oxide/carbon dioxide copolymers: determination of the crystal structure of stereocomplex poly(limonene carbonate). Macromolecules 48, 2534–2550 (2015).

    CAS  Google Scholar 

  408. Auriemma, F. et al. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed. 54, 1215–1218 (2014). An excellent example of leveraging stereocomplexation to greatly improve the properties of a biosourced polymer.

    Google Scholar 

  409. Zhu, J.-B. & Chen, E. Y. X. Catalyst-sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 58, 1178–1182 (2019).

    CAS  Google Scholar 

  410. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    CAS  PubMed  Google Scholar 

  411. Jing, Y., Quan, C., Liu, B., Jiang, Q. & Zhang, C. A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym. Rev. 56, 262–286 (2016).

    CAS  Google Scholar 

  412. Tsuji, H., Noda, S., Kimura, T., Sobue, T. & Arakawa, Y. Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers. Sci. Rep. 7, 45170 (2017).

    PubMed  PubMed Central  Google Scholar 

  413. Tsuji, H. & Hayakawa, T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Macromol. Chem. Phys. 217, 2483–2493 (2016).

    CAS  Google Scholar 

  414. Tsuji, H. & Hayakawa, T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Polymer 55, 721–726 (2014).

    CAS  Google Scholar 

  415. Tsuji, H., Yamamoto, S., Okumura, A. & Sugiura, Y. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Biomacromolecules 11, 252–258 (2010).

    CAS  PubMed  Google Scholar 

  416. Schuster, N. J. et al. A helicene nanoribbon with greatly amplified chirality. J. Am. Chem. Soc. 140, 6235–6239 (2018).

    CAS  PubMed  Google Scholar 

  417. Khokhlov, K., Schuster, N. J., Ng, F. & Nuckolls, C. Functionalized helical building blocks for nanoelectronics. Org. Lett. 20, 1991–1994 (2018).

    CAS  PubMed  Google Scholar 

  418. Zhong, Y. et al. Helical nanoribbons for ultra-narrowband photodetectors. J. Am. Chem. Soc. 139, 5644–5647 (2017).

    CAS  PubMed  Google Scholar 

  419. Zhang, B. et al. Hollow organic capsules assemble into cellular semiconductors. Nat. Commun. 9, 1957 (2018).

    PubMed  PubMed Central  Google Scholar 

  420. Zhang, B. et al. Rigid, conjugated macrocycles for high performance organic photodetectors. J. Am. Chem. Soc. 138, 16426–16431 (2016).

    CAS  PubMed  Google Scholar 

  421. Ball, M. et al. Macrocyclization in the design of organic n-type electronic materials. J. Am. Chem. Soc. 138, 12861–12867 (2016).

    CAS  PubMed  Google Scholar 

  422. Ball, M. et al. Chiral conjugated corrals. J. Am. Chem. Soc. 137, 9982–9987 (2015).

    CAS  PubMed  Google Scholar 

  423. Shin, S. et al. Living light-induced crystallization-driven self-assembly for rapid preparation of semiconducting nanofibers. J. Am. Chem. Soc. 140, 6088–6094 (2018). Demonstrates the massive potential in the field by creating nanostructured materials via dynamic stereochemistry along the polymer backbone.

    CAS  PubMed  Google Scholar 

  424. Li, S., Han, G. & Zhang, W. Concise synthesis of photoresponsive polyureas containing bridged azobenzenes as visible-light-driven actuators and reversible photopatterning. Macromolecules 51, 4290–4297 (2018).

    CAS  Google Scholar 

  425. Zhou, H. et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9, 145–151 (2016).

    PubMed  Google Scholar 

  426. Accardo, J. V. & Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9, 5987–5993 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  427. Roppolo, I. et al. 3D printable light-responsive polymers. Mater. Horiz. 4, 396–401 (2017).

    CAS  Google Scholar 

  428. Nehls, E. M., Rosales, A. M. & Anseth, K. S. Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers. J. Mater. Chem. B 4, 1035–1039 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  429. Rosales, A. M., Mabry, K. M., Nehls, E. M. & Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  430. Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010).

    CAS  Google Scholar 

  431. Zhao, Y.-L. & Stoddart, J. F. Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009).

    CAS  PubMed  Google Scholar 

  432. Donovan, B. R., Matavulj, V. M., Ahn, S.-k., Guin, T. & White, T. J. All-optical control of shape. Adv. Mater. 31, 1805750 (2019).

    Google Scholar 

  433. Hassan, F., Sassa, T., Hirose, T., Ito, Y. & Kawamoto, M. Light-driven molecular switching of atropisomeric polymers containing azo-binaphthyl groups in their side chains. Polym. J. 50, 455–465 (2018).

    CAS  Google Scholar 

  434. Yang, D. et al. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. Soft Matter 13, 6129–6136 (2017).

    CAS  PubMed  Google Scholar 

  435. Yang, D., Duan, P., Zhang, L. & Liu, M. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 8, 15727 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  436. Cobos, K., Quiñoá, E., Riguera, R. & Freire, F. Chiral-to-chiral communication in polymers: a unique approach to control both helical sense and chirality at the periphery. J. Am. Chem. Soc. 140, 12239–12246 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.P.D. gratefully acknowledges financial support from the European Research Council (ERC, grant no 681559). J.C.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no 751150. S.J. and P.B. thank the European Commission for the financial support through SUSPOL-EJD 64267, while H.P. thanks The Leverhulme Trust (grant no RPG-2015-120) for financial support. M.L.B. acknowledges support from the National Science Foundation (DMR BMAT 1507420) and the W. Gerald Austen Endowed Chair from the John S. and James L. Knight Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript. J.C.W., A.P.D. and M.L.B. edited the manuscript into its final form.

Corresponding author

Correspondence to Andrew P. Dove.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks F. Leibfarth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Entanglement molecular weight

(Me). The molecular weight above which the material displays the characteristic properties of a plastic.

Ring-opening polymerization

(ROP). A type of chain growth polymerization in which the end of the growing polymer chain reacts with a cyclic monomer, resulting in ring opening.

Step-growth polycondensation

Multifunctional monomers combine to form dimers, trimers and oligomers before these ultimately combine to produce polymers.

Chain-growth polymerization

Polymer chains are formed and grow by the addition of monomers one at a time to the end of a chain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worch, J.C., Prydderch, H., Jimaja, S. et al. Stereochemical enhancement of polymer properties. Nat Rev Chem 3, 514–535 (2019). https://doi.org/10.1038/s41570-019-0117-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0117-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing