Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemistry from 3D printed objects

Abstract

3D printing technology has started to take hold as an enabling tool for scientific advancement. Born from the marriage of computer-aided design and additive manufacturing, 3D printing was originally intended to generate prototypes for inspection before their full industrial production. As this field has matured, its reach into other applications has expanded, accelerated by its ability to generate 3D objects with complex geometries. Chemists and chemical engineers have begun to take advantage of these capabilities in their own research. Certainly, the most prominent examples of this adoption have been the design and use of 3D printed reaction containers and flow devices. The focus of this Review, however, is on 3D printed objects, the chemical reactivities of which are of primary interest. These types of objects have been designed and used in catalytic, mechanical, electronic, analytical and biological applications. Underlying this research are the efforts to add chemical functionality to standard printing materials, which are often inert. This Review details the different ways in which chemical reactivity is endowed on printed objects, the types of chemical functionality that have been explored in the various printing materials and the reactions that are facilitated by the final printed object. Finally, the Review discusses new avenues for the development and further sophistication of generating chemically active, 3D printed objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of 3D printed objects.
Fig. 2: Additives that imbue chemical reactivity in 3D printed objects.
Fig. 3: Overview of reactive materials that can be used in various 3D printing techniques.
Fig. 4: Technical details of different 3D printing approaches.
Fig. 5: Examples of printed object geometries that exploit chemical functionality.

Similar content being viewed by others

References

  1. Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981).

    Article  Google Scholar 

  2. Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Peltola, S. M., Melchels, F. P. W., Grijpma, D. W. & Kellomaki, M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X., Jiang, M., Zhou, Z. W., Gou, J. H. & Hui, D. 3D printing of polymer matrix composites: a review and prospective. Compos. Part B 110, 442–458 (2017).

    Article  CAS  Google Scholar 

  6. Hurt, C. et al. Combining additive manufacturing and catalysis: a review. Catal. Sci. Technol. 7, 3421–3439 (2017).

    Article  CAS  Google Scholar 

  7. Rossi, S., Puglisi, A. & Benaglia, M. Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 10, 1512–1525 (2017).

    Article  CAS  Google Scholar 

  8. Parra-Cabrera, C., Achille, C., Kuhn, S. & Ameloot, R. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem. Soc. Rev. 47, 209–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X. & Liu, C.-J. Three-dimensional printing for catalytic applications: current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017).

    Article  CAS  Google Scholar 

  10. Baden, T. et al. Open labware: 3D printing your own lab equipment. PLOS Biol. 13, e1002086 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gordeev, E. G., Degtyareva, E. S. & Ananikov, V. P. Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russ. Chem. Bull. 65, 1637–1643 (2016).

    Article  CAS  Google Scholar 

  12. Kitson, P. J. et al. 3D printing of versatile reactionware for chemical synthesis. Nat. Protoc. 11, 920 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Lederle, F., Meyer, F., Kaldun, C., Namyslo, J. C. & Hübner, E. G. Sonogashira coupling in 3D-printed NMR cuvettes: synthesis and properties of arylnaphthylalkynes. New J. Chem. 41, 1925–1932 (2017).

    Article  CAS  Google Scholar 

  14. Amin, R. et al. 3D-printed microfluidic devices. Biofabrication 8, 022001 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article  CAS  Google Scholar 

  16. Bhattacharjee, N., Urrios, A., Kanga, S. & Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab. Chip 16, 1720–1742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capel, A. J. et al. Design and additive manufacture for flow chemistry. Lab. Chip 13, 4583–4590 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. He, Y., Wu, Y., Fu, J.-Z., Gao, Q. & Qiu, J.-J. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28, 1658–1678 (2016).

    Article  CAS  Google Scholar 

  19. Ho, C. M. B., Sum Huan, N., Li, K. H. H. & Yoon, Y.-J. 3D printed microfluidics for biological applications. Lab. Chip 15, 3627–3637 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Monaghan, T., Harding, M. J., Harris, R. A., Friel, R. J. & Christie, S. D. R. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab. Chip 16, 3362–3373 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Tseng, P., Murray, C., Kim, D. & Di Carlo, D. Research highlights: printing the future of microfabrication. Lab. Chip 14, 1491–1495 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Waldbaur, A., Rapp, H., Laenge, K. & Rapp, B. E. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods 3, 2681–2716 (2011).

    Article  CAS  Google Scholar 

  23. Saggiomo, V. & Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1500125 (2015).

    Article  CAS  Google Scholar 

  24. Dragone, V., Sans, V., Rosnes, M. H., Kitson, P. J. & Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elias, Y., von Rohr, P. R., Bonrath, W., Medlock, J. & Buss, A. A porous structured reactor for hydrogenation reactions. Chem. Eng. Process. 95, 175–185 (2015).

    Article  CAS  Google Scholar 

  26. Nieves-Remacha, M. J., Kulkarni, A. A. & Jensen, K. F. Gas-liquid flow and mass transfer in an advanced-flow reactor. Ind. Eng. Chem. Res. 52, 8996–9010 (2013).

    Article  CAS  Google Scholar 

  27. Wu, K. J., Nappo, V. & Kuhn, S. Hydrodynamic study of single- and two-phase flow in an advanced-flow reactor. Ind. Eng. Chem. Res. 54, 7554–7564 (2015).

    Article  CAS  Google Scholar 

  28. Kitson, P. J. et al. Digitization of multi-step organic synthesis in reactionware for on demand pharmaceuticals. Science 359, 314–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Kitson, P. J., Marshall, R. J., Long, D. L., Forgan, R. S. & Cronin, L. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723–12728 (2014).

    Article  CAS  Google Scholar 

  30. Symes, M. D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Kitson, P. J., Symes, M. D., Dragone, V. & Cronin, L. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099–3103 (2013).

    Article  CAS  Google Scholar 

  32. Wang, Z., Wang, J., Li, M., Sun, K. & Liu, C.-J. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Skorski, M. R., Esenther, J. M., Ahmed, Z., Miller, A. E. & Hartings, M. R. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci. Technol. Adv. Mater. 17, 89–97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elkoro, A. & Casanova, I. 3D printing of structured nanotitania catalysts: a novel binder-free and low-temperature chemical sintering method. 3D Print. Addit. Manuf. 5, 220–226 (2018).

    Article  Google Scholar 

  36. Dul, S., Fambri, L. & Pegoretti, A. Fused deposition modelling with ABS–graphene nanocomposites. Compos. Part A Appl. Sci. Manuf. 85, 181–191 (2016).

    Article  CAS  Google Scholar 

  37. García-Tuñón, E. et al. Graphene oxide: an all-in-one processing additive for 3D printing. ACS Appl. Mater. Interfaces 9, 32977–32989 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Bible, M. et al. 3D-printed acrylonitrile butadiene styrene-metal organic framework composite materials and their gas storage properties. 3D Print. Addit. Manuf. 5, 63–72 (2018).

    Article  Google Scholar 

  40. Evans, K. A. et al. Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112–15121 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Kreider, M. C. et al. Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018).

    Article  CAS  Google Scholar 

  42. Farahani, R. D. & Dube, M. Printing polymer nanocomposites and composites in three dimensions. Adv. Eng. Mater. 20, 1700539 (2018).

    Article  CAS  Google Scholar 

  43. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mulhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olivera, S., Muralidhara, H. B., Venkatesh, K., Gopalakrishna, K. & Vivek, C. S. Plating on acrylonitrile-butadiene-styrene (ABS) plastic: a review. J. Mater. Sci. 51, 3657–3674 (2016).

    Article  CAS  Google Scholar 

  45. Kacar, E. et al. Functionalized hybrid coatings on ABS surfaces by PLD and dip coatings. J. Inorg. Organomet. Polym. Mater. 26, 895–906 (2016).

    Article  CAS  Google Scholar 

  46. Kukushkin, V. Y. & Pombeiro, A. J. L. Metal-mediated and metal-catalyzed hydrolysis of nitriles. Inorg. Chim. Acta 358, 1–21 (2005).

    Article  CAS  Google Scholar 

  47. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Peterson, G. I., Larsen, M. B., Ganter, M. A., Storti, D. W. & Boydston, A. J. 3D-printed mechanochromic materials. ACS Appl. Mater. Interfaces 7, 577–583 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Lars, K., Anton, B., Aldrik, V. & Vittorio, S. Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material. Beilstein J. Nanotechnol. 10, 442–447 (2018).

    Google Scholar 

  50. Shi, Z. et al. Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017).

    Article  CAS  Google Scholar 

  51. Cameron, N. R. & Barbetta, A. The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenzene) PolyHIPE foams. J. Mater. Chem. 10, 2466–2471 (2000).

    Article  CAS  Google Scholar 

  52. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article  CAS  Google Scholar 

  53. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Weng, B., Shepherd, R. L., Crowley, K., Killard, A. J. & Wallace, G. G. Printing conducting polymers. Analyst 135, 2779–2789 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Holness, F. B. & Aaron, D. P. Direct ink writing of 3D conductive polyaniline structures and rheological modelling. Smart Mater. Struct. 27, 015006 (2018).

    Article  Google Scholar 

  57. Wang, Z. et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Wei, Q. et al. Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem. Sci. 7, 2748–2752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stuecker, J. N., Miller, J. E., Ferrizz, R. E., Mudd, J. E. & Cesarano, J. Advanced support structures for enhanced catalytic activity. Ind. Eng. Chem. Res. 43, 51–55 (2004).

    Article  CAS  Google Scholar 

  60. Noyen, J., Wilde, A., Schroeven, M., Mullens, S. & Luyten, J. Ceramic processing techniques for catalyst design: formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support structures. Int. J. Appl. Ceram. Technol. 9, 902–910 (2012).

    Article  CAS  Google Scholar 

  61. Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Tubío, C. R. et al. 3D printing of a heterogeneous copper-based catalyst. J. Catalysis 334, 110–115 (2016).

    Article  CAS  Google Scholar 

  63. Zhu, C. et al. Toward digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printing. Sci. Adv. 4, eaas9459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lefevere, J., Gysen, M., Mullens, S., Meynen, V. & Van Noyen, J. The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion. Catal. Today 216, 18–23 (2013).

    Article  CAS  Google Scholar 

  65. Thakkar, H., Eastman, S., Al-Naddaf, Q., Rownaghi, A. A. & Rezaei, F. 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Goyos-Ball, L. et al. Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3 structures. J. Eur. Ceram. Soc. 37, 3151–3158 (2017).

    Article  CAS  Google Scholar 

  67. Billiet, T., Gevaert, E., De Schryver, T., Cornelissen, M. & Dubruel, P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35, 49–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Jia, W. et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106, 58–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rambo, C. R., Travitzky, N., Zimmermann, K. & Greil, P. Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Mater. Lett. 59, 1028–1031 (2005).

    Article  CAS  Google Scholar 

  70. Lam, C. X. F., Mo, X. M., Teoh, S. H. & Hutmacher, D. W. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 20, 49–56 (2002).

    Article  Google Scholar 

  71. Motealleh, A. et al. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds. J. Mechan. Behav. Biomed. Mater. 64, 253–261 (2016).

    Article  CAS  Google Scholar 

  72. Díaz-Marta, A. S. et al. Three-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 8, 392–404 (2018).

    Article  CAS  Google Scholar 

  73. Liao, H. T., Lee, M. Y., Tsai, W. W., Wang, H. C. & Lu, W. C. Osteogenesis of adipose-derived stem cells on polycaprolactone-beta-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 10, E337–E353 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Duan, B. & Wang, M. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7, S615–S629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alaman, J., Alicante, R., Pena, J. I. & Sanchez-Somolinos, C. Inkjet printing of functional materials for optical and photonic applications. Materials 9, 910 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  76. Katz, J. E., Gingrich, T. R., Santori, E. A. & Lewis, N. S. Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ. Sci. 2, 103–112 (2009).

    Article  CAS  Google Scholar 

  77. Liu, X. et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett. 12, 5733–5739 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Seley, D., Ayers, K. & Parkinson, B. A. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb. Sci. 15, 82–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Melchels, F. P. W., Feijen, J. & Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Hensleigh, R. M. et al. Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horizons 5, 1035–1041 (2018).

    Article  CAS  Google Scholar 

  82. Mu, Q. et al. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 18, 74–83 (2017).

    Article  CAS  Google Scholar 

  83. Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, X. et al. Initiator-integrated 3D printing enables the formation of complex metallic architectures. ACS Appl. Mater. Interfaces 6, 2583–2587 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Yue, J. et al. 3D-printable antimicrobial composite resins. Adv. Funct. Mater. 25, 6756–6767 (2015).

    Article  CAS  Google Scholar 

  87. Manzano, J. S., Weinstein, Z. B., Sadow, A. D. & Slowing, I. I. Direct 3D printing of catalytically active structures. ACS Catal. 7, 7567–7577 (2017).

    Article  CAS  Google Scholar 

  88. Thrasher, C. J., Schwartz, J. J. & Boydston, A. J. Modular elastomer photoresins for digital light processing additive manufacturing. ACS Appl. Mater. Interfaces 9, 39708–39716 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, W. et al. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology 27, 315103 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nowicki, M., Castro, N. J., Rao, R., Plesniak, M. & Zhang, L. J. G. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration. Nanotechnology 28, 382001 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gao, G. et al. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9, 1304–1311 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Cheng, F. et al. Magnetic control of MOF crystal orientation and alignment. Chemistry 23, 15578–15582 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Halevi, O., Tan, J. M. R., Lee, P. S. & Magdassi, S. Hydrolytically stable MOF in 3D-printed structures. Adv. Sustain. Syst. 2, 1700150 (2018).

    Article  CAS  Google Scholar 

  94. Seyed Farid Seyed, S. et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 033502 (2015).

    Article  CAS  Google Scholar 

  95. Avril, A. et al. Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180–188 (2017).

    Article  CAS  Google Scholar 

  96. Kim, S. S. et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 228, 8–13 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, B. M. et al. Solid free-form fabrication of drug delivery devices. J. Control. Release 40, 77–87 (1996).

    Article  CAS  Google Scholar 

  98. Seitz, H., Rieder, W., Irsen, S., Leukers, B. & Tille, C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B 74, 782–788 (2005).

    Article  CAS  Google Scholar 

  99. Chisholm, G., Kitson, P. J., Kirkaldy, N. D., Bloor, L. G. & Cronin, L. 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ. Sci. 7, 3026–3032 (2014).

    Article  CAS  Google Scholar 

  100. Michorczyk, P., Hedrzak, E. & Wegrzyniak, A. Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J. Mater. Chem. A 4, 18753–18756 (2016).

    Article  CAS  Google Scholar 

  101. Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ni, Y. et al. A review of 3D-printed sensors. Appl. Spectrosc. Rev. 52, 623–652 (2017).

    Article  CAS  Google Scholar 

  103. Jackson, J. A. et al. Field responsive mechanical metamaterials. Sci. Adv. 4, eaau6419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Weidenbach, M. et al. 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz. Opt. Express 24, 28968–28976 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Ambrosi, A. & Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45, 2740–2755 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Wei, X. et al. 3D printable graphene composite. Sci. Rep. 5, 11181–11181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Huang, L. et al. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29, 1605390 (2016).

    Article  CAS  Google Scholar 

  108. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ge, Q. et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6, 31110 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Diercks, C. S., Kalmutzki, M. J., Diercks, N. J. & Yaghi, O. M. Conceptual advances from Werner complexes to metal–organic frameworks. ACS Cent. Sci. 4, 1457–1464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wales, D. J. et al. 3D-printable photochromic molecular materials for reversible information storage. Adv. Mater. 30, 1800159 (2018).

    Article  CAS  Google Scholar 

  112. Yao, B. et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2018).

    Article  CAS  Google Scholar 

  113. Zhu, C. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017).

    Article  CAS  Google Scholar 

  114. Donderwinkel, I., van Hest, J. C. M. & Cameron, N. R. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym. Chem. 8, 4451–4471 (2017).

    Article  CAS  Google Scholar 

  115. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Levato, R. et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6, 035020 (2014).

    Article  PubMed  CAS  Google Scholar 

  118. Cui, H. et al. Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv. Healthc. Mater. 5, 2174–2181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Holmes, B., Bulusu, K., Plesniak, M. & Zhang, L. G. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27, 064001 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhou, X. & Liu, C.-J. Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catal. Today https://doi.org/10.1016/j.cattod.2018.05.044 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.R.H. wrote the article. Both authors contributed equally to all the other aspects of the article.

Corresponding author

Correspondence to Matthew R. Hartings.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS

PolyJet technology from Stratasys: https://www.stratasys.com/polyjet-technology

Glossary

Initiator

A chemical needed to initiate polymerization. In some instances, initiators do this by generating radicals under mild conditions.

Photosensitizer

Upon absorbing light, a photosensitizer can cause a change to a nearby chemical. In some instances, photosensitizers are used to generate radicals on initiators.

Printing paste

A viscous fluid made from particles suspended in a solvent.

Thermoplastic filament

A polymer that displays malleability at higher temperatures and is a solid at lower temperatures. For the purposes of fused deposition modelling 3D printing, a thermoplastic must be able to extrude through a nozzle at elevated temperatures.

Extruder

An instrument that forces a fluid through a nozzle. For the purpose of 3D printing, the fluid can be a thermoplastic (fused deposition modelling), a gel or a paste (robocasting and/or direct ink writing).

Twin-screw extruders

Devices used to homogeneously blend a polymer with another substance. During this blending process, the polymer is heated above its melting or glass transition temperature while two screws, which interpenetrate one another, continuously mix the components.

Hydrogels

Water-based substances with increased viscosity caused by the interaction of macromolecules within the mixture.

Sintering

The act of changing a powder into a solid material through application of heat and pressure without completely melting the powder.

Melt-blend

The homogeneous mixture of a thermoplastic and other material (another thermoplastic, inorganic nanoparticle, polymer particle, and so on) made at elevated temperatures capable of melting the matrix thermoplastic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartings, M.R., Ahmed, Z. Chemistry from 3D printed objects. Nat Rev Chem 3, 305–314 (2019). https://doi.org/10.1038/s41570-019-0097-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0097-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research