Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects

Abstract

Previously unwelcome, defects are emerging as a new frontier of research, providing a molecular focal point to study the coupling of electrons, excitons, phonons and spin in low-dimensional materials. This opportunity is particularly intriguing in semiconducting single-walled carbon nanotubes, in which covalently bonding organic functional groups to the sp2 carbon lattice can produce tunable sp3 quantum defects that fluoresce brightly in the shortwave IR, emitting pure single photons at room temperature. These novel physical properties have made such synthetic defects, or ‘organic colour centres’, exciting new systems for chemistry, physics, materials science, engineering and quantum technologies. This Review examines progress in this emerging field and presents a unified description of this new family of quantum emitters, as well as providing an outlook of the rapidly expanding research and applications of synthetic defects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Organic colour centres in a semiconductor host.
Fig. 2: Optical properties of organic colour centres
Fig. 3: Key evidence of exciton trapping by organic colour centres.
Fig. 4: Dark exciton harvesting at fluorescent organic colour centres.
Fig. 5: Chemistry of organic colour centres.
Fig. 6: Emergent applications of fluorescent organic colour centres.
Fig. 7: Opportunities and challenges for organic colour centres.

References

  1. 1.

    Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

  2. 2.

    De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    PubMed  Google Scholar 

  3. 3.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  4. 4.

    Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    PubMed  Google Scholar 

  7. 7.

    Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat. Chem. 5, 840–845 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kwon, H. et al. Molecularly tunable fluorescent quantum defects. J. Am. Chem. Soc. 138, 6878–6885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017).

    CAS  Google Scholar 

  10. 10.

    Wang, Q. H. & Strano, M. S. Carbon nanotubes: a bright future for defects. Nat. Chem. 5, 812–813 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Brozena, A. H., Leeds, J. D., Zhang, Y., Fourkas, J. T. & Wang, Y. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions. ACS Nano 8, 4239–4247 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kwon, H. et al. Optical probing of local pH and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. J. Phys. Chem. C 119, 3733–3739 (2015).

    CAS  Google Scholar 

  13. 13.

    Kim, M. et al. Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C 120, 11268–11276 (2016).

    CAS  Google Scholar 

  14. 14.

    Hartmann, N. F. et al. Photoluminescence dynamics of aryl sp3 defect states in single-walled carbon nanotubes. ACS Nano 10, 8355–8365 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    He, X. et al. Low-temperature single carbon nanotube spectroscopy of sp3 quantum defects. ACS Nano 11, 10785–10796 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Danné, N. et al. Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared. ACS Nano 12, 6059–6065 (2018).

    PubMed  Google Scholar 

  17. 17.

    Wu, X., Kim, M., Kwon, H. & Wang, Y. Photochemical creation of fluorescent quantum defects in semiconducting carbon nanotube hosts. Angew. Chem. Int. Ed. 57, 648–653 (2018).

    CAS  Google Scholar 

  18. 18.

    Srinivasan, K. & Zheng, M. Nanotube chemistry tunes light. Nat. Photon. 11, 535–537 (2017).

    CAS  Google Scholar 

  19. 19.

    Schrödinger, E. Versuch zur modellmässigen deutung des terms der scharfen nebenserien. Z. Phys. 4, 347–354 (1921).

    Google Scholar 

  20. 20.

    Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2014).

    PubMed  Google Scholar 

  21. 21.

    Maeda, Y., Takehana, Y., Yamada, M., Suzuki, M. & Murakami, T. Control of the photoluminescence properties of single-walled carbon nanotubes by alkylation and subsequent thermal treatment. Chem. Commun. 51, 13462–13465 (2015).

    CAS  Google Scholar 

  22. 22.

    Jiang, S. et al. Tailoring the electronic structure of covalently functionalized germanane via the interplay of ligand strain and electronegativity. Chem. Mater. 28, 8071–8077 (2016).

    CAS  Google Scholar 

  23. 23.

    Shiraki, T. et al. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design. Sci. Rep. 6, 28393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shiraki, T., Onitsuka, H., Shiraishi, T. & Nakashima, N. Near infrared photoluminescence modulation of single-walled carbon nanotubes based on a molecular recognition approach. Chem. Commun. 52, 12972–12975 (2016).

    CAS  Google Scholar 

  25. 25.

    Shiraishi, T., Shiraki, T. & Nakashima, N. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry. Nanoscale 9, 16900–16907 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Onitsuka, H., Fujigaya, T., Nakashima, N. & Shiraki, T. Control of the near infrared photoluminescence of locally functionalized single-walled carbon nanotubes via doping by azacrown-ether modification. Chem. Eur. J. 24, 9393–9398 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Chu, X. S. et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem. Mater. 30, 2112–2128 (2018).

    CAS  Google Scholar 

  28. 28.

    Kim, M. et al. Mapping structure–property relationships of organic color centers. Chem 4, 1–12 (2018).

    Google Scholar 

  29. 29.

    Aota, S., Akizuki, N., Mouri, S., Matsuda, K. & Miyauchi, Y. Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes. Appl. Phys. Express 9, 045103 (2016).

    Google Scholar 

  30. 30.

    Akizuki, N., Aota, S., Mouri, S., Matsuda, K. & Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 6, 8920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Saha, A. et al. Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat. Chem. 10, 1089–1095 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Goldsmith, B. R. et al. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315, 77–81 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Wilson, H. et al. Electrical monitoring of sp3 defect formation in individual carbon nanotubes. J. Phys. Chem. C 120, 1971–1976 (2016).

    CAS  Google Scholar 

  34. 34.

    Maciel, I. O. et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 7, 878–883 (2008).

    CAS  PubMed  Google Scholar 

  35. 35.

    Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 10, 671–675 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Hartmann, N. F. et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale 7, 20521–20530 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Harutyunyan, H. et al. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009).

    CAS  PubMed  Google Scholar 

  38. 38.

    Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    CAS  PubMed  Google Scholar 

  39. 39.

    Kilina, S., Ramirez, J. & Tretiak, S. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett. 12, 2306–2312 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Gifford, B. J., Kilina, S., Htoon, H., Doorn, S. K. & Tretiak, S. Exciton localization and optical emission in aryl-functionalized carbon nanotubes. J. Phys. Chem. C 122, 1828–1838 (2018).

    CAS  Google Scholar 

  41. 41.

    Gifford, B. J. et al. Correction scheme for comparison of computed and experimental optical transition energies in functionalized single-walled carbon nanotubes. J. Phys. Chem. Lett. 9, 2460–2468 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Glückert, J. T. et al. Dipolar and charged localized excitons in carbon nanotubes. Phys. Rev. B 98, 195413 (2018).

    Google Scholar 

  43. 43.

    Nan, H. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Chow, P. K. et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 9, 1520–1527 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Yore, A. E. et al. Visualization of defect-induced excitonic properties of the edges and grain boundaries in synthesized monolayer molybdenum disulfide. J. Phys. Chem. C 120, 24080–24087 (2016).

    CAS  Google Scholar 

  47. 47.

    Galland, C. & Imamoglu, A. All-optical manipulation of electron spins in carbon-nanotube quantum dots. Phys. Rev. Lett. 101, 157404 (2008).

    PubMed  Google Scholar 

  48. 48.

    Fan, Y., Goldsmith, B. R. & Collins, P. G. Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906–911 (2005).

    CAS  PubMed  Google Scholar 

  49. 49.

    Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    PubMed  Google Scholar 

  50. 50.

    Inam, F. A. et al. Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment. ACS Nano 7, 3833–3843 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    CAS  PubMed  Google Scholar 

  53. 53.

    Zhang, M. et al. Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2013).

    PubMed  Google Scholar 

  56. 56.

    Knirsch, K. C. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018–6030 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Powell, L. R., Piao, Y. & Wang, Y. Optical excitation of carbon nanotubes drives localized diazonium reactions. J. Phys. Chem. Lett. 7, 3690–3694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Powell, L. R., Kim, M. & Wang, Y. Chirality-selective functionalization of semiconducting carbon nanotubes with a reactivity-switchable molecule. J. Am. Chem. Soc. 139, 12533–12540 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Shiraki, T., Uchimura, S., Shiraishi, T., Onitsuka, H. & Nakashima, N. Near infrared photoluminescence modulation by defect site design using aryl isomers in locally functionalized single-walled carbon nanotubes. Chem. Commun. 53, 12544–12547 (2017).

    CAS  Google Scholar 

  60. 60.

    Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    Google Scholar 

  61. 61.

    Berber, S., Kwon, Y.-K. & Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).

    CAS  PubMed  Google Scholar 

  62. 62.

    Dürkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Google Scholar 

  63. 63.

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene Nat. Nanotechol. 3, 491–495 (2008).

    CAS  Google Scholar 

  64. 64.

    Fujii, M. et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).

    PubMed  Google Scholar 

  65. 65.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  PubMed  Google Scholar 

  66. 66.

    Crochet, J. J., Duque, J. G., Werner, J. H. & Doorn, S. K. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nat. Nanotechol. 7, 126–132 (2012).

    CAS  Google Scholar 

  67. 67.

    Manzoni, C. et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    CAS  PubMed  Google Scholar 

  68. 68.

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    CAS  PubMed  Google Scholar 

  69. 69.

    Zhao, H. & Mazumdar, S. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    PubMed  Google Scholar 

  70. 70.

    Ando, T. Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov–Bohm flux. J. Phys. Soc. Jpn 75, 024707 (2006).

    Google Scholar 

  71. 71.

    Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    PubMed  Google Scholar 

  72. 72.

    Berciaud, S., Cognet, L. & Lounis, B. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys. Rev. Lett. 101, 077402 (2008).

    PubMed  Google Scholar 

  73. 73.

    Srivastava, A., Htoon, H., Klimov, V. I. & Kono, J. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402 (2008).

    PubMed  Google Scholar 

  74. 74.

    Lee, A. J. et al. Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011).

    CAS  PubMed  Google Scholar 

  75. 75.

    Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    CAS  PubMed  Google Scholar 

  76. 76.

    Kelly, A. & Knowles, K. M. Crystallography and Crystal Defects (John Wiley & Sons, 2012).

  77. 77.

    Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002).

    CAS  PubMed  Google Scholar 

  78. 78.

    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechol. 3, 387–394 (2008).

    CAS  Google Scholar 

  79. 79.

    Wang, P. et al. Superacid-surfactant exchange: enabling nondestructive dispersion of full-length carbon nanotubes in water. ACS Nano 11, 9231–9238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dukovic, G. et al. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004).

    CAS  PubMed  Google Scholar 

  81. 81.

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    CAS  PubMed  Google Scholar 

  82. 82.

    Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).

    CAS  PubMed  Google Scholar 

  83. 83.

    Collins, P. G. in Oxford Handbook of Nanoscience & Technology (eds Narlikar, A. V. & Fu, Y. Y.) 31–93 (Oxford Univ. Press, 2010).

  84. 84.

    Queisser, H. J. & Haller, E. E. Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998).

    CAS  PubMed  Google Scholar 

  85. 85.

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    CAS  Google Scholar 

  86. 86.

    Mandel, L. Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979).

    CAS  PubMed  Google Scholar 

  87. 87.

    Powell, L. R., Piao, Y., Ng, A. L. & Wang, Y. Channeling excitons to emissive defect sites in carbon nanotube semiconductors beyond the dilute regime. J. Phys. Chem. Lett. 9, 2803–2807 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Ramirez, J., Mayo, M. L., Kilina, S. & Tretiak, S. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts. Chem. Phys. 413, 89–101 (2013).

    CAS  Google Scholar 

  89. 89.

    Takagahara, T. & Hanamura, E. Giant-oscillator-strength effect on excitonic optical nonlinearities due to localization. Phys. Rev. Lett. 56, 2533–2536 (1986).

    CAS  PubMed  Google Scholar 

  90. 90.

    Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photon. 7, 715–719 (2013).

    CAS  Google Scholar 

  91. 91.

    Citrin, D. S. Long intrinsic radiative lifetimes of excitons in quantum wires. Phys. Rev. Lett. 69, 3393–3396 (1992).

    CAS  PubMed  Google Scholar 

  92. 92.

    Mouri, S., Miyauchi, Y., Iwamura, M. & Matsuda, K. Temperature dependence of photoluminescence spectra in hole-doped single-walled carbon nanotubes: Implications of trion localization. Phys. Rev. B 87, 045408 (2013).

    Google Scholar 

  93. 93.

    Iwamura, M. et al. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states. ACS Nano 8, 11254–11260 (2014).

    CAS  PubMed  Google Scholar 

  94. 94.

    Shaver, J. et al. Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Lett. 7, 1851–1855 (2007).

    CAS  PubMed  Google Scholar 

  95. 95.

    Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Google Scholar 

  96. 96.

    Iakoubovskii, K. et al. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Appl. Phys. Lett. 89, 173108 (2006).

    Google Scholar 

  97. 97.

    McDonald, T. J., Blackburn, J. L., Metzger, W. K., Rumbles, G. & Heben, M. J. Chiral-selective protection of single-walled carbon nanotube photoluminescence by surfactant selection. J. Phys. Chem. C 111, 17894–17900 (2007).

    CAS  Google Scholar 

  98. 98.

    Deng, S. et al. Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2, 382 (2011).

    PubMed  Google Scholar 

  99. 99.

    Zhang, Y. et al. Propagative sidewall alkylcarboxylation that induces red-shifted near-IR photoluminescence in single-walled carbon nanotubes. J. Phys. Chem. Lett. 4, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  100. 100.

    Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    CAS  PubMed  Google Scholar 

  101. 101.

    An, L., Fu, Q., Lu, C. & Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520–10521 (2004).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kaplan, A. et al. Current and future directions in electron transfer chemistry of graphene. Chem. Soc. Rev. 46, 4530–4571 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

    CAS  PubMed  Google Scholar 

  104. 104.

    Schmidt, G., Gallon, S., Esnouf, S., Bourgoin, J. P. & Chenevier, P. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences. Chem. Eur. J. 15, 2101–2110 (2009).

    CAS  PubMed  Google Scholar 

  105. 105.

    Usrey, M. L., Lippmann, E. S. & Strano, M. S. Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions. J. Am. Chem. Soc. 127, 16129–16135 (2005).

    CAS  PubMed  Google Scholar 

  106. 106.

    Qin, S. et al. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules 37, 3965–3967 (2004).

    CAS  Google Scholar 

  107. 107.

    Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).

    CAS  PubMed  Google Scholar 

  108. 108.

    He, X. et al. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17, 663–670 (2018).

    CAS  PubMed  Google Scholar 

  109. 109.

    Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).

    CAS  PubMed  Google Scholar 

  110. 110.

    Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).

    PubMed  Google Scholar 

  111. 111.

    Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    CAS  PubMed  Google Scholar 

  112. 112.

    Harvey, J. D., Baker, H. A., Mercer, E., Budhathoki-Uprety, J. & Heller, D. A. Control of carbon nanotube solvatochromic response to chemotherapeutic agents. ACS Appl. Mater. Interfaces 9, 37947–37953 (2017).

    CAS  PubMed  Google Scholar 

  113. 113.

    Williams, R. M., Lee, C. & Heller, D. A. A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sens. 3, 1838–1845 (2018).

    CAS  PubMed  Google Scholar 

  114. 114.

    Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    CAS  PubMed  Google Scholar 

  115. 115.

    Scholes, G. D. et al. Low-lying exciton states determine the photophysics of semiconducting single wall carbon nanotubes. J. Phys. Chem. C 111, 11139–11149 (2007).

    CAS  Google Scholar 

  116. 116.

    Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    PubMed  Google Scholar 

  117. 117.

    Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat. Mater. 5, 887–892 (2006).

    CAS  PubMed  Google Scholar 

  118. 118.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Google Scholar 

  119. 119.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    CAS  Google Scholar 

  120. 120.

    Ishii, A., Uda, T. & Kato, Y. K. Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes. Phys. Rev. Appl. 8, 054039 (2017).

    Google Scholar 

  121. 121.

    Ma, X., Baldwin, J. K. S., Hartmann, N. F., Doorn, S. K. & Htoon, H. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv. Func. Mater. 25, 6157–6164 (2015).

    CAS  Google Scholar 

  122. 122.

    Cao, Q. & Han, S.-J. Single-walled carbon nanotubes for high-performance electronics. Nanoscale 5, 8852–8863 (2013).

    CAS  PubMed  Google Scholar 

  123. 123.

    Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    CAS  PubMed  Google Scholar 

  124. 124.

    Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007).

    CAS  PubMed  Google Scholar 

  125. 125.

    Huang, Z. et al. Photoactuated pens for molecular printing. Adv. Mater. 30, 1705303 (2018).

    Google Scholar 

  126. 126.

    Dyke, C. A. & Tour, J. M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151–11159 (2004).

    CAS  Google Scholar 

  127. 127.

    Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    CAS  PubMed  Google Scholar 

  128. 128.

    Quintana, M., Vazquez, E. & Prato, M. Organic functionalization of graphene in dispersions. Acc. Chem. Res. 46, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  129. 129.

    Peng, F., Zhang, L., Wang, H., Lv, P. & Yu, H. Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43, 2405–2408 (2005).

    CAS  Google Scholar 

  130. 130.

    Ma, X. et al. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8, 10782–10789 (2014).

    CAS  PubMed  Google Scholar 

  131. 131.

    Park, H., Zhao, J. & Lu, J. P. Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 6, 916–919 (2006).

    CAS  PubMed  Google Scholar 

  132. 132.

    Ao, G. & Zheng, M. Preparation and separation of DNA-wrapped carbon nanotubes. Curr. Protoc. Chem. Biol. 7, 43–51 (2017).

    Google Scholar 

  133. 133.

    Zhu, S. et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2, 2717–2720 (2012).

    CAS  Google Scholar 

  134. 134.

    Wang, L. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541–2547 (2014).

    CAS  PubMed  Google Scholar 

  135. 135.

    Zhu, S. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22, 4732–4740 (2012).

    CAS  Google Scholar 

  136. 136.

    Feng, L. et al. Propagative exfoliation of high quality graphene. Chem. Mater. 25, 4487–4496 (2013).

    CAS  Google Scholar 

  137. 137.

    Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    CAS  PubMed  Google Scholar 

  138. 138.

    Sivakov, V. A., Voigt, F., Berger, A., Bauer, G. & Christiansen, S. H. Roughness of silicon nanowire sidewalls and room temperature photoluminescence. Phys. Rev. B 82, 125446 (2010).

    Google Scholar 

  139. 139.

    Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).

    CAS  Google Scholar 

  140. 140.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Museur, L., Feldbach, E. & Kanaev, A. Defect-related photoluminescence of hexagonal boron nitride. Phys. Rev. B 78, 155204 (2008).

    Google Scholar 

  142. 142.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2015).

    PubMed  Google Scholar 

  143. 143.

    Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechol. 10, 517 (2015).

    CAS  Google Scholar 

  145. 145.

    Martínez, L. J. et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016).

    Google Scholar 

  146. 146.

    Benson, E. E. et al. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 140, 441–450 (2018).

    CAS  PubMed  Google Scholar 

  147. 147.

    Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  PubMed  Google Scholar 

  149. 149.

    Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    CAS  Google Scholar 

  150. 150.

    Godin, A. G. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechol. 12, 238–243 (2016).

    Google Scholar 

  151. 151.

    Gross, L. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3, 273–278 (2011).

    CAS  PubMed  Google Scholar 

  152. 152.

    Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Google Scholar 

  153. 153.

    Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    CAS  PubMed  Google Scholar 

  154. 154.

    Rossel, F., Pivetta, M. & Schneider, W.-D. Luminescence experiments on supported molecules with the scanning tunneling microscope. Surf. Sci. Rep. 65, 129–144 (2010).

    CAS  Google Scholar 

  155. 155.

    Zhang, C. et al. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82, 083101 (2011).

    CAS  PubMed  Google Scholar 

  156. 156.

    Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002).

    CAS  Google Scholar 

  157. 157.

    Liang, S. et al. Solid state carbon nanotube device for controllable trion electroluminescence emission. Nanoscale 8, 6761–6769 (2016).

    CAS  PubMed  Google Scholar 

  158. 158.

    Igumenshchev, K. I., Tretiak, S. & Chernyak, V. Y. Excitonic effects in a time-dependent density functional theory. J. Chem. Phys. 127, 114902 (2007).

    PubMed  Google Scholar 

  159. 159.

    Yang, Z.-h, Li, Y. & Ullrich, C. A. A minimal model for excitons within time-dependent density-functional theory. J. Chem. Phys. 137, 014513 (2012).

    PubMed  Google Scholar 

  160. 160.

    Mewes, S. A., Plasser, F., Krylov, A. & Dreuw, A. Benchmarking excited-state calculations using exciton properties. J. Chem. Theory Comput. 14, 710–725 (2018).

    CAS  PubMed  Google Scholar 

  161. 161.

    Turkowski, V., Din, U. N. & Rahman, S. T. Time-dependent density-functional theory and excitons in bulk and two-dimensional semiconductors. Computation 5, 39 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Science Foundation (NSF) through grant PHY1839165. The authors are also grateful to the NSF (CHE1507974, which is continued as CHE1904488), the Air Force Office of Scientific Research (AFOSR; FA9550-16-1-0150) and the US National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (R01GM114167) for providing financial support to students and postdoctoral researchers who have participated in various aspects of the works cited in this Review.

Reviewer information

Nature Reviews Chemistry thanks Haitao Liu, Tomohiro Shiraki and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Y.H.W. conceptualized the work. A.H.B., M.K., L.R.P. and Y.H.W. jointly wrote the manuscript.

Corresponding author

Correspondence to YuHuang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Single photon

Photons that exhibit photon antibunching, such that it can be considered as emitting one at a time.

Quantum defects

Chemical defects that exhibit well-defined quantum mechanical characteristics, such as single-photon emission, and that may be described as a two-level system.

Organic colour centres

(OCC). Photon-emitting centres induced by covalently bonding organic molecules onto a host crystal.

Dark exciton

An exciton forms when an electron and a hole are bound together by the Coulomb interaction. Dark excitons are not optically allowed as they recombine non-radiatively.

Van Hove singularities

Singularities in the density of states of a crystal, named after the Belgian physicist Léon Van Hove.

Chirality

A general structural identifier of single-walled carbon nanotubes, referencing the nanotube’s chiral roll-up vector and indicative of the material’s diameter and electronic structure. Each chirality can be indexed by a pair of integers (n,m) and may include an additional label, if required, to differentiate its left-handed or right-handed helicity.

Taft constant

An empirical constant that describes the relative steric, inductive and resonance effects of substituents.

Photon antibunching

The lack of simultaneous emission of more than two photons at a time.

Hammett constant

An empirical constant that describes the relative inductive effect of a substituent of benzene derivatives.

Mulliken population analysis

A computational method used to estimate the partial charges on atoms in a molecule or material system.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brozena, A.H., Kim, M., Powell, L.R. et al. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat Rev Chem 3, 375–392 (2019). https://doi.org/10.1038/s41570-019-0103-5

Download citation

Further reading

Search

Quick links