Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-standing and unresolved issues in triboelectric charging


Static electrification is among the earliest of the sciences, well known to us all and with widespread and important consequences. Yet, its most basic foundations remain poorly understood. For example, after centuries of research, it is still not clear whether electrons, ions or even bulk material transfer is responsible for the observed charging. Recent work has leveraged the most advanced experimental and theoretical approaches, and has addressed the phenomenon from perspectives of quantum mechanics, surface chemistry, mechanochemistry and statistical physics. While the resulting findings have advanced many aspects of our understanding, they have also led to the discovery of new surprises that we are only beginning to appreciate. This Review addresses both recent advances and their accompanying surprises.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Timeline of major developments in the history of triboelectric charging.
Fig. 2: Electron transport in metals and insulators.
Fig. 3: Electronic structures of interacting surfaces.
Fig. 4: Surface functionalizations and triboelectric charging.
Fig. 5: Effects of material strain on triboelectric charging.
Fig. 6: Iterative dipole amplification model.
Fig. 7: Experiments and theory for dipole amplification.
Fig. 8: Experiment and theory for multiple time step charging.


  1. 1.

    Shaw, P. E. The electrical charges from like solids. Nature 118, 659–660 (1926).

    Article  Google Scholar 

  2. 2.

    Carson, D. A. The Gagging of God: Christianity Confronts Pluralism 57 (Apollos, Leicester, 1996).

  3. 3.

    Shinbrot, T., Komatsu, T. S. & Zhao, Q. Spontaneous tribocharging of similar materials. Europhys. Lett. 83, 24004 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    Apodaca, M. M., Wesson, P. J., Bishop, K. J., Ratner, M. A. & Grzybowski, B. A. Contact electrification between identical materials. Angew. Chem. Int. Ed. 49, 946–949 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Pham, R., Virnelson, C. R., Sankaran, R. M. & Lacks, D. J. Contact charging between surfaces of identical insulating materials in asymmetric geometries. J. Electrostat. 69, 456–460 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Feng, J. Q. Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62, 2891 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    Matias, A. F. V., Shinbrot, T. & Araújo, N. A. M. Mechanical equilibrium of aggregates of dielectric spheres. Phys. Rev. E 98, 062903 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Pai, D. M. & Springett, B. E. Physics of electrophotography. Rev. Mod. Phys. 65, 163–211 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    Jaworek, A. & Sobczyk, A. T. Electrospraying route to nanotechnology: an overview. J. Electrostat. 66, 197–219 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Sahoo, S., Ouyang, H., Goh, J. C. H., Tay, T. E. & Toh, S. L. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 12, 91–99 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Bishop, K. J. M., Drews, A. M., Cartier, C. A., Pandey, S. & Dou, Y. Contact charge electrophoresis: fundamentals and microfluidic applications. Langmuir 34, 6315–6327 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Lin, Z.-H. et al. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52, 5065–5069 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, J. et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8, 88 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Liu, J. et al. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 13, 112–116 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Johnson, A. P. et al. The Miller volcanic spark discharge experiment. Science 322, 404 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Jungmann, F., Steinpilz, T., Teiser, J. & Wurm, G. Sticking and restitution in collisions of charged sub-mm dielectric grains. J. Phys. Commun. 2, 095009 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Spahn, F. & Seiβ, M. Charges dropped. Nat. Phys. 11, 709–710 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Tamminen, P., Ukkonen, L. & Sydanheimo, L. Correlation of component human body model and charged device model qualification levels with electrical failures in electronics assembly. J. Electrostat. 79, 38–44 (2016).

    Article  Google Scholar 

  19. 19.

    Baytekin, H. T., Baytekin, B., Hermans, T. M., Kowalczyk, B. & Grzybowski, B. A. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry. Science 341, 1368–1371 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Ohsawa, A. Brush and propagating brush discharges on insulating sheets in contact with a grounded conductor. J. Electrostat. 88, 171–176 (2017).

    Article  Google Scholar 

  21. 21.

    Faraday, M. & Lyell, C. II. Report from Messrs. Faraday and Lyell to the Rt. Hon. Sir James Graham, bart., secretary of state for the home department, on the subject of the explosion at the Haswell Collieries, and on the means of preventing similar accidents. Philos. Mag. 26, 16–35 (1845).

    Google Scholar 

  22. 22.

    Pingali, K. C., Hammond, S. V., Muzzio, F. J. & Shinbrot, T. Use of a static eliminator to improve powder flow. Int. J. Pharm. 369, 2–4 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Salama, F., Sowinski, A., Atieh, K. & Mehrani, P. Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas–solid fluidized bed. J. Electrostat. 71, 21–27 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Mehrani, P., Murtumaa, M. & Lacks, D. J. An overview of advances in understanding electrostatic charge buildup in gas-solid fluidized beds. J. Electrostat. 87, 64–78 (2017).

    Article  Google Scholar 

  25. 25.

    Fotovat, F., Bi, X. T. & Grace, J. R. Electrostatics in gas-solid fluidized beds: a review. Chem. Eng. Sci. 173, 303–334 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Pu, Y., Mazumder, M. & Cooney, C. Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J. Pharm. Sci. 98, 2412–2421 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Burgo, T. A. L., Silva, C. A., Balestrin, L. B. S. & Galembeck, F. Friction coefficient dependence on electrostatic tribocharging. Sci. Rep. 3, 2384 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Sayfidinov, K., Cezan, S. D., Baytekin, B. & Baytekin, H. T. Minimizing friction, wear, and energy losses by eliminating contact charging. Sci. Adv. 4, eaau3808 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Iverson, P. & Lacks, D. J. A life of its own: the tenuous connection between Thales of Miletus and the study of electrostatic charging. J. Electrostat. 70, 309–311 (2012).

    Article  Google Scholar 

  30. 30.

    Gilbert, W. De Magnete (Dover Publications, New York, 1991).

    Google Scholar 

  31. 31.

    Assis, A. K. T. The Experimental and Historical Foundations Of Electricity 95–124 (Apeiron, Montreal, 2010).

  32. 32.

    Shaw, P. E. & Jex, C. S. Triboelectricity and friction. II. Glass and solid elements. Proc. R. Soc. Lond. A 118, 97–108 (1928).

    CAS  Article  Google Scholar 

  33. 33.

    Shaw, P. E. Experiments on tribo-electricity. I. The tribo-electric series. Proc. R. Soc. Lond. A 94, 16–33 (1917).

    Article  Google Scholar 

  34. 34.

    Shaw, P. E. Electrical separation between identical solid surfaces. Proc. Phys. Soc. 39, 449–452 (1926).

    Article  Google Scholar 

  35. 35.

    Zhao, H., Castle, G. S. P. & Inculet, I. I. The measurement of bipolar charge in polydisperse powder using a vertical array of faraday pail sensors. J. Electrostat. 55, 261–278 (2002).

    Article  Google Scholar 

  36. 36.

    Rudge, W. A. D. Atmospheric electrification during South African dust storms. Nature 91, 31–32 (1913).

    Article  Google Scholar 

  37. 37.

    Farrell, W. M., Delory, G. T., Cummer, S. A. & Marshall, J. R. A simple electrodynamic model of a dust devil. Geophys. Res. Lett. 30, 2050 (2003).

    Article  Google Scholar 

  38. 38.

    Harper, W. R. Contact and Frictional Electrification (Clarendon Press, Oxford, 1967).

    Google Scholar 

  39. 39.

    Knoblauch, O. Versuche uber die beruhrungselektrizitat [German]. Z. Phys. Chem. 39, 225–244 (1902).

    Google Scholar 

  40. 40.

    Diaz, A. F., Wollmann, D. & Dreblow, D. Contact electrification: ion transfer to metals and polymers. Chem. Mater. 3, 997–999 (1991).

    CAS  Article  Google Scholar 

  41. 41.

    McCarty, L. S., Winkleman, A. & Whitesides, G. M. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46, 206–209 (2007).

    CAS  Article  Google Scholar 

  42. 42.

    Salanek, W. R., Paton, A. & Clark, D. T. Double mass transfer during polymer-polymer contacts. J. Appl. Phys. 47, 144–147 (1976).

    Article  Google Scholar 

  43. 43.

    Castle, G. S. P. & Schein, L. B. General model of sphere-sphere insulator contact electrification. J. Electrostat. 36, 165–173 (1995).

    Article  Google Scholar 

  44. 44.

    Laurentie, J. C., Traoré, P. & Dascalescu, L. Discrete element modeling of triboelectric charging of insulating materials in vibrated granular beds. J. Electrostat. 71, 951–957 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Paschen, F. Ueber die zum funkenübergang in luft, wasserstoff und kohlensäure bei verschiedenen drucken erforderliche potentialdifferenz [German]. Ann. Phys. 273, 69–96 (1889).

    Article  Google Scholar 

  46. 46.

    Matsuyama, T. & Yamamoto, H. Charge-relaxation process dominates contact charging of a particle in atmospheric condition: II. The general model. J. Phys. D 30, 2170–2175 (1997).

    CAS  Article  Google Scholar 

  47. 47.

    Soh, S., Kwok, S. W., Liu, H. & Whitesides, G. M. Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 134, 20151–20159 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Soh, S., Liu, H., Cademartiri, R., Yoon, H. J. & Whitesides, G. M. Charging of multiple interacting particles by contact electrification. J. Am. Chem. Soc. 136, 13348–13354 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Siek, M., Adamkiewicz, W., Sobolev, Y. I. & Grzybowski, B. A. The influence of distant substrates on the outcome of contact electrification. Agnew. Chem. Int. Ed. 130, 15605–15609 (2018).

    Article  Google Scholar 

  50. 50.

    Hull, H. H. A method for studying the distribution and sign of static charges on solid materials. J. Appl. Phys. 20, 1157–1159 (1949).

    Article  Google Scholar 

  51. 51.

    Lowell, J. & Akande, A. R. Contact electrification – why is it variable? J. Phys. D 21, 125–137 (1988).

    CAS  Article  Google Scholar 

  52. 52.

    Baytekin, H. T. et al. The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Schein, L. B. Recent advances in our understanding of toner charging. J. Electrostat. 46, 29–36 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    Sow, M. et al. Strain-induced reversal of charge transfer in contact electrification. Angew. Chem. Int. Ed. 51, 2695–2697 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Lowell, J. & Rose-Innes, A. C. Contact electrification. Adv. Phys. 29, 947–1023 (1980).

    CAS  Article  Google Scholar 

  56. 56.

    Shinbrot, T., Ferdowsi, B., Sundaresan, S. & Araújo, N. A. M. Multiple timescale contact charging. Phys. Rev. Mater. 2, 125003 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Park, J. Y. & Salmeron, M. Fundamental aspects of energy dissipation in friction. Chem. Rev. 114, 677–711 (2014).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Liu, J., Jiang, K., Nguyen, L., Li, Z. & Thundat, T. Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation. Mater. Horiz. 6, 1020–1026 (2019).

    CAS  Article  Google Scholar 

  59. 59.

    Bacon, F. Novum Organum, Book 2, 377 (Joannem Billium, 1620).

    Google Scholar 

  60. 60.

    Picard, J. Experience fait à l’observatoire sur la barometre simple touchant un nouveau phenomene qu’on y a découvert [French]. Le Journal des Sçavans (Paris edn) 112 (1676).

  61. 61.

    Harvey, E. N. The luminescence of adhesive tape. Science 89, 460–461 (1939).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Shinbrot, T., Kim, N. H. & Thyagu, N. N. Electrostatic precursors to granular slip events. Proc. Natl Acad. Sci. USA 109, 10806–10810 (2012).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Article  Google Scholar 

  64. 64.

    Diaz, A. F. & Guay, J. Contact charging of organic materials: ion versus electron transfer. IBM J. Res. Dev. 37, 249–259 (1993).

    CAS  Article  Google Scholar 

  65. 65.

    McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

    CAS  Article  Google Scholar 

  66. 66.

    Lacks, D. J. & Sankaran, R. M. Contact electrification of insulating materials. J. Phys. D Appl. Phys. 44, 453001 (2011).

    Article  CAS  Google Scholar 

  67. 67.

    Byun, K.-E. et al. Control of triboelectrification by engineering surface dipole and surface electronic state. ACS Appl. Mater. Interfaces 8, 18519–18525 (2016).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Biegaj, K. W., Rowland, M. G., Lukas, T. M. & Heng, J. Y. Y. Surface chemistry and humidity in powder electrostatics: a comparative study between tribocharging and corona discharge. ACS Omega 2, 1576–1582 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Shin, S.-H. et al. Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 11, 6131–6138 (2017).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Seol, M. et al. Triboelectric series of 2D layered materials. Adv. Mater. 30, 1801210 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    Lee, V., James, N. M., Waitukaitis, S. R. & Jaeger, H. M. Collisional charging of individual submillimeter particles: using ultrasonic levitation to initiate and track charge transfer. Phys. Rev. Mater. 2, 035602 (2018).

    CAS  Article  Google Scholar 

  72. 72.

    Burgo, T. A. et al. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28, 7407–7416 (2012).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Galembeck, F. et al. Friction, tribochemistry and triboelectricity: recent progress and perspectives. RSC Adv. 4, 64280–64298 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Kwetkus, B. A. & Sattler, K. Contact charging of oxidized metal powders. Z. Phys. B Condens. Matter 82, 87–93 (1991).

    CAS  Article  Google Scholar 

  75. 75.

    Sternovsky, Z., Horanyi, M. & Robertson, S. Charging of dust particles on surfaces. J. Vac. Sci. Technol. A 19, 2533–2541 (2001).

    CAS  Article  Google Scholar 

  76. 76.

    Waitukaitis, S. R., Lee, V., Pierson, J. M., Forman, S. L. & Jaeger, H. M. Size-dependent same-material tribocharging in insulating grains. Phys. Rev. Lett. 112, 218001 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    Shen, X., Wang, A. E., Sankaran, R. M. & Lacks, D. J. First-principles calculation of contact electrification and validation by experiment. J. Electrostat. 82, 11–16 (2016).

    CAS  Article  Google Scholar 

  78. 78.

    Lina, S. A. & Shao, T. M. Bipolar charge transfer induced by water: experimental and first-principles studies. Phys. Chem. Chem. Phys. 19, 29418–29423 (2017).

    Article  Google Scholar 

  79. 79.

    Xu, C. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30, 1706790 (2018).

    Article  CAS  Google Scholar 

  80. 80.

    Zhang, Y. & Shao, T. Effect of contact deformation on contact electrification: a first-principles calculation. J. Phys. D Appl. Phys. 46, 235304 (2013).

    Article  CAS  Google Scholar 

  81. 81.

    Lacks, D. J. & Gordon, R. G. Tests of nonlocal kinetic energy functionals. J. Chem. Phys. 100, 4446 (1994).

    CAS  Article  Google Scholar 

  82. 82.

    Abdelaziz, K. M., Chen, J., Hieber, T. J. & Leseman, Z. C. Atomistic field theory for contact electrification of dielectrics. J. Electrostat. 96, 10–15 (2018).

    CAS  Article  Google Scholar 

  83. 83.

    Liu, C.-Y. & Bard, A. J. Electrostatic electrochemistry at insulators. Nat. Mater. 7, 505–509 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Liu, C.-Y. & Bard, A. J. Chemical redox reactions induced by cryptoelectrons on a PMMA surface. J. Am. Chem. Soc. 131, 6397–6401 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Liu, C.-Y. & Bard, A. J. Electrons on dielectrics and contact electrification. Chem. Phys. Lett. 480, 145–156 (2009).

    CAS  Article  Google Scholar 

  86. 86.

    Baytekin, B., Baytekin, H. T. & Grzybowski, B. A. What really drives chemical reactions on contact charged surfaces? J. Am. Chem. Soc. 134, 7223–7226 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Piperno, S., Cohen, H., Bendikov, T., Lahav, M. & Lubomirsky, I. Absorption versus redox reduction of Pd2+ and Cu2+ on triboelectrically and naturally charged dielectric polymers. Phys. Chem. Chem. Phys. 14, 5551–5557 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Yun, C. et al. Can static electricity on a conductor drive a redox reaction: contact electrification of Au by polydimethylsiloxane, charge inversion in water, and redox reaction. J. Am. Chem. Soc. 140, 14687–14695 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    McCarty, L. S., Winkleman, A. & Whitesides, G. M. Ionic electrets: electrostatic charging of surfaces by transferring mobile ions upon contact. J. Am. Chem. Soc. 129, 4075–4088 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Diaz, A. F. & Felix-Navarro, R. M. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004).

    CAS  Article  Google Scholar 

  91. 91.

    Hogue, M. D. et al. Insulator–insulator contact charging and its relationship to atmospheric pressure. J. Electrostat. 61, 259–268 (2004).

    Article  Google Scholar 

  92. 92.

    Hogue, M. D., Mucciolo, E. R., Calle, C. I. & Buhler, C. R. Two-phase equilibrium model of insulator–insulator contact charging with electrostatic potential. J. Electrostat. 63, 179–188 (2005).

    Article  Google Scholar 

  93. 93.

    Ducati, T. R., Simões, L. H. & Galembeck, F. Charge partitioning at gas−solid interfaces: humidity causes electricity buildup on metals. Langmuir 26, 13763–13766 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Gouveia, R. F. & Galembeck, F. Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 131, 11381–11386 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Fang, Y., Chen, L., Sun, Y., Yong, W. P. & Soh, S. Anomalous charging behavior of inorganic materials. J. Phys. Chem. C 122, 11414–11421 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Pandey, R. K., Sun, Y., Nakanishi, H. & Soh, S. Reversible and continuously tunable control of charge of close surfaces. J. Phys. Chem. Lett. 8, 6142–6147 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Fu, R., Shen, X. & Lacks, D. J. First-principles study of the charge distributions in water confined between dissimilar surfaces and implications in regard to contact electrification. J. Phys. Chem. C 121, 12345–12349 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Knorr, N. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP Adv. 1, 022119 (2011).

    Article  CAS  Google Scholar 

  99. 99.

    Freundlich, H. Kapillarchemie [German] 3rd edn (Akademische Verlagsgesellschaft, Leipzig, 1923).

  100. 100.

    Henniker, J. Triboelectricity in polymers. Nature 196, 474 (1962).

    CAS  Article  Google Scholar 

  101. 101.

    Homewood, K. P. Do ‘dirty’ surfaces matter in contact electrification experiments? J. Electrostat. 10, 299–304 (1981).

    CAS  Article  Google Scholar 

  102. 102.

    Baytekin, H. T., Baytekin, B., Sow, S. & Grzybowski, B. A. Is water necessary for contact electrification? Angew. Chem. Int. Ed. 50, 6766–6770 (2011).

    CAS  Article  Google Scholar 

  103. 103.

    Sakaguchi, M., Shimad, S. & Kashiwabara, H. Mechanoions produced by mechanical fracture of solid polymer. 6. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoanions on the friction surface. Macromolecules 23, 5038–5040 (1990).

    CAS  Article  Google Scholar 

  104. 104.

    Mazur, T. & Grzybowski, B. A. Theoretical basis for the stabilization of charges by radicals on electrified polymers. Chem. Sci. 8, 2025–2032 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Barnes, A. M. & Dinsmore, A. D. Heterogeneity of surface potential in contact electrification under ambient conditions: a comparison of pre- and post-contact states. J. Electrostat. 81, 76–81 (2016).

    CAS  Article  Google Scholar 

  106. 106.

    Neagoe, M. B., Prawatya, Y. E., Zeghloul, T. & Dascalescu, L. Electric-potential-measurement-based methodology for estimation of electric charge density at the surface of tribocharged insulating slabs. J. Electrostat. 90, 123–130 (2017).

    Article  Google Scholar 

  107. 107.

    Gonzalez, J. F., Somoza, A. M. & Palacios-Lidori, E. Charge distributions from SKPM images. Phys. Chem. Chem. Phys. 19, 27299–27304 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    da Silveira Balestriri, L. B., Del Duque, D., da Silva, D. S. & Galembeck, F. Triboelectricity in insulating polymers: evidence for a mechanochemical mechanism. Faraday Discuss. 170, 369–383 (2014).

    Article  Google Scholar 

  109. 109.

    Baytekin, H. T., Baytekin, B., Incorvati, J. T. & Grzybowski, B. A. Material transfer and polarity reversal in contact charging. Angew. Chem. Int. Ed. 51, 4843–4847 (2012).

    CAS  Article  Google Scholar 

  110. 110.

    Pandey, R. K., Kakehashi, H., Nakanishi, H. & Soh, S. Correlating material transfer and charge transfer in contact electrification. J. Phys. Chem. C 122, 16154–16160 (2018).

    CAS  Article  Google Scholar 

  111. 111.

    Sun, H., Chu, H., Wang, J., Ding, L. & Li, Y. Kelvin probe force microscopy study on nanotriboelectrification. Appl. Phys. Lett. 96, 083112 (2010).

    Article  CAS  Google Scholar 

  112. 112.

    Vasandani, P., Mao, Z.-H., Jia, W. & Sun, M. Relationship between triboelectric charge and contact force for two triboelectric layers. J. Electrostat. 90, 147–152 (2017).

    Article  Google Scholar 

  113. 113.

    Sow, M., Lacks, D. J. & Sankaran, R. M. Dependence of contact electrification on the magnitude of strain in polymeric materials. J. Appl. Phys. 112, 084909 (2012).

    Article  CAS  Google Scholar 

  114. 114.

    Sow, M., Lacks, D. J. & Sankaran, R. M. Effects of material strain on triboelectric charging: Influence of material properties. J. Electrostat. 71, 396–399 (2013).

    CAS  Article  Google Scholar 

  115. 115.

    Burgo, T. A. L., Batista, B. C. & Galembeck, F. Electricity on rubber surfaces: a new energy conversion effect. ACS Omega 2, 8940–8947 (2017).

    CAS  Article  Google Scholar 

  116. 116.

    Santos, L. P., Campo, Y. A. S., Da Silva, D. S., Burgo, T. A. L. & Galembeck, F. Rubber surface change and static charging under periodic stress. Colloids Interfaces 2, 55 (2018).

    CAS  Article  Google Scholar 

  117. 117.

    Wang, A. E. et al. Dependence of triboelectric charging behavior on material microstructure. Phys. Rev. Mater. 1, 035605 (2017).

    Article  Google Scholar 

  118. 118.

    Angus, J. C. & Greber, I. Tribo-electric charging of dielectric solids of identical composition. J. Appl. Phys. 123, 174102 (2018).

    Article  CAS  Google Scholar 

  119. 119.

    Wang, A. E. Angus, J. C. & Greber, I. Contact charge transfer between inorganic dielectric solids of different surface roughness. J. Electrostat. (in the press).

  120. 120.

    Henry, P. S. H. The role of asymmetric rubbing in the generation of static electricity. Br. J. Appl. Phys. 4, S31–S36 (1957).

    Article  Google Scholar 

  121. 121.

    Lowell, J. & Truscott, W. S. Triboelectrification of identical insulators: II. Theory and further experiments. J. Phys. D Appl. Phys. 19, 1281–1298 (1986).

    CAS  Article  Google Scholar 

  122. 122.

    Baddeley, P. F. H. Whirlwinds and Dust-Storms of India 3–4 (Bell & Daldy, London, 1860).

  123. 123.

    Zhao, H., Castle, G. P., Inculet, I. I. & Bailey, A. G. Bipolar charging of poly-disperse polymer powders in fluidized beds. IEEE Trans. Ind. Appl. 39, 612–618 (2003).

    Article  Google Scholar 

  124. 124.

    Forward, K. M., Lacks, D. J. & Sankaran, R. M. Charge segregation depends on particle size in triboelectrically charged granular materials. Phys. Rev. Lett. 102, 028001 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  125. 125.

    Bilici, M. A., Toth, J. R. 3rd, Sankaran, R. M. & Lacks, D. J. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system. Rev. Sci. Instrum. 85, 103903 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  126. 126.

    Lacks, D. J. & Levandovsky, A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65, 107–112 (2007).

    CAS  Article  Google Scholar 

  127. 127.

    Lacks, D. J., Duff, N. & Kumar, S. K. Nonequilibrium accumulation of surface species and triboelectric charging in single component particulate systems. Phys. Rev. Lett. 100, 188305 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  128. 128.

    Yu, H., Mu, L. & Xie, L. Numerical simulation of particle size effects on contact electrification in granular systems. J. Electrostat. 90, 113–122 (2017).

    Article  Google Scholar 

  129. 129.

    Carter, D. & Hartzell, C. Extension of discrete tribocharging models to continuous size distributions. Phys. Rev. E 95, 012901 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Lee, V., Waitukaitis, S. R., Miskin, M. Z. & Jaeger, H. M. Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11, 733–737 (2015).

    CAS  Article  Google Scholar 

  131. 131.

    Konopka, L. & Kosek, J. Discrete element modeling of electrostatic charging of polyethylene powder particles. J. Electrostat. 87, 150–157 (2017).

    CAS  Article  Google Scholar 

  132. 132.

    Thomson, J. J. Cathode rays. Philos. Mag. 44, 293–316 (1897).

    Article  Google Scholar 

  133. 133.

    Jiang, X. et al. Evolutionary strategy for inverse charge measurements of dielectric particles. J. Chem. Phys. 148, 234302 (2018).

    PubMed  Article  CAS  Google Scholar 

  134. 134.

    Xie, L., Bao, N., Jiang, Y. & Zhou, J. Effect of humidity on contact electrification due to collision between spherical particles. AIP Adv. 6, 035117 (2016).

    Article  CAS  Google Scholar 

  135. 135.

    Ireland, P. M. Triboelectrification of particulate flows on surfaces: part I — experiments. Powder Technol. 198, 189–198 (2010).

    CAS  Article  Google Scholar 

  136. 136.

    Chowdhury, F., Sowinski, A., Ray, M., Passalacqua, A. & Mehrani, P. Charge generation and saturation on polymer particles due to single and repeated particle-metal contacts. J. Electrostat. 91, 9–15 (2018).

    CAS  Article  Google Scholar 

  137. 137.

    Peltonen, J., Murtomaa, M. & Salonen, J. Measuring electrostatic charging of powders on-line during surface adhesion. J. Electrostat. 93, 53–57 (2018).

    Article  Google Scholar 

  138. 138.

    Jin, X. & Marshall, J. S. The role of fluid turbulence on contact electrification of suspended particles. J. Electrostat. 87, 217–227 (2017).

    Article  Google Scholar 

  139. 139.

    Mazumder, M. K., Ware, R. E., Yokoyama, T., Rubin, B. J. & Kamp, D. Measurement of particle size and electrostatic charge distributions on toners using E-SPART analyzer. IEEE Trans. Ind. Appl. 27, 611–619 (1991).

    CAS  Article  Google Scholar 

  140. 140.

    Peltonen, J., Murtomaa, M., Saikkonen, A. & Salonen, J. A coaxial probe with a vertically split outer sensor for charge and dimensional measurement of a passing object. Sens. Actuators A Phys. 244, 44–49 (2016).

    CAS  Article  Google Scholar 

  141. 141.

    Shinbrot, T., Jones, B. & Saba, P. Charging at a distance. Phys. Rev. Mater. 2, 115603 (2018).

    CAS  Article  Google Scholar 

  142. 142.

    Siu, T., Cotton, J., Mattson, G. & Shinbrot, T. Self-sustaining charging of identical colliding particles. Phys. Rev. E 89, 052208 (2014).

    Article  CAS  Google Scholar 

  143. 143.

    Yoshimatsu, R., Araújo, N. A. M., Wurm, G., Herrmann, H. J. & Shinbrot, T. Self-charging of identical grains in the absence of an external field. Sci. Rep. 7, 39996 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Yousefi, R., Davis, A. B., Carmona-Reyes, J., Matthews, L. S. & Hyde, T. W. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma. Phys. Rev. E 90, 033101 (2014).

    Article  CAS  Google Scholar 

  145. 145.

    Donald, D. K. in Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 170–174 (IEEE, 1968).

  146. 146.

    Musa, U. G., Cezan, S. D., Baytekin, B. & Baytekin, H. T. The charging events in contact-separation electrification. Sci. Rep. 8, 2472 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Haeberle, J., Schella, A., Sperl, M., Schröter, M. & Born, P. Double origin of stochastic granular tribocharging. Soft Matter 14, 4987–4995 (2018).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Chen, X., Taguchi, D., Manaka, T., Iwamoto, M. & Wang, Z. L. Direct probing of contact electrification by using optical second harmonic generation technique. Sci. Rep. 5, 13019 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Yin, J. & Nysten, B. Contact electrification and charge decay on polyester fibres: a KPFM study. J. Electrostat. 96, 16–22 (2018).

    CAS  Article  Google Scholar 

  150. 150.

    Yin, J., Vanderheyden, B. & Nysten, B. Dynamic charge transfer between polyester and conductive fibres by Kelvin probe force microscopy. J. Electrostat. 96, 30–39 (2018).

    CAS  Article  Google Scholar 

  151. 151.

    Lacks, D. J. The unpredictability of electrostatic charging. Angew. Chem. Int. Ed. 51, 6822–6823 (2012).

    CAS  Article  Google Scholar 

  152. 152.

    Priestley, J. The History and Present State of Electricity, with Original Experiments 2nd edn 231 (J. Dodsley, J. Johnson and T. Cadell, 1769).

  153. 153.

    Franklin, B. Experiments and Observations on Electricity made at Philadelphia in America (E. Cave, 1751).

  154. 154.

    Canton, J. A letter to the right honourable the Earl of Macclesfield, President of the Royal Society, concerning some new electrical experiments. Philos. Trans. A Math. Phys. Eng. Sci. 48, 780–785 (1754).

    Google Scholar 

  155. 155.

    Home, R. W. Aepinus, the tourmaline crystal, and the theory of electricity and magnetism. Isis 67, 21–30 (1976).

    CAS  Article  Google Scholar 

  156. 156.

    Wilcke, J. C. Dispvtatio Physica Experimentalis, de Electricitatibvs Contrarii [Latin] (Rostochii: Typis Joannis Jacobi Adleri, 1757).

Download references


D.L. acknowledges support from the National Science Foundation (NSF) under grant numbers CBET-1235908, CBET-1604909 and DMR-1206480, and T.S. acknowledges support from the NSF Division of Materials Research (DMR) award no. 1404792 and Chemical, Bioengineering, Environmental, and Transport Systems (CBET) award no. 1804286.

Peer review information

Nature Reviews Chemistry thanks C. Hartzell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information



Corresponding author

Correspondence to Daniel J. Lacks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lacks, D.J., Shinbrot, T. Long-standing and unresolved issues in triboelectric charging. Nat Rev Chem 3, 465–476 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing