Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The development of molecular water oxidation catalysts

Abstract

There is an urgent need to transition from fossil fuels to solar fuels — not only to lower CO2 emissions that cause global warming but also to ration fossil resources. Splitting H2O with sunlight emerges as a clean and sustainable energy conversion scheme that can afford practical technologies in the short-to-mid-term. A crucial component in such a device is a water oxidation catalyst (WOC). These artificial catalysts have been developed mainly over the past two decades, which is in contrast to nature’s WOCs, which have featured in its photosynthetic apparatus for more than a billion years. Recent times have seen the development of increasingly active molecular WOCs, the study of which affords an understanding of catalytic mechanisms and decomposition pathways. This Perspective offers a historical description of the landmark molecular WOCs, particularly ruthenium systems, that have guided research to our present degree of understanding.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Nature uses metalloenzymes to effect redox reactions that consume or afford H2O.
Fig. 2: Transition metal complexes of N-donor ligands are prominent H2O oxidation catalysts.
Fig. 3: The evolution of molecular H2O oxidation catalysts.
Fig. 4: Pourbaix diagrams for Ru complexes indicate stability across a wide pH range.
Fig. 5: Two mechanisms of molecular H2O oxidation catalysts.
Fig. 6: Voltammetry of [(tda-κ-N3,O)(py)2Ruiv(OH)]+ (11) and [(mox)Cuii]2– (12) reveals catalytic H2O oxidation.

References

  1. Steffen, W. et al. Trajectories of the Earth System in the anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Balmaseda, M. A., Trenberth, K. E. & Källén, W. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  3. The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  5. United Nations. Kyoto Protocol to the United Nations Framework Convention On Climate Change. UNFCCC https://unfccc.int/resource/docs/convkp/kpeng.pdf (1998).

  6. United Nations. Adoption of the Paris Agreement: Proposal by the President. UNFCCC https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf (2015).

  7. Staher, W. R. The circular economy. Nature 531, 435–438 (2016).

    Article  CAS  Google Scholar 

  8. U.S. Energy Information Administration. Annual Energy Outlook 2018 with projections to 2050. eia.gov https://www.eia.gov/outlooks/archive/aeo18/pdf/AEO2018.pdf (2018).

  9. BP. BP Statistical Review of World Energy June 2017. bp.com https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf (2017).

  10. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Nelson, N. & Ben-She, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Grätzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 14, 376–384 (1981).

    Article  Google Scholar 

  14. Guan, X. et al. Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 3, 2230–2231 (2018).

    Article  CAS  Google Scholar 

  15. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, 353–361 (2016).

    Article  CAS  Google Scholar 

  16. Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 301–313 (2017).

    Article  CAS  Google Scholar 

  18. de Klerk, A. in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley VCH, 2013).

  19. Yu, K. M. K., Curcic, I., Gabriel, J. & Tsang, S. C. E. Recent advances in CO2 capture and utilization. ChemSusChem 1, 893–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Oleksandr, S. B. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  21. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Barber, J. Mn4Ca cluster of photosynthetic oxygen-evolving center: structure, function and evolution. Biochemistry 55, 5901–5906 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Klauss, A., Haumann, M. & Dau, H. Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc. Natl Acad. Sci. USA 109, 16035–16040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krewald, V. et al. Metal oxidation states in biological water splitting. Chem. Sci. 6, 1676–1695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A. & Lavergne, J. Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41, 8518–8527 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Cox, N., Pantazis, D. A., Neese, F. & Lubitz, W. Biological water oxidation. Acc. Chem. Res. 46, 1588–1596 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Vogt, L., Vinyard, D. J., Khan, S. & Brudvig, G. W. Oxygen-evolving complex of photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 25, 152–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Vass, I. Molecular mechanisms of photodamage in the photosystem II complex. Biochim. Biophys. Acta 1817, 209–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hideg, E., Kalai, T., Hideg, K. & Vass, I. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37, 11405–11411 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Moyer, B. A. & Meyer, T. J. Proton-coupled electron transfer between [Ru(bpy)2(py)OH2]2+ and [Ru(bpy)2(py)O]2+. A solvent isotope effect (k H2O/k D2O) of 16.1. J. Am. Chem. Soc. 100, 3601–3603 (1978).

    Article  CAS  Google Scholar 

  33. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Gagliardi, C. J., Vannucci, A. K., Concepcion, J. J., Chen, Z. & Meyer, T. J. The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci. 5, 7704–7717 (2012).

    Article  CAS  Google Scholar 

  35. Savéant, J.-M. Electrochemical approach to proton-coupled electron transfers: recent advances. Energy Environ. Sci. 5, 7718–7731 (2012).

    Article  CAS  Google Scholar 

  36. Glöckner, C. et al. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle. J. Biol. Chem. 288, 22607–22620 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suga, M. et al. Light-induced structural changes and the site of O = O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Cox, N. et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O–O bond formation. Science 345, 804–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lohmiller, T. et al. The first state in the catalytic cycle of the water-oxidizing enzyme: identification of a water-derived μ-hydroxo bridge. J. Am. Chem. Soc. 139, 14412–14424 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Godwin, I., Rovetta, A., Lyons, M. & Coleman, J. Electrochemical water oxidation: the next five years. Curr. Opin. Electrochem. 7, 31–35 (2018).

    Article  CAS  Google Scholar 

  44. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Coehn, A. & Gläser, M. Studien über die bildung von metalloxyden. 1. Über das anodische verhalten von kobalt- und nickel-lösungen [German]. Zeits. Anorg. Chem. 33, 9–24 (1903).

    Article  CAS  Google Scholar 

  48. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    Article  CAS  Google Scholar 

  49. Elizarova, G. L., Matvienko, L. G., Parmon, V. N. & Zamaraev, K. I. Catalysts of the oxidation of water to molecular oxygen based on binuclear complexes of iron(iii) and other compounds of transition metals. Dokl. Akad. Nauk. 249, 863–866 (1979).

    CAS  Google Scholar 

  50. Elizarova, G. L., Matvienko, L. G., Lozhkina, N. V., Parmon, V. N. & Zamaraev, K. I. Homogeneous catalysts for dioxygen evolution from water. Water oxidation by trisbipyridylruthenium(iii) in the presence of cobalt, iron and copper complexes. React. Kinet. Catal. Lett. 16, 191–194 (1981).

    Article  CAS  Google Scholar 

  51. Gilbert, J. A. et al. Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+. J. Am. Chem. Soc. 107, 3855–3864 (1985).

    Article  CAS  Google Scholar 

  52. Liu, F. et al. Mechanisms of water oxidation from the blue dimer to Photosystem II. Inorg. Chem. 47, 1727–1752 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Geselowitz, D. & Meyer, T. J. Water oxidation by [(bpy)2(O)RuvORuv(O)(bpy)2]4+. An oxygen-labeling study. Inorg. Chem. 29, 3894–3896 (1990).

    Article  CAS  Google Scholar 

  54. Yamada, H., Siems, W. F., Koike, T. & Hurst, J. K. Mechanisms of water oxidation catalyzed by the cis. cis-[(bpy)2Ru(OH2)]2O4+ ion. J. Am. Chem. Soc. 126, 9786–9795 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Cape, J. L. & Hurst, J. K. Detection and mechanistic relevance of transient ligand radicals formed during [Ru(bpy)2(OH2)]2O4+-catalyzed water oxidation. J. Am. Chem. Soc. 130, 827–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Chronister, C. W., Binstead, R. A., Ni, J. & Meyer, T. J. Mechanism of water oxidation catalyzed by the μ-oxo dimer [(bpy)2(OH2)RuiiiORuiii(OH2)(bpy)2]4+. Inorg. Chem. 36, 3814–3815 (1997).

    Article  CAS  Google Scholar 

  57. Parent, A. R., Crabtree, R. H. & Brudvig, G. W. Comparison of primary oxidants for water-oxidation catalysis. Chem. Soc. Rev. 42, 2247–2252 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Binstead, R. A., Chronister, C. W., Ni, J., Hartshorn, C. M. & Meyer, T. J. Mechanism of water oxidation by the μ-oxo dimer [(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+. J. Am. Chem. Soc. 122, 8464–8473 (2000).

    Article  CAS  Google Scholar 

  59. Moonshiram, D. et al. Structure and electronic configurations of the intermediates of water oxidation in blue ruthenium dimer catalysis. J. Am. Chem. Soc. 134, 4625–4636 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Rotzinger, F. P. et al. A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2′-bipyridyl-5,5′-dicarboxylic acid). J. Am. Chem. Soc. 109, 6619–6626 (1987).

    Article  CAS  Google Scholar 

  62. Nazeeruddin, M. K., Rotzinger, F. P., Comte, P. & Grätzel, M. Spontaneous oxidation of water to oxygen by the mixed-valence μ-oxo ruthenium dimer L2(H2O)Ru–O–Ru(OH)L2 (L=2,2′-bipyridyl-5,5′-dicarboxylic acid). J. Chem. Soc. Chem. Commun. 872–874 (1988).

  63. Sens, C. et al. A new Ru complex capable of catalytically oxidizing water to molecular dioxygen. J. Am. Chem. Soc. 126, 7798–7799 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Romain, S., Bozoglian, F., Sala, X. & Llobet, A. Oxygen−oxygen bond formation by the Ru-Hbpp water oxidation catalyst occurs solely via an intramolecular reaction pathway. J. Am. Chem. Soc. 131, 2768–2769 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Bozoglian, F. et al. The Ru-Hbpp water oxidation catalyst. J. Am. Chem. Soc. 131, 15176–15187 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Romain, S., Vigara, L. & Llobet, A. Oxygen–oxygen bond formation pathways promoted by Ru complexes. Acc. Chem. Res. 42, 1944–1953 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Neudeck, S. et al. New powerful and oxidatively rugged dinuclear Ru water oxidation catalyst: control of mechanistic pathways by tailored ligand design. J. Am. Chem. Soc. 136, 24–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Catalano, V. J. et al. Monometallic and dimetallic ruthenium(ii)−terpyridine complexes employing the tetradentate ligands dipyridylpyrazolyl, dipyridyloxadiazole, and their dimethyl derivatives. Inorg. Chem. 42, 321–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zong, R. & Thummel, R. P. A new family of Ru complexes for water oxidation. J. Am. Chem. Soc. 127, 12802–12803 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. One site is enough. Catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc. 130, 16462–16463 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Masaoka, S. & Sakai, K. Evidence showing the robustness of a highly active oxygen-evolving mononuclear ruthenium complex with an aqua ligand. Chem. Lett. 38, 182–183 (2009).

    Article  CAS  Google Scholar 

  72. Wasylenko, D. J. et al. Electronic modification of the [RuII(tpy)(bpy)(OH2)]2+ scaffold: effects on catalytic water oxidation. J. Am. Chem. Soc. 132, 16094–16106 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Maji, S., López, I., Bozoglian, F., Benet-Buchholz, J. & Llobet, A. Mononuclear ruthenium–water oxidation catalysts: discerning between electronic and hydrogen-bonding effects. Inorg. Chem. 52, 3591–3593 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Concepcion, J. J. et al. Catalytic water oxidation by single-site ruthenium catalysts. Inorg. Chem. 49, 1277–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Tong, L. & Thummel, R. P. Mononuclear ruthenium polypyridine complexes that catalyze water oxidation. Chem. Sci. 7, 6591–6603 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ortiz de Montellano, P. R. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry 3rd edn (Springer US, 2005).

  77. Rittle, J. & Green, M. T. Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science 330, 933–937 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Groves, J. T. Cytochrome P450 enzymes: understanding the biochemical hieroglyphs [version 1; referees: 3 approved]. F1000Res. 4, 178 (2015).

    Article  CAS  Google Scholar 

  79. López, I., Maji, S., Benet-Buchholz, J. & Llobet, A. Oxo-bridge scenario behind single-site water-oxidation catalysts. Inorg. Chem. 54, 658–666 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Earley, J. E., Smith, P. M., Fealey, T. & Silverton, J. V. Crystal and molecular structure of di-mu-oxo-bis(pentaammineruthenium)bis(ethylenediamine)ruthenium hexachloride. Ethylenediamine analog of “ruthenium red”. Inorg. Chem. 10, 1943–1947 (1971).

    CAS  Google Scholar 

  81. Tsubonouchi, Y., Lin, S., Parent, A. R., Brudvig, G. W. & Sakai, K. Light-induced water oxidation catalyzed by an oxido-bridged triruthenium complex with a Ru–O–Ru–O–Ru motif. Chem. Commun. 52, 8018–8021 (2016).

    Article  CAS  Google Scholar 

  82. López, I. et al. A self-improved water-oxidation catalyst: is one site really enough? Angew. Chem. Int. Ed. 53, 205–209 (2014).

    Article  CAS  Google Scholar 

  83. Radaram, B. et al. Water oxidation by mononuclear ruthenium complexes with TPA-based ligands. Inorg. Chem. 50, 10564–10571 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Francas, L. et al. Synthesis, structure, and reactivity of new tetranuclear Ru-Hbpp-based water-oxidation catalysts. Inorg. Chem. 50, 2771–2781 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Sander, A. C., Schober, A., Dechert, S. & Meyer, F. A. Pyrazolate-bridged bis(pentadentate) ligand and its dinuclear ruthenium complex. Eur. J. Inorg. Chem. 2015, 4348–4353 (2015).

    Article  CAS  Google Scholar 

  86. Garrido-Barros, P. et al. in Science of Synthesis: Catalytic Oxidations in Organic Synthesis. (ed. Muniz, K.) (Georg Thieme Verlag, 2018).

  87. Harriman, A., Pickering, I. J., Thomas, J. M. & Christensen, P. A. Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc. Faraday Trans. 84, 2795–2806 (1988).

    Article  CAS  Google Scholar 

  88. Risch, M. et al. Cobalt-oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936–6937 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Kanan, M. W. et al. Structure and valency of a cobalt−phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Elizarova, G. L., Matvienko, L. G. & Parmon, V. N. Oxidation of water by Ru(bpy)3 3+ in the presence of Co(iii) and Fe(iii) colloidal hydroxides as catalysts. J. Mol. Catal. 43, 171–181 (1987).

    Article  CAS  Google Scholar 

  91. Kim, T. V., Elizarova, G. L. & Parmon, V. N. Catalytic oxidation of water to dioxygen by Ru(bpy)3 3+ in the presence of mixed iron and cobalt hydroxides. React. Kinet. Catal. Lett. 26, 57–60 (1984).

    Article  CAS  Google Scholar 

  92. Hull, J. F. et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 131, 8730–8731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902–2907 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez, G. M., Gatto, G., Zuccaccia, C. & Machioni, A. Benchmarking water oxidation catalysts based on iridium complexes: clues and doubts on the nature of active species. ChemSusChem 10, 4503–4509 (2017).

    Article  CAS  Google Scholar 

  95. Savini, A. et al. Activity and degradation pathways of pentamethyl-cyclopentadienyl-iridium catalysts for water oxidation. Green Chem. 13, 3360–3374 (2011).

    Article  CAS  Google Scholar 

  96. Duan, L., Fischer, A., Xu, Y. & Sun, L. Isolated seven-coordinate Ru(iv) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation. J. Am. Chem. Soc. 131, 10397–10399 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Matheu, R. et al. The behavior of the Ru–bda water oxidation catalysts at low oxidation states. Chem. Eur. J. 24, 12838–12847 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Nyhlen, J., Duan, L., Aakermark, B., Sun, L. & Privalov, T. Evolution of O2 in a seven-coordinate RuIV dimer complex with a [HOHOH] bridge: a computational study. Angew. Chem. Int. Ed. 49, 1773–1777 (2010).

    Article  CAS  Google Scholar 

  100. Matheu, R. et al. Hydrogen bonding rescues overpotential in seven-coordinated Ru water oxidation catalysts. ACS Catal. 7, 6525–6532 (2017).

    Article  CAS  Google Scholar 

  101. Duan, L., Araujo, C. M., Ahlquist, M. S. G. & Sun, L. Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proc. Natl Acad. Sci. USA 109, 15584–15588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Richmond, C. J. et al. Supramolecular water oxidation with Ru–bda-based catalysts. Chem. Eur. J. 20, 17282–17286 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, L., Duan, L., Wang, Y., Ahlquist, M. S. G. & Sun, L. Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chem. Commun. 50, 12947–12950 (2014).

    Article  CAS  Google Scholar 

  104. Xie, Y., Shaffer, D. W. & Concepcion, J. J. O–O radical coupling: from detailed mechanistic understanding to enhanced water oxidation catalysis. Inorg. Chem. 57, 10533–10542 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y. et al. Catalytic water oxidation by ruthenium(ii) quaterpyridine (qpy) complexes: evidence for ruthenium(iii) qpy-N,N΄΄΄-dioxide as the real catalysts. Angew. Chem. Int. Ed. 53, 14468–14471 (2014).

    Article  CAS  Google Scholar 

  106. Matheu, R. et al. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. J. Am. Chem. Soc. 137, 10786–10795 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Matheu, R., Neudeck, S., Meyer, F., Sala, X. & Llobet, A. Foot of the wave analysis for mechanistic elucidation and benchmarking applications in molecular water oxidation catalysis. ChemSusChem 9, 3361–3369 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Duan, L., Wang, L., Li, F., Li, F. & Sun, L. Highly efficient bioinspired molecular Ru water oxidation catalysts with negative charged backbone ligands. Acc. Chem. Res. 48, 2084–2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Govindarajan, N., Tiwari, A., Ensing, B. & Meijer, E. J. Impact of the ligand flexibility and solvent on the O–O bond formation step in a highly active ruthenium water oxidation catalyst. Inorg. Chem. 57, 13063–13066 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao, Y. et al. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219–4222 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Li, F. et al. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes. Angew. Chem. Int. Ed. 50, 12276–12279 (2011).

    Article  CAS  Google Scholar 

  112. Sheridan, M. V. et al. Evaluation of chromophore and assembly design in light-driven water splitting with a molecular water oxidation catalyst. ACS Energy Lett. 1, 231–236 (2016).

    Article  CAS  Google Scholar 

  113. Creus, J. et al. A million turnover molecular anode for catalytic water oxidation. Angew. Chem. Int. Ed. 55, 15382–15386 (2016).

    Article  CAS  Google Scholar 

  114. Wang, D. et al. Interfacial deposition of Ru(ii) bipyridine-dicarboxylate complexes by ligand substitution for applications in water oxidation catalysis. J. Am. Chem. Soc. 140, 719–726 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Matheu, R. et al. Photoelectrochemical behavior of a molecular Ru-based water-oxidation catalyst bound to TiO2-protected Si photoanodes. J. Am. Chem. Soc. 139, 11345–11348 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Grau, S. et al. A hybrid molecular photoanode for efficient light induced water oxidation. Sustain. Energy Fuels 2, 1979–1985 (2018).

    Article  CAS  Google Scholar 

  117. Rapaport, I., Helm, L., Merbach, A. E., Bernhard, P. & Ludi, A. High-pressure NMR kinetics. Part 34. Variable-temperature and variable-pressure NMR kinetic study of solvent exchange on hexaaquaruthenium3+ and -2+ and hexakis(acetonitrile)ruthenium2+. Inorg. Chem. 27, 873–879 (1988).

    Article  CAS  Google Scholar 

  118. Helm, L. & Merbach, A. E. Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 105, 1923–1960 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Draksharapu, A. et al. Ligand exchange and spin state equilibria of FeII(N4Py) and related complexes in aqueous media. Inorg. Chem. 51, 900–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Hong, D. et al. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous? Inorg. Chem. 52, 9522–9531 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, D., Ghirlanda, G. & Allen, J. P. Water oxidation by a nickel–hlycine catalyst. J. Am. Chem. Soc. 136, 10198–10201 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Singh, A., Chang, S. L. Y., Hocking, R. K., Bach, U. & Spiccia, L. Highly active nickel oxide water oxidation catalysts deposited from molecular complexes. Energy Environ. Sci. 6, 579–586 (2013).

    Article  CAS  Google Scholar 

  124. Singh, A., Chang, S. L. Y., Hocking, R. K., Bach, U. & Spiccia, L. Anodic deposition of NiOx water oxidation catalysts from macrocyclic nickel(ii) complexes. Catal. Sci. Technol. 3, 1725–1732 (2013).

    Article  CAS  Google Scholar 

  125. Brimblecombe, R. et al. Sustained water oxidation by [Mn4O4]7+ core complexes inspired by oxygenic photosynthesis. Inorg. Chem. 48, 7269–7279 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Hocking, R. K. et al. Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Kuznetsov, D. A. et al. Ni-based heterogeneous catalyst from a designed molecular precursor for the efficient electrochemical water oxidation. Chem. Commun. 52, 9255–92558 (2016).

    Article  CAS  Google Scholar 

  128. Lai, Y.-H., King, T. C., Wright, D. S. & Reisner, E. Scalable one-step assembly of an inexpensive photoelectrode for water oxidation by deposition of a Ti and Ni-containing molecular precursor on nanostructured WO3. Chem. Eur. J. 19, 12943–12947 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Lai, Y. H., Kato, M., Mersch, D. & Reisner, E. Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discuss. 176, 199–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Lai, Y.-H., Palm, D. W. & Reisner, E. Multifunctional coatings from scalable single source precursor chemistry in tandem photoelectrochemical water splitting. Adv. Energy Mater. 5, 1501668 (2015).

    Article  CAS  Google Scholar 

  131. Garrido-Barros, P. et al. Redox non-innocent ligand controls water oxidation overpotential in a new family of mononuclear Cu-based efficient catalysts. J. Am. Chem. Soc. 137, 6758–6761 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Barnett, S. M., Goldberg, K. I. & Mayer, J. M. A soluble copper–bipyridine water-oxidation electrocatalyst. Nat. Chem. 4, 498–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Gerlach, D. L. et al. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis. Inorg. Chem. 53, 12689–12698 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, T., Wang, C., Liu, S., Wang, J.-L. & Lin, W. A biomimetic copper water oxidation catalyst with low overpotential. J. Am. Chem. Soc. 136, 273–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Fisher, K. J., Materna, K. L., Mercado, B. Q., Crabtree, R. H. & Brudvig, G. W. Electrocatalytic water oxidation by a copper(ii) complex of an oxidation-resistant ligand. ACS Catal. 7, 3384–3387 (2017).

    Article  CAS  Google Scholar 

  136. Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem. Commun. 47, 4249–4251 (2011).

    Article  CAS  Google Scholar 

  137. Rigsby, M. L. Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem. Sci. 3, 3058–3062 (2012).

    Article  CAS  Google Scholar 

  138. Gimbert-Suriñach, C. et al. Structural and spectroscopic characterization of reaction intermediates involved in a dinuclear Co–Hbpp water oxidation catalyst. J. Am. Chem. Soc. 138, 15291–15294 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Han, Y., Wu, Y., Lai, W. & Cao, R. Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential. Inorg. Chem. 54, 5604–5613 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Funes-Ardoiz, I., Garrido-Barros, P., Llobet, A. & Maseras, F. Single electron transfer steps in water oxidation catalysis. Redifining the mechanistic scenario. ACS Catal. 7, 1712–1719 (2017).

    Article  CAS  Google Scholar 

  141. Wang, H.-Y., Mijangos, E., Ott, S. & Thapper, A. Water oxidation catalyzed by a dinuclear cobalt–polypyridine complex. Angew. Chem. Int. Ed. 53, 14499–14502 (2014).

    Article  CAS  Google Scholar 

  142. Ishizuka, T. et al. Homogeneous photocatalytic water oxidation with a dinuclear CoIII−pyridylmethylamine complex. Inorg. Chem. 55, 1154–1164 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, J.-W., Sahoo, P. & Lu, T.-B. Reinvestigation of water oxidation catalyzed by a dinuclear cobalt–polypyridine complex: identification of CoOx as real heterogeneous catalyst. ACS Catal. 6, 5062–5068 (2016).

    Article  CAS  Google Scholar 

  144. Zhang, M., Zhang, M.-T., Hou, C., Ke, Z.-F. & Lu, T.-B. Homogeneous electrocatalytic water oxidation at neutral pH by a robust macrocyclic nickel(ii) complex. Angew. Chem. Int. Ed. 53, 13042–13048 (2014).

    Article  CAS  Google Scholar 

  145. Wang, J.-W. Further insight into the electrocatalytic water oxidation by macrocyclic nickel(ii) complexes: the influence of steric effect on catalytic activity. Catal. Sci. Technol. 7, 5585–5593 (2017).

    Article  CAS  Google Scholar 

  146. Najafpour, M. M. & Feizi, H. Water oxidation by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate: new findings and an alternative mechanism. Dalton Trans. 47, 6519–6527 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Pizzolato, E. et al. Light driven water oxidation by a single site cobalt salophen catalyst. Chem. Commun. 49, 9941–9943 (2013).

    Article  CAS  Google Scholar 

  148. Najafpour, M. M. & Feizi, H. Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catal. Sci. Technol. 8, 1840–1848 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sustained support from Mineco, the European Fund for Economic and Regional Development (FEDER) and the Agency for Management of University and Research Grants (AGAUR) are gratefully acknowledged. Recent grants include CTQ2015-64261-R, CTQ2016-80058-R, CTQ2015-73028-EXP, SEV 2013–0319, ENE2016-82025-REDT, CTQ2016-81923-REDC and 2017-SGR-1631. The work at Brookhaven National Laboratory (BNL) (M.Z.E.) was carried out under contract DE-SC0012704 with the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, and utilized computational resources at the BNL Center for Functional Nanomaterials (CFN). The CFN is a DOE Office of Science Facility at BNL operating under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Antoni Llobet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Energy democracy: www.energy-democracy.net

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matheu, R., Garrido-Barros, P., Gil-Sepulcre, M. et al. The development of molecular water oxidation catalysts. Nat Rev Chem 3, 331–341 (2019). https://doi.org/10.1038/s41570-019-0096-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0096-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing