Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic applications of light, electricity, mechanical force and flow

Abstract

An energy input is often required to promote chemical reactions. Although heat is commonly applied to overcome activation barriers in such processes, other forms of energy can also be utilized to unlock chemical potential. Light, electricity and mechanical force can facilitate chemical transformations, and these strategies can also benefit from technological advancements in reactor design and the integration of flow processes. Although these approaches have been investigated since the 19th century, they are enjoying a resurgence and now find mainstream and diverse synthetic applications. Improvements have generally coincided with conceptual and technological developments, and this Review showcases recent advances aligned with themes spanning photoredox catalysis, mechanochemistry, electrosynthesis and synthesis in static electric fields and in flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic applications of visible-light-mediated photocatalysis.
Fig. 2: Identifying the potential of pulsed irradiation in photocatalysis.
Fig. 3: Applications of electrochemistry in organic synthesis.
Fig. 4: Applications of static electric fields in organic synthesis.
Fig. 5: Applications of mechanochemical force in synthesis.
Fig. 6: Microfluidic-controlled chemoselective synthesis.

Similar content being viewed by others

References

  1. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hopkinson, M. N., Sahoo, B., Li, J.-L. & Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem. Eur. J. 20, 3874–3886 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  5. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls, T. P., Leonori, D. & Bissember, A. C. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Nat. Prod. Rep. 33, 1248–1254 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Arias-Rotondo, D. M. & McCusker, J. M. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  10. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  12. Möhle, S. et al. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Article  CAS  Google Scholar 

  13. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Article  PubMed  Google Scholar 

  14. Hammerich, O. & Speiser, B. (eds) Organic Electrochemistry: Revised and Expanded 5th edn (CRC Press, 2016).

  15. Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I. & Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chem. Soc. Rev. 47, 5146–5164 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Baláž, P. et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Margetic, D. & Štrukil, V. Mechanochemical Organic Synthesis 1st edn (Elsevier, Amsterdam, 2016).

  20. Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, 0083 (2017).

    Article  CAS  Google Scholar 

  22. Tan, D. & Friščić, T. Mechanochemistry for organic chemists: an update. Eur. J. Org. Chem. 2018, 18–33 (2018).

    Article  CAS  Google Scholar 

  23. Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Britton, J. & Raston, C. L. Multi-step continuous flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Gong, L., Wenzel, M. & Meggers, E. Chiral-auxiliary-mediated asymmetric synthesis of ruthenium polypyridyl complexes. Acc. Chem. Res. 46, 2635–2644 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, J., Zhang, X., Huang, X., Luo, S. & Meggers, E. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nat. Protoc. 13, 605–632 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Creutz, S. E., Lotito, K. J., Fu, G. C. & Peters, J. C. Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Bissember, A. C., Lundgren, R. J., Creutz, S. E., Peters, J. C. & Fu, G. C. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. 52, 5129–5133 (2013).

    Article  CAS  Google Scholar 

  33. Ahn, J. M., Ratani, T. S., Hannoun, K. I., Fu, G. C. & Peters, J. C. Photoinduced, copper-catalyzed alkylation of amines: a mechanistic study of the cross-coupling of carbazole with alkyl bromides. J. Am. Chem. Soc. 139, 12716–12723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Griesbeck, A. G. & Meierhenrich, U. J. Asymmetric photochemistry and photochirogenesis. Angew. Chem. Int. Ed. 41, 3147–3154 (2002).

    Article  Google Scholar 

  36. Yang, C. & Inoue, Y. Supramolecular photochirogenesis. Chem. Soc. Rev. 43, 4123–4143 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Alonso, R. & Bach, T. A chiral thioxanthone as an organocatalyst for enantioselective [2 + 2] photocycloaddition reactions induced by visible light. Angew. Chem. Int. Ed. 53, 4368–4371 (2014).

    Article  CAS  Google Scholar 

  38. Drucker, C. S., Toscano, V. G. & Weiss, R. G. A general method for the determination of steric effects during collisional energy transfer. Partial photoresolution of penta-2,3-diene. J. Am. Chem. Soc. 95, 6482–6484 (1973).

    CAS  Google Scholar 

  39. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Marchini, M. et al. Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Phys. Chem. Chem. Phys. 20, 8071–8076 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh, I. & König, B. Chromoselective photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 55, 7676–7679 (2016).

    Article  CAS  Google Scholar 

  42. Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18, 1637–1755 (1989).

    Article  CAS  Google Scholar 

  43. Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Alizadeh, E. & Sanche, L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112, 5578–5602 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Naumann, R., Kerzig, C. & Goez, M. Laboratory-scale photoredox catalysis using hydrated electrons sustainably generated with a single green laser. Chem. Sci. 8, 7510–7520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naumann, R., Lehmann, F. & Goez, M. Generating hydrated electrons for chemical syntheses by using a green light-emitting diode (LED). Angew. Chem. Int. Ed. 57, 1078–1081 (2018).

    Article  CAS  Google Scholar 

  47. Tennessen, D. J., Bula, R. J. & Sharkey, T. D. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth. Res. 44, 261–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Olvera-Gonzalez, E. et al. Intelligent lighting system for plant growth and development. Comput. Electron. Agric. 92, 48–53 (2013).

    Article  Google Scholar 

  49. Nicholls, T. P., Robertson, J. C., Gardiner, M. G. & Bissember, A. C. Identifying the potential of pulsed LED irradiation in synthesis: copper-photocatalyzed C–F functionalisation. Chem. Commun. 54, 4589–4592 (2018).

    Article  CAS  Google Scholar 

  50. Stensitzki, T. et al. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nat. Chem. 10, 126–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).

    Article  CAS  Google Scholar 

  52. Horn, E., Rosen, B. & Baran, P. S. Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci. 2, 302–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  54. Yuan, Y.-A., Lu, D.-F., Chen, Y.-R. & Xu, H. Iron-catalyzed direct diazidation for a broad range of olefins. Angew. Chem. Int. Ed. 55, 534–538 (2016).

    Article  CAS  Google Scholar 

  55. Schäfer, H. Oxidative addition of the azide ion to olefins. A simple route to diamines. Angew. Chem. Int. Ed. 9, 158–159 (1970).

    Article  Google Scholar 

  56. Fu, N., Sauer, G., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 8, 5175–5187 (2018).

    Article  CAS  Google Scholar 

  58. Sauermann, N., Meyer, T. H., Qiu, Y. & Ackermann, L. Electrocatalytic C−H activation. ACS Catal. 8, 7086–7103 (2018).

    Article  CAS  Google Scholar 

  59. Ma, C., Fang, P. & Mei, T.-S. Recent advances in C−H functionalization using electrochemical transition metal catalysis. ACS Catal. 8, 7179–7189 (2018).

    Article  CAS  Google Scholar 

  60. Wiebe, A., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. Selective synthesis of partially protected nonsymmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55, 11801–11805 (2016).

    Article  CAS  Google Scholar 

  61. Elser, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew. Chem. Int. Ed. 53, 5210–5213 (2014).

    Google Scholar 

  62. Grzybowski, M., Skonieczny, K., Butenschön, H. & Gryko, D. T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 52, 9900–9930 (2013).

    Article  CAS  Google Scholar 

  63. Elser, B. et al. Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-hexafluoropropan-2-ol. Chemistry 21, 12321–12325 (2015).

    Article  CAS  Google Scholar 

  64. Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article  CAS  Google Scholar 

  65. Schulz, L. et al. Reagent- and metal-free anodic C–C cross-coupling of aniline derivatives. Angew. Chem. Int. Ed. 56, 4877–4881 (2017).

    Article  CAS  Google Scholar 

  66. Yoshida, J.-i.et al. Direct oxidative carbon-carbon bond formation using the “cation pool” method. 1. Generation of iminium cation pools and their reaction with carbon nucleophiles. J. Am. Chem. Soc. 121, 9546–9549 (1999).

    Article  CAS  Google Scholar 

  67. Yoshida, J.-i, Shimizu, A. & Hayashi, R. Electrogenerated cationic reactive intermediates: the pool method and further advances. Chem. Rev. 118, 4702–4730 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Hayashi, R., Shimizu, A. & Yoshida, J.-i.The stabilized cation pool method: metal- and oxidant-free benzylic C−H/aromatic C−H cross-coupling. J. Am. Chem. Soc. 138, 8400–8403 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Hayashi, R. et al. Metal-free benzylic C−H amination via electrochemically generated benzylaminosulfonium ions. Chem. Eur. J. 23, 61–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Frankowski, K. J., Liu, R., Milligan, G. L., Moeller, K. D. & Aubé, J. Practical electrochemical anodic oxidation of polycyclic lactams for late stage functionalization. Angew. Chem. Int. Ed. 54, 10555–10558 (2015).

    Article  CAS  Google Scholar 

  71. Gütz, C., Stenglein, A. & Waldvogel, S. R. Highly modular flow cell for electroorganic synthesis. Org. Process Res. Dev. 21, 771–778 (2017).

    Article  CAS  Google Scholar 

  72. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, L. et al. Switchable interfaces: redox monolayers on Si(100) by electrochemical trapping of alcohol nucleophiles. Surfaces 1, 3–11 (2018).

    Article  Google Scholar 

  76. Akamatsu, M., Sakai, N. & Matile, S. Electric-field-assisted anion−π catalysis. J. Am. Chem. Soc. 139, 6558–6561 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Gorin, C. F., Beh, E. S., Bui, Q. M., Dick, G. R. & Kanan, M. W. Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. J. Am. Chem. Soc. 135, 11257–11265 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Gorin, C. F., Beh, E. S. & Kanan, M. W. An electric field−induced change in the selectivity of a metal oxide−catalyzed epoxide rearrangement. J. Am. Chem. Soc. 134, 186–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Klinska, M., Smith, L. M., Gryn’ova, G., Banwell, M. G. & Coote, M. L. Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions. Chem. Sci. 6, 5623–5627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aitken, H. M. & Coote, M. L. Can electrostatic catalysis of Diels–Alder reactions be harnessed with pH-switchable charged functional groups? Phys. Chem. Chem. Phys. 20, 10671–10676 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Pocker, Y. & Buchholz, R. F. Electrostatic catalysis by ionic aggregates. II. Reversible elimination of hydrogen chloride from tert-butyl chloride and the rearrangement of 1-phenylallyl chloride in lithium perchlorate–diethyl ether solutions. J. Am. Chem. Soc. 92, 4033–4038 (1970).

    Article  CAS  Google Scholar 

  83. Yue, L. et al. The electric field as a “smart” ligand in controlling the thermal activation of methane and molecular hydrogen. Angew. Chem. Int. Ed. 57, 14635–14639 (2018).

    Article  CAS  Google Scholar 

  84. Gryn’ova, G. & Coote, M. L. Origin and scope of long-range stabilizing interactions and associated SOMO–HOMO conversion in distonic radical anions. J. Am. Chem. Soc. 135, 15392–15403 (2013).

    Article  PubMed  CAS  Google Scholar 

  85. Gryn’ova, G., Marshall, D. L., Blanksby, S. J. & Coote, M. L. Switching radical stability by pH-induced orbital conversion. Nat. Chem. 5, 474–481 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Gryn’ova, G., Smith, L. M. & Coote, M. L. Computational design of pH-switchable control agents for nitroxide mediated polymerization. Phys. Chem. Chem. Phys. 19, 22678–22683 (2017).

    Article  PubMed  Google Scholar 

  87. Jiang, J. Y., Smith, L. M., Tyrell, J. H. & Coote, M. L. Pulsed laser polymerisation studies of methyl methacrylate in the presence of AlCl3 and ZnCl2 — evidence of propagation catalysis. Polym. Chem. 8, 5948–5953 (2017).

    Article  CAS  Google Scholar 

  88. Clark, T. Lithium cation as radical-polymerization catalyst. J. Am. Chem. Soc. 128, 11278–11285 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Vyakaranam, K., Barbour, J. B. & Michl, J. Li+-catalyzed radical polymerization of simple terminal alkenes. J. Am. Chem. Soc. 128, 5610–5611 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. McNaught, A. D. & Wilkinson, A. IUPAC Compendium of Chemical Terminology: The Gold Book 2nd edn (Blackwell Scientific Publications, Oxford, 1997).

  91. Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Scherer, O. J., Andres, K., Krüger, C., Tsay, Y.-H. & Wolmerhäser, G. P4(N-i-C3H7)6, a P4X6 molecule with and without adamantane structure. Angew. Chem., Int. Ed. 19, 571–572 (1980).

    Article  Google Scholar 

  93. Brask, J. K., Chivers, T., Krahn, M. L. & Parvez, M. {Li[P(NtBu)2]}4·0.25P4(NtBu)6: solvent and substituent effects on the structures and reactivity of 1,3-diaza-2-phosphaallyllithium complexes. Inorg. Chem. 38, 290–295 (1999).

    Article  CAS  Google Scholar 

  94. Shi, Y. X. et al. The first synthesis of the sterically encumbered adamantoid phosphazane P4(NtBu)6: enabled by mechanochemistry. Angew. Chem. Int. Ed. 55, 12736–12740 (2016).

    Article  CAS  Google Scholar 

  95. Katritzky, A. R. et al. Benzotriazole-assisted thioacylation. J. Org. Chem. 70, 7866–7881 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Štrukil, V., Gracin, D., Magdysyuk, O. V., Dinnebier, R. E. & Friščić, T. Trapping reactive intermediates by mechanochemistry: elusive aryl N-thiocarbamoylbenzotriazoles as bench-stable reagents. Angew. Chem. Int. Ed. 54, 8440–8443 (2015).

    Article  CAS  Google Scholar 

  97. Do, J.-L., Tan, D. & Friščić, T. Oxidative mechanochemistry: direct, room-temperature, solvent-free conversion of palladium and gold metals into soluble salts and coordination complexes. Angew. Chem. Int. Ed. 57, 2667–2671 (2018).

  98. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Vlatković, M., Collins, S. L. & Feringa, B. L. Dynamic responsive systems for catalytic function. Chem. Eur. J. 22, 17080–17111 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Kean, Z. S. et al. Photomechanical actuation of ligand geometry in enantioselective catalysis. Angew. Chem. Int. Ed. 53, 14508–14511 (2014).

    Article  CAS  Google Scholar 

  101. Liang, J. & Fernández, J. M. Mechanochemistry: one bond at a time. ACS Nano 3, 1628–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wiita, A. P., Ainavarapu, S. R., Huang, H. H. & Fernandez, J. M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wiita, A. P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, Y. et al. Mechanical stretching-induced electron transfer reactions and conductance switching in single molecules. J. Am. Chem. Soc. 139, 14699–14706 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Movsisyan, M. et al. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 45, 4892–4928 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Elliott, L. D., Knowles, J. P., Stacey, C. S., Klauberb, D. J. & Booker-Milburn, K. I. Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. React. Chem. Eng. 3, 86–93 (2018).

    Article  CAS  Google Scholar 

  107. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  108. Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. La Sorella, G., Strukul, G. & Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 17, 644–683 (2015).

    Article  CAS  Google Scholar 

  110. Yoshida, J.-i. Flash Chemistry: Fast Organic Synthesis in Microsystems (Wiley, 2008).

  111. Liu, Y. & Jiang, X. Why microfluidics? Merits and trends in chemical synthesis. Lab. Chip 17, 3960–3978 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, H. et al. Submillisecond organic synthesis: fries rearrangement through microfluidic rapid mixing. Science 352, 691–694 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Britton, J., Stubbs, K. A., Weiss, G. A. & Raston, C. L. Vortex fluidic chemical transformations. Chem. Eur. J. 55, 11387–11391 (2016).

    CAS  Google Scholar 

  114. Britton, J., Dyer, R. P., Majumdar, S., Raston, C. L. & Weiss, G. A. Ten-minute protein purification and surface tethering for continuous-flow biocatalysis. Angew. Chem. Int. Ed. 56, 2296–2301 (2017).

    Article  CAS  Google Scholar 

  115. Bédard, A.-C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Woodward, R. B. in Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect (ed. O’Connor, M.) 41 (CIBA of India Ltd, Bombay, 1963).

  118. Chen, D. Y.-K. A personal perspective on organic synthesis: past, present, and future. Isr. J. Chem. 58, 85–93 (2018).

    Article  CAS  Google Scholar 

  119. Paria, S. & Reiser, O. Copper in photocatalysis. ChemCatChem 6, 2477–2483 (2014).

    Article  CAS  Google Scholar 

  120. Larsen, C. B. & Wenger, O. S. Photoredox catalysis with metal complexes made from earth-abundant elements. Chem. Eur. J. 24, 2039–2058 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Pal, A., Ghosh, I., Sapra, S. & König, B. Quantum dots in visible-light photoredox catalysis: reductive dehalogenations and C–H arylation reactions using aryl bromides. Chem. Mater. 29, 5225–5231 (2017).

    Article  CAS  Google Scholar 

  122. Lang, X., Zhao, J. & Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev. 45, 3026–3038 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2018).

    Article  CAS  Google Scholar 

  124. Pannwitz, A. & Wenger, O. S. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem. Commun. https://doi.org/10.1039/C9CC00821G (2019).

  125. Mitsudo, K., Kurimoto, Y., Yoshioka, K. & Suga, S. Miniaturization and combinatorial approach in organic electrochemistry. Chem. Rev. 118, 5985–5999 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Gütz, C., Klöckner, B. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).

    Article  CAS  Google Scholar 

  127. Folgueiras-Amador, A. A., Philipps, K., Guilbaud, S., Poelakker, J. & Wirth, T. An easy-to-machine electrochemical flow microreactor: efficient synthesis of isoindolinone and flow functionalization. Angew. Chem. Int. Ed. 56, 15446–15450 (2017).

    Article  CAS  Google Scholar 

  128. Wattanakit, C., Yutthalekha, T., Asssavapanumat, S., Lapeyre, V. & Kuhn, A. Pulsed electroconversion for highly selective enantiomer synthesis. Nat. Commun. 8, 2087 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Banerjee-Ghosh, Q. M. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Stauch, T. & Drew, A. Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem. Rev. 116, 14137–14180 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Elvira, K. S., Casadevall i Solvas, X., Wootton, R. C. R. & deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5, 905–915 (2010).

    Article  CAS  Google Scholar 

  132. Kitson, P. J. et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Myers, R. M. Organic synthesis: march of the machines. Angew. Chem. Int. Ed. 54, 3449–3464 (2015).

    Article  CAS  Google Scholar 

  134. Whitesides, G. M. Complex organic synthesis: structure, properties, and/or function? Isr. J. Chem. 58, 142–150 (2018).

    Article  CAS  Google Scholar 

  135. Nicolaou, K. C. The emergence and evolution of organic synthesis and why it is important to sustain it as an advancing art and science for its own sake. Isr. J. Chem. 58, 104–113 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.R. thanks the Australian Government for a Research Training Program scholarship. M.L.C. gratefully acknowledges the Australian Research Council (ARC) for a Georgina Sweet ARC Laureate Fellowship (FL170100041). A.C.B. thanks the Collier Charitable Fund for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.C.R. researched data for the article and contributed to writing, preparation of figures, reviewing and editing the manuscript before submission. M.L.C. and A.C.B. researched data for the article and contributed to the discussion of content, preparation of figures, writing, reviewing and editing the manuscript before submission.

Corresponding authors

Correspondence to Michelle L. Coote or Alex C. Bissember.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, J.C., Coote, M.L. & Bissember, A.C. Synthetic applications of light, electricity, mechanical force and flow. Nat Rev Chem 3, 290–304 (2019). https://doi.org/10.1038/s41570-019-0094-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0094-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing