Chemistries and processes for the conversion of ethanol into middle-distillate fuels

Abstract

Ethanol is presently the most common liquid fuel derived from biomass. One way of meeting the growing demand for heavier middle-distillate fuels — diesel and jet fuels comprising hydrocarbons of typically 8–22 carbon atoms — is to derive these from ethanol. This Review describes the chemistries and processes involved in the conversion of ethanol into diesel and jet fuel drop-in replacements and blendstocks. This conversion of ethanol relies on reactions including dehydration (to olefins), dehydrogenation (to aldehydes), hydrogenation (of C=C and C=O bonds), acid-catalysed olefin oligomerization, metal-catalysed olefin oligomerization, aldolization and ketonization. We discuss the thermodynamics, kinetics, process integration and catalyst development of different approaches. Some routes, particularly those based on olefin oligomerization, have been realized on the pilot scale. Other routes are currently in laboratory stages. This Review provides a framework for understanding how to convert ethanol into distillate-range molecules and the key research problems to be addressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Many pathways exist to convert EtOH into middle-distillate fuels.
Fig. 2: The possible elimination mechanisms of EtOH dehydration.
Fig. 3: Carbenium chemistries involved in olefin conversion over solid acids
Fig. 4: Thermodynamics of olefin oligomerization and aromatization.
Fig. 5: The hydrocarbon pool mechanism for EtOH transformation
Fig. 6: Block flow diagrams for acid-catalysed conversion of EtOH through C2H4 oligomerization.
Fig. 7: The generalized Cossee–Arlman mechanism for C2H4 oligomerization.
Fig. 8: Computed Schulz–Flory distribution of olefins from C2H4 oligomerization.
Fig. 9: The generalized metallacycle mechanism for C2H4 oligomerization
Fig. 10: Guerbet condensation of primary alcohols affords an alcohol product
Fig. 11: Contact time plots and block flow diagram for the Guerbet coupling of EtOH.
Fig. 12: The direct conversion of EtOH into olefins through an Me2CO intermediate.

References

  1. 1.

    Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    CAS  PubMed  Google Scholar 

  2. 2.

    Alonso, D. M., Bond, J. Q. & Dumesic, J. A. Catalytic conversion of biomass to biofuels. Green Chem. 12, 1493–1513 (2010).

    CAS  Google Scholar 

  3. 3.

    US Department of Energy. Energy policy act of 2005. Energy.gov https://www.energy.gov/downloads/energy-policy-act-2005 (2005).

  4. 4.

    US Department of Energy. Energy independence and security act of 2007. Congress.gov https://www.congress.gov/bill/110th-congress/house-bill/6 (2007).

  5. 5.

    US Environmental Protection Agency. Renewable fuel standard program: standards for 2019 and biomass-based diesel volume for 2020. US Federal Register https://www.federalregister.gov/documents/2018/12/11/2018-26566/renewable-fuel-standard-program-standards-for-2019-and-biomass-based-diesel-volume-for-2020 (2018).

  6. 6.

    Balat, M. & Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ. 86, 2273–2282 (2009).

    CAS  Google Scholar 

  7. 7.

    US Energy Information Administration. Short-term energy outlook january 2019. EIA.gov https://www.eia.gov/outlooks/steo/ (2019).

  8. 8.

    Warner, E., Schwab, A. & Bacovsky, D. 2016 survey of non-starch ethanol and renewable hydrocarbon biofuels producers [technical report NREL/TP-6A10-67539]. Energy.gov https://afdc.energy.gov/files/u/publication/2016_survey_non-starch_alcohol_renewable_hydrocarbon_biofuels_producers.pdf (2017).

  9. 9.

    Silveira, M. H. L. et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8, 3366–3390 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Lynd, L. R. et al. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45, 202–211 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Wyman, C. E., Cai, C. M. & Kumar, R. Bioethanol from lignocellulosic biomass. Springer https://doi.org/10.1007/978-1-4939-2493-6_521-3 (2017).

  12. 12.

    Barros, S. Brazil: biofuels annual. USDA.gov https://www.fas.usda.gov/data/brazil-biofuels-annual-4 (2018).

  13. 13.

    Hsieh, W.-D., Chen, R.-H., Wu, T.-L. & Lin, T.-H. Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos. Environ. 36, 403–410 (2002).

    CAS  Google Scholar 

  14. 14.

    Agarwal, A. K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33, 233–271 (2007).

    CAS  Google Scholar 

  15. 15.

    Hansen, A. C., Zhang, Q. & Lyne, P. W. L. Ethanol–diesel fuel blends — a review. Bioresour. Technol. 96, 277–285 (2005).

    CAS  PubMed  Google Scholar 

  16. 16.

    Shahir, S. A. et al. Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: an assessment of properties, material compatibility, safety and combustion. Renew. Sustain. Energy Rev. 32, 379–395 (2014).

    CAS  Google Scholar 

  17. 17.

    ExxonMobil. Outlook for energy: a view to 2040. ExxonMobil https://corporate.exxonmobil.com/en/Energy-and-environment/Energy-resources/Outlook-for-Energy/2018-Outlook-for-Energy-A-View-to-2040 (2017).

  18. 18.

    Radich, T. The flight paths for biojet fuel. EIA.gov https://www.eia.gov/workingpapers/pdf/flightpaths_biojetffuel.pdf (2015).

  19. 19.

    World Energy Council. World energy resources: bioenergy 2016. World Energy https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Bioenergy_2016.pdf (2016).

  20. 20.

    Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R. & Slade, R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuel. Bioprod. Biorefin. 10, 462–484 (2016).

    CAS  Google Scholar 

  21. 21.

    Wang, W.-C. et al. Review of biojet fuel conversion technologies [technical report NREL/TP-5100-66291]. NREL.gov https://www.nrel.gov/docs/fy16osti/66291.pdf (2016).

  22. 22.

    Fellet, M. Now boarding: commercial planes take flight with biobased jet fuel. Chem. Eng. News 94, 16–18 (2016).

    Google Scholar 

  23. 23.

    Schäfer, A. in Biofuels for Aviation Ch. 1 (ed. Chuck, C.) 3–16 (Academic Press, 2016). This is a detailed book describing the motivations for alternative aviation fuel production, as well as other details on ASTM certification and routes for fuel production.

  24. 24.

    Bacha, J. et al. Diesel fuels technical review. Chevron Corporation https://www.chevron.com/-/media/chevron/operations/documents/diesel-fuel-tech-review.pdf (2007).

  25. 25.

    ASTM D1655-17. Standard specification for aviation turbine fuels (ASTM International, 2017).

  26. 26.

    Hemighaus, G. et al. Aviation Fuels — Technical Review (Chevron Corporation, 2006).

  27. 27.

    ASTM D7566-18. Standard specification for aviation turbine fuel containing synthesized hydrocarbons (ASTM International, 2018).

  28. 28.

    De Jong, S. et al. The feasibility of short-term production strategies for renewable jet fuels–a comprehensive techno-economic comparison. Biofuel. Bioprod. Biorefin. 9, 778–800 (2015).

    Google Scholar 

  29. 29.

    Atsonios, K., Kougioumtzis, M.-A., Panopoulos, K. D. & Kakaras, E. Alternative thermochemical routes for aviation biofuels via alcohols synthesis: process modeling, techno-economic assessment and comparison. Appl. Energ. 138, 346–366 (2015).

    CAS  Google Scholar 

  30. 30.

    Diederichs, G. W., Mandegari, M. A., Farzad, S. & Görgens, J. F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour. Technol. 216, 331–339 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Alves, C. M. et al. Techno-economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil. Biofuel. Bioprod. Biorefin. 11, 67–91 (2017).

    CAS  Google Scholar 

  32. 32.

    Luning Prak, D. J. et al. Physical and chemical analysis of alcohol-to-jet (ATJ) fuel and development of surrogate fuel mixtures. Energy Fuels 29, 3760–3769 (2015).

    CAS  Google Scholar 

  33. 33.

    ASTM D4054-16. Standard practice for qualification and approval of new aviation turbine fuels and fuel additives (ASTM International, 2016).

  34. 34.

    Dorrington, G. in Biofuels for Aviation Ch. 3 (ed. Chuck, C.) 35–44 (Academic Press, 2016).

  35. 35.

    Brooks, K. P. et al. in Biofuels for Aviation Ch. 6 (ed. Chuck, C.) 109–150 (Academic Press, 2016).

  36. 36.

    ASTM D975-17. Standard specification for diesel fuel oils (ASTM International, 2017).

  37. 37.

    EN 590:2009. Standard specification on the quality of European diesel fuel (European Standards Organization, 2009).

  38. 38.

    Yanowitz, J., Ratcliff, M., McCormick, R., Taylor, J. & Murphy, M. Compendium of experimental cetane numbers [technical report NREL/TP-5400-61693]. OSTI.gov https://www.osti.gov/biblio/1150177-compendium-experimental-cetane-numbers (2014).

  39. 39.

    Santana, R. C. et al. Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels. Fuel 85, 643–656 (2006).

    CAS  Google Scholar 

  40. 40.

    Katritzky, A. R. et al. Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev. 110, 5714–5789 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Saldana, D. A. et al. Flash point and cetane number predictions for fuel compounds using quantitative structure property relationship (QSPR) methods. Energy Fuels 25, 3900–3908 (2011).

    CAS  Google Scholar 

  42. 42.

    Dahmen, M. & Marquardt, W. A novel group contribution method for the prediction of the derived cetane number of oxygenated hydrocarbons. Energy Fuels 29, 5781–5801 (2015).

    CAS  Google Scholar 

  43. 43.

    Kubic Jr, W. L., Jenkins, R. W., Moore, C. M., Semelsberger, T. A. & Sutton, A. D. Artificial neural network based group contribution method for estimating cetane and octane numbers of hydrocarbons and oxygenated organic compounds. Ind. Eng. Chem. Res. 56, 12236–12245 (2017).

    CAS  Google Scholar 

  44. 44.

    Ghosh, P. & Jaffe, S. B. Detailed composition-based model for predicting the cetane number of diesel fuels. Ind. Eng. Chem. Res. 45, 346–351 (2006).

    CAS  Google Scholar 

  45. 45.

    Yinong, L. & Qinghua, D. Investigation of propene oligomerization catalyzed by phosphotungstic acid catalysts. China Pet. Process. Pe. 14, 10–16 (2012).

    Google Scholar 

  46. 46.

    Jenkins, R. W. et al. The effect of functional groups in bio-derived fuel candidates. ChemSusChem 9, 922–931 (2016).

    CAS  PubMed  Google Scholar 

  47. 47.

    de Klerk, A. Fischer–Tropsch refining: technology selection to match molecules. Green Chem. 10, (1249–1279 (2008).

    Google Scholar 

  48. 48.

    Nel, R. J. & de Klerk, A. Dehydration of C5–C12 linear 1-alcohols over η-alumina to fuel ethers. Ind. Eng. Chem. Res. 48, 5230–5238 (2009).

    CAS  Google Scholar 

  49. 49.

    Engelder, C. J. Studies in contact catalysis. J. Phys. Chem. 21, 676–704 (1916).

    Google Scholar 

  50. 50.

    Adkins, H. & Perkins, P. P. Dehydration of alcohols over alumina. J. Am. Chem. Soc. 47, 1163–1167 (1925).

    CAS  Google Scholar 

  51. 51.

    Fan, D., Dai, D.-J. & Wu, H.-S. Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6, 101–115 (2013). This is a review of EtOH dehydration to ethylene, with industrial concerns included.

    CAS  Google Scholar 

  52. 52.

    Zhang, M. H. & Yu, Y. Z. Dehydration of ethanol to ethylene. Ind. Eng. Chem. Res. 52, 9505–9514 (2013).

    CAS  Google Scholar 

  53. 53.

    Mohsenzadeh, A., Zamani, A. & Taherzadeh, M. J. Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Rev. 4, 75–91 (2017).

    CAS  Google Scholar 

  54. 54.

    Yaws, C. L. Chemical Properties Handbook (McGraw-Hill, 1999).

  55. 55.

    Bailey, B., Eberhardt, J., Goguen, S. & Erwin, J. Diethyl ether (DEE) as a renewable diesel fuel. SAE.org https://doi.org/10.4271/972978 (1997).

    Article  Google Scholar 

  56. 56.

    Frusteri, F., Spadaro, L., Beatrice, C. & Guido, C. Oxygenated additives production for diesel engine emission improvement. Chem. Eng. J. 134, 239–245 (2007).

    CAS  Google Scholar 

  57. 57.

    Knözinger, H. Dehydration of alcohols on aluminum oxide. Angew. Chem. Int. Ed. 7, 791 (1968).

    Google Scholar 

  58. 58.

    Roy, S. et al. Mechanistic study of alcohol dehydration on γ-Al2O3. ACS Catal. 2, 1846–1853 (2012).

    CAS  Google Scholar 

  59. 59.

    Kostestkyy, P., Yu, J., Gorte, R. J. & Mpourmpakis, G. Structure–activity relationships on metal-oxides: alcohol dehydration. Catal. Sci. Technol. 4, 3861–3869 (2014).

    CAS  Google Scholar 

  60. 60.

    Kostetskyy, P. & Mpourmpakis, G. Structure–activity relationships in the production of olefins from alcohols and ethers: a first-principles theoretical study. Catal. Sci. Technol. 5, 4547–4555 (2015).

    CAS  Google Scholar 

  61. 61.

    Aronson, M., Gorte, R. & Farneth, W. E. The influence of oxonium ion and carbenium ion stabilities on the alcohol/H-ZSM-5 interaction. J. Catal. 98, 434–443 (1986).

    CAS  Google Scholar 

  62. 62.

    Janik, M. J., Macht, J., Iglesia, E. & Neurock, M. Correlating acid properties and catalytic function: a first-principles analysis of alcohol dehydration pathways on polyoxometalates. J. Phys. Chem. C 113, 1872–1885 (2009).

    CAS  Google Scholar 

  63. 63.

    Chiang, H. & Bhan, A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal. 271, 251–261 (2010).

    CAS  Google Scholar 

  64. 64.

    Kim, S., Robichaud, D. J., Beckham, G. T., Paton, R. S. & Nimlos, M. R. Ethanol dehydration in HZSM-5 studied by density functional theory: evidence for a concerted peocess. J. Phys. Chem. A 119, 3604–3614 (2015).

    CAS  PubMed  Google Scholar 

  65. 65.

    Gervasini, A., Fenyvesi, J. & Auroux, A. Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition. Catal. Lett. 43, 219–228 (1997).

    CAS  Google Scholar 

  66. 66.

    Di Cosimo, J., Dıez, V., Xu, M., Iglesia, E. & Apesteguía, C. Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510 (1998).

    Google Scholar 

  67. 67.

    Pines, H. & Haag, W. O. Alumina: catalyst and support. I. Alumina, its intrinsic acidity and catalytic activity. J. Am. Chem. Soc. 82, 2471–2483 (1960).

    CAS  Google Scholar 

  68. 68.

    Knözinger, H. & Köhne, R. Dehydration of alcohols over alumina. 1. Reaction scheme. . J. Catal. 5, 264 (1966).

    Google Scholar 

  69. 69.

    Chen, G., Li, S., Jiao, F. & Yuan, Q. Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal. Today 125, 111–119 (2007).

    CAS  Google Scholar 

  70. 70.

    Kochar, N. K., Merims, R. & Padia, A. S. Ethylene from ethanol. Chem. Eng. Prog. 77, 66–70 (1981).

    CAS  Google Scholar 

  71. 71.

    El-Katatny, E. A., Halawy, S. A., Mohamed, M. A. & Zaki, M. I. Recovery of ethene-selective FeOx/Al2O3 ethanol dehydration catalyst from industrial chemical wastes. Appl. Catal. A 199, 83–92 (2000).

    CAS  Google Scholar 

  72. 72.

    Tsao, U. & Zasloff, H. B. Production of ethylene from ethanol. US Patent 4134926A (1979).

  73. 73.

    Le Van Mao, R., Nguyen, T. M. & McLaughlin, G. P. The bioethanol-to-ethylene (B.E.T.E.) process. Appl. Catal. 48, 265–277 (1989).

    Google Scholar 

  74. 74.

    Phillips, C. B. & Datta, R. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind. Eng. Chem. Res. 36, 4466–4475 (1997).

    CAS  Google Scholar 

  75. 75.

    Ramesh, K., Jie, C., Han, Y. F. & Borgna, A. Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Ind. Eng. Chem. Res. 49, 4080–4090 (2010).

    CAS  Google Scholar 

  76. 76.

    Takahara, I., Saito, M., Inaba, M. & Murata, K. Dehydration of ethanol into ethylene over solid acid catalysts. Catal. Lett. 105, 249–252 (2005).

    CAS  Google Scholar 

  77. 77.

    Zhang, X., Wang, R. J., Yang, X. X. & Zhang, F. B. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Micropor. Mesopor. Mater. 116, 210–215 (2008).

    CAS  Google Scholar 

  78. 78.

    Varisli, D., Dogu, T. & Dogu, G. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem. Eng. Sci. 62, 5349–5352 (2007).

    CAS  Google Scholar 

  79. 79.

    Saito, Y. & Niiyama, H. Reaction mechanism of ethanol dehydration on/in heteropoly compounds: analysis of transient behavior based on pseudo-liquid catalysis model. J. Catal. 106, 329–336 (1987).

    CAS  Google Scholar 

  80. 80.

    Varisli, D., Dogu, T. & Dogu, G. Silicotungstic acid impregnated MCM-41-like mesoporous solid acid catalysts for dehydration of ethanol. Ind. Eng. Chem. Res. 47, 4071–4076 (2008).

    CAS  Google Scholar 

  81. 81.

    Micek-Ilnicka, A., Bielanska, E., Litynska-Dobrzynska, L. & Bielanski, A. Carbon nanotubes, silica and titania supported heteropolyacid H3PW12O40 as the catalyst for ethanol conversion. Appl. Catal. A 421, 91–98 (2012).

    Google Scholar 

  82. 82.

    Kozhevnikov, I. Sustainable heterogeneous acid catalysis by heteropoly acids. J. Mol. Catal. A 262, 86–92 (2007).

    CAS  Google Scholar 

  83. 83.

    Huang, H.-J., Ramaswamy, S., Tschirner, U. & Ramarao, B. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 62, 1–21 (2008).

    CAS  Google Scholar 

  84. 84.

    Vane, L. M. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuel. Bioprod. Biorefin. 2, 553–588 (2008).

    CAS  Google Scholar 

  85. 85.

    Le Van Mao, R. & Nguyen, T. M. Superacidic catalysts for low temperature conversion of aqueous ethanol to ethylene. US Patent 4847223A (1989).

  86. 86.

    Nguyen, T. M. & Le Van Mao, R. Conversion of ethanol in aqueous-solution over ZSM-5 zeolites-Study of the reaction network. Appl. Catal. 58, 119–129 (1990).

    CAS  Google Scholar 

  87. 87.

    Chematur Engineering AB. Bio ethylene/ethene. Chematur https://chematur.se/process-areas/bio-chemicals/bio-ethylene-ethene (2019).

  88. 88.

    Chemicals Technology. Braskem ethanol-to-ethylene plant. Chemicals Technology http://www.chemicals-technology.com/projects/braskem-ethanol/ (2019).

  89. 89.

    Petron Scientech Inc. Background. Petron Scientech http://www.petronscientech.com/index.php?option=com_content&view=article&id=1&Itemid=115&lang=en (2019).

  90. 90.

    Ondrey, G. The launch of a new bioethylene-production process. Chem. Engineer. 121, 11–12 (2014).

    Google Scholar 

  91. 91.

    Technip. Technip completes acquisition of Hummingbird® technology from BP Chemicals Limited. Business Wire https://www.businesswire.com/news/home/20160614006360/en/Technip-Completes-Acquisition-Hummingbird®-Technology-BP-Chemicals (2016).

  92. 92.

    Lane, J. New path to ethylene via ethanol: the Digest’s 2017 Multi-Slide Guide to Technip’s Hummingbird tech. Biofuels Digest http://www.biofuelsdigest.com/bdigest/2017/01/03/new-path-to-ethylene-via-ethanol-the-digests-2017-multi-slide-guide-to-technips-hummingbird-tech/ (2017).

  93. 93.

    Ipatieff, V., Corson, B. & Egloff, G. Polymerization, a new source of gasoline. Ind. Eng. Chem. 27, 1077–1081 (1935).

    CAS  Google Scholar 

  94. 94.

    Ipatieff, V. N. & Schaad, R. E. Heptenes and heptanes from propylene and butylenes. Ind. Eng. Chem. 37, 362–364 (1945).

    CAS  Google Scholar 

  95. 95.

    Pines, H. The Chemistry of Catalytic Hydrocarbon Conversions (Elsevier, 2012).

  96. 96.

    Sarazen, M. L., Doskocil, E. & Iglesia, E. Effects of void environment and acid strength on alkene oligomerization selectivity. ACS Catal. 6, 7059–7070 (2016).

    CAS  Google Scholar 

  97. 97.

    Quann, R. J., Green, L. A., Tabak, S. A. & Krambeck, F. J. Chemistry of olefin oligomerization over ZSM-5 catalyst. Ind. Eng. Chem. Res. 27, 565–570 (1988).

    CAS  Google Scholar 

  98. 98.

    Lukyanov, D. B., Gnep, N. S. & Guisnet, M. R. Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. 33, 223–234 (1994).

    CAS  Google Scholar 

  99. 99.

    Guisnet, M., Gnep, N. & Alario, F. Aromatization of short chain alkanes on zeolite catalysts. Appl. Catal. A 89, 1–30 (1992).

    CAS  Google Scholar 

  100. 100.

    Biscardi, J. A. & Iglesia, E. Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5. Catal. Today 31, 207–231 (1996).

    CAS  Google Scholar 

  101. 101.

    Choudhary, V. R., Panjala, D. & Banerjee, S. Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite. Appl. Catal. A 231, 243–251 (2002).

    CAS  Google Scholar 

  102. 102.

    Anderson, J., Mole, T. & Christov, V. Mechanism of some conversions over ZSM-5 catalyst. J. Catal. 61, 477–484 (1980).

    CAS  Google Scholar 

  103. 103.

    Smirniotis, P. G. & Ruckenstein, E. Alkylation of benzene or toluene with MeOH or C2H4 over ZSM-5 or beta zeolite: effect of the zeolite pore openings and of the hydrocarbons involved on the mechanism of alkylation. Ind. Eng. Chem. Res. 34, 1517–1528 (1995).

    CAS  Google Scholar 

  104. 104.

    Degnan, T. F. Jr, Smith, C. M. & Venkat, C. R. Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes. Appl. Catal. A 221, 283–294 (2001).

    CAS  Google Scholar 

  105. 105.

    Hansen, N., Brüggemann, T., Bell, A. T. & Keil, F. J. Theoretical investigation of benzene alkylation with ethene over H-ZSM-5. J. Phys. Chem. C 112, 15402–15411 (2008).

    CAS  Google Scholar 

  106. 106.

    Svelle, S., Kolboe, S. & Swang, O. Theoretical investigation of the dimerization of linear alkenes catalyzed by acidic zeolites. J. Phys. Chem. B 108, 2953–2962 (2004).

    CAS  Google Scholar 

  107. 107.

    Derouane, E. G. et al. Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. J. Catal. 53, 40–55 (1978). This is an early description of methanol-to-gasoline and EtOH-to-gasoline conversion over H-ZSM-5.

    CAS  Google Scholar 

  108. 108.

    Chang, C. D. & Silvestri, A. J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 47, 249–259 (1977).

    CAS  Google Scholar 

  109. 109.

    Tabak, S. & Yurchak, S. Conversion of methanol over ZSM-5 to fuels and chemicals. Catal. Today 6, 307–327 (1990).

    CAS  Google Scholar 

  110. 110.

    Yurchak, S. Development of Mobil’s fixed-bed methanul-to-gasoline (MTG) process. Stud. Surf. Sci. Catal. 36, 251–272 (1988).

    CAS  Google Scholar 

  111. 111.

    Teketel, S. et al. Shape selectivity in zeolite catalysis. The methanol to hydrocarbons (MTH) reaction. Catalysis 26, 179–217 (2014).

    CAS  Google Scholar 

  112. 112.

    Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. Mesopor. Mater. 29, 3–48 (1999).

    Google Scholar 

  113. 113.

    Mole, T., Whiteside, J. A. & Seddon, D. Aromatic co-catalysis of methanol conversion over zeolite catalysts. J. Catal. 82, 261–266 (1983).

    CAS  Google Scholar 

  114. 114.

    Mole, T., Bett, G. & Seddon, D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: an examination of the role of aromatic hydrocarbons using 13carbon- and deuterium-labeled feeds. J. Catal. 84, 435–445 (1983).

    CAS  Google Scholar 

  115. 115.

    Dahl, I. M. & Kolboe, S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal. Lett. 20, 329–336 (1993).

    CAS  Google Scholar 

  116. 116.

    Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).

    CAS  Google Scholar 

  117. 117.

    Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the mEtOH-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137–8138 (2001).

    CAS  PubMed  Google Scholar 

  118. 118.

    Bjørgen, M., Olsbye, U., Petersen, D. & Kolboe, S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal. 221, 1–10 (2004).

    Google Scholar 

  119. 119.

    Johansson, R., Hruby, S. L., Rass-Hansen, J. & Christensen, C. H. The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalysts. Catal. Lett. 127, 1 (2009).

    CAS  Google Scholar 

  120. 120.

    Goguen, P. W. et al. Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J. Am. Chem. Soc. 120, 2650–2651 (1998).

    CAS  Google Scholar 

  121. 121.

    Xu, T. & White, J. L. Catalyst pretreatment in an oxygenate to olefins reaction system. US Patent US6734330B1 (2004).

  122. 122.

    Narula, C. K. et al. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci Rep. 5, 16039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Talukdar, A. K., Bhattacharyya, K. G. & Sivasanker, S. HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. Appl. Catal. A 148, 357–371 (1997).

    CAS  Google Scholar 

  124. 124.

    Gayubo, A. G., Tarrío, A. M., Aguayo, A. T., Olazar, M. & Bilbao, J. Kinetic modelling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite. Ind. Eng. Chem. Res. 40, 3467–3474 (2001).

    CAS  Google Scholar 

  125. 125.

    Aguayo, A. T., Gayubo, A. G., Atutxa, A., Olazar, M. & Bilbao, J. Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst. Ind. Eng. Chem. Res. 41, 4216–4224 (2002).

    CAS  Google Scholar 

  126. 126.

    Madeira, F. F., Gnep, N., Magnoux, P., Maury, S. & Cadran, N. Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. Appl. Catal. A 367, 39–46 (2009).

    CAS  Google Scholar 

  127. 127.

    Sun, J. & Wang, Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 4, 1078–1090 (2014). This is a general review of the use of EtOH as a platform molecule.

    CAS  Google Scholar 

  128. 128.

    Galadima, A. & Muraza, O. Zeolite catalysts in upgrading of bioethanol to fuels range hydrocarbons: a review. J. Ind. Eng. Chem. 31, 1–14 (2015).

    CAS  Google Scholar 

  129. 129.

    Erichsen, M. W., Svelle, S. & Olsbye, U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catal. Today 215, 216–223 (2013).

    Google Scholar 

  130. 130.

    Costa, E., Uguina, A., Aguado, J. & Hernandez, P. J. Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Ind. Eng. Chem. Process Des. Dev. 24, 239–244 (1985).

    CAS  Google Scholar 

  131. 131.

    Schulz, J. & Bandermann, F. Conversion of ethanol over zeolite H-ZSM-5. Chem. Eng. Technol. 17, 179–186 (1994).

    CAS  Google Scholar 

  132. 132.

    Aguayo, A. T., Gayubo, A. G., Tarrío, A. M., Atutxa, A. & Bilbao, J. Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. J. Chem. Technol. Biotechnol. 77, 211–216 (2002).

    CAS  Google Scholar 

  133. 133.

    Viswanadham, N., Saxena, S. K., Kumar, J., Sreenivasulu, P. & Nandan, D. Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel 95, 298–304 (2012).

    CAS  Google Scholar 

  134. 134.

    Chaudhuri, S. N., Halik, C. & Lercher, J. A. Reactions of ethanol over HZSM-5. J. Mol. Catal. 62, 289–295 (1990).

    CAS  Google Scholar 

  135. 135.

    Madeira, F. F. et al. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Appl. Catal. A 443, 171–180 (2012).

    Google Scholar 

  136. 136.

    Saha, S. K. & Sivasanker, S. Influence of Zn and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5. Catal. Lett. 15, 413–418 (1992).

    CAS  Google Scholar 

  137. 137.

    Inaba, M., Murata, K., Saito, M. & Takahara, I. Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. React. Kinet. Catal. Lett. 88, 135–141 (2006).

    CAS  Google Scholar 

  138. 138.

    Chang, C., Lang, W. & Smith, R. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects. J. Catal. 56, 169–173 (1979).

    CAS  Google Scholar 

  139. 139.

    Ramasamy, K. K. & Wang, Y. Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction conditions and Si/Al ratio on the product distributions. Catal. Today 237, 89–99 (2014).

    CAS  Google Scholar 

  140. 140.

    Oudejans, J. C., Van Den Oosterkamp, P. F. & Van Bekkum, H. Conversion of ethanol over zeolite H-ZSM-5 in the presence of water. Appl. Catal. 3, 109–115 (1982).

    CAS  Google Scholar 

  141. 141.

    Hannon, J. One-step high-yield production of fungible gasoline, diesel, and jet fuel blend stocks from ethanol without added hydrogen. Energy.gov https://www.energy.gov/sites/prod/files/2017/05/f34/thermochem_hannon_2.3.1.201.pdf (2017).

  142. 142.

    El-Halwagi, M. M., Hall, K. R. & Spriggs, H. D. Integrated biofuel processing system. US Patent US8802905B2 (2014).

  143. 143.

    Warwick, G. Waste watch: airlines and industry pursue biofuels that recycle trash and do no harm to the environment. Air Transport World http://atwonline.com/eco-aviation/waste-watch (2015).

  144. 144.

    Lane, J. DOE pushes renewable jet fuel towards commercial-scale with key grants to LanzaTech, Byogy, AVAPCO-led teams. Biofuels Digest http://www.biofuelsdigest.com/bdigest/2016/12/30/doe-pushes-renewable-jet-fuel-towards-commercial-scale-with-key-grants-to-lanzatech-byogy-avapco-led-teams/ (2016).

  145. 145.

    Nelson, K. AVAPCO, BYOGY Renewables, and Petron Scientech announce partnership to demonstrate technologies in the ABBA integrated biorefinery project. PRWeb http://www.prweb.com/releases/2017/10/prweb14773964.htm (2017).

  146. 146.

    Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    CAS  Google Scholar 

  147. 147.

    Takahashi, A., Xia, W., Nakamura, I., Shimada, H. & Fujitani, T. Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Appl. Catal. A 423, 162–167 (2012).

    Google Scholar 

  148. 148.

    Li, X. et al. Light olefins from renewable resources: selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts. Catal. Today 276, 62–77 (2016).

    CAS  Google Scholar 

  149. 149.

    Ingram, C. W. & Lancashire, R. J. On the formation of C3 hydrocarbons during the conversion of ethanol using H-ZSM-5 catalyst. Catal. Lett. 31, 395–403 (1995).

    CAS  Google Scholar 

  150. 150.

    Lehmann, T. & Seidel-Morgenstern, A. Thermodynamic appraisal of the gas phase conversion of ethylene or ethanol to propylene. Chem. Eng. J. 242, 422–432 (2014).

    CAS  Google Scholar 

  151. 151.

    Lin, B., Zhang, Q. & Wang, Y. Catalytic conversion of ethylene to propylene and butenes over H-ZSM-5. Ind. Eng. Chem. Res. 48, 10788–10795 (2009).

    CAS  Google Scholar 

  152. 152.

    Nicholas, C. P. Applications of light olefin oligomerization to the production of fuels and chemicals. Appl. Catal. A 543, 82–97 (2017). This is a recent review of light olefin oligomerization.

    CAS  Google Scholar 

  153. 153.

    Tabak, S., Krambeck, F. & Garwood, W. Conversion of propylene and butylene over ZSM-5 catalyst. AlChE J. 32, 1526–1531 (1986).

    CAS  Google Scholar 

  154. 154.

    Coelho, A., Caeiro, G., Lemos, M., Lemos, F. & Ribeiro, F. R. 1-Butene oligomerization over ZSM-5 zeolite: part 1 — effect of reaction conditions. Fuel 111, 449–460 (2013).

    CAS  Google Scholar 

  155. 155.

    Martens, J. A., Ravishankar, R., Mishin, I. E. & Jacobs, P. A. Tailored alkene oligomerization with H-ZSM-57 zeolite. Angew. Chem. Int. Ed. 39, 4376–4379 (2000).

    CAS  Google Scholar 

  156. 156.

    Bond, J. Q., Alonso, D. M., Wang, D., West, R. M. & Dumesic, J. A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327, 1110–1114 (2010).

    CAS  PubMed  Google Scholar 

  157. 157.

    Kim, Y. T. et al. Low-temperature oligomerization of 1-butene with H-ferrierite. J. Catal. 323, 33–44 (2015).

    CAS  Google Scholar 

  158. 158.

    Nicholas, C. P. in Zeolites in Industrial Separation and Catalysis (ed. Kulprathipanja, S.) 355–402 (Wiley-VCH, 2010).

  159. 159.

    Martens, L. R., Verduijn, J. & Mathys, G. The development of an environmental friendly catalytic system for the conversion of olefins. Catal. Today 36, 451–460 (1997).

    CAS  Google Scholar 

  160. 160.

    Martens, J. A., Verrelst, W. H., Mathys, G. M., Brown, S. H. & Jacobs, P. A. Tailored catalytic propene trimerization over acidic zeolites with tubular pores. Angew. Chem. Int. Ed. 44, 5687–5690 (2005).

    CAS  Google Scholar 

  161. 161.

    Corma, A., Martínez, C. & Doskocil, E. Designing MFI-based catalysts with improved catalyst life for C= 3 and C= 5 oligomerization to high-quality liquid fuels. J. Catal. 300, 183–196 (2013).

    CAS  Google Scholar 

  162. 162.

    Vaughan, J., Oconnor, C. & Fletcher, J. High-pressure oligomerization of propene over heteropoly acids. J. Catal. 147, 441–454 (1994).

    CAS  Google Scholar 

  163. 163.

    Zhirong, Z., Zaiku, X., Yongfu, C., Refeng, W. & Yaping, Y. Free phosphoric acid of diatomite-phosphate solid acid and its catalytic performance for propylene oligomerization. React. Kinet. Catal. Lett. 70, 379–388 (2000).

    Google Scholar 

  164. 164.

    Zhang, J., Yan, Y., Chu, Q. & Feng, J. Solid phosphoric acid catalyst for propene oligomerization: effect of silicon phosphate composition. Fuel Process. Technol. 135, 2–5 (2015).

    CAS  Google Scholar 

  165. 165.

    Rylander, P. The Catalytic Hydrogenation in Organic Syntheses 31–63 (Academic Press, 1979).

  166. 166.

    Bartholomew, C. H. & Farrauto, R. J. in Fundamentals of Industrial Catalytic Processes 411–473 (John Wiley & Sons, 2011).

  167. 167.

    Davis, R. et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons [technical report NREL/TP-5100-60223]. NREL.gov https://www.nrel.gov/docs/fy14osti/60223.pdf (2013).

  168. 168.

    Davis, R. T. et al. Dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons [technical report NREL/TP-5100-62498]. NREL.gov https://www.nrel.gov/docs/fy15osti/62498.pdf (2015).

  169. 169.

    Dagle, V. L. et al. Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels. Green Chem. 18, 1880–1891 (2016). This offers a description of the process of converting syngas-derived alcohols into jet fuel through an isobutene intermediate.

    CAS  Google Scholar 

  170. 170.

    Tao, L., Markham, J. N., Haq, Z. & Biddy, M. J. Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chem. 19, 1082–1101 (2017). This presents a recent techno-economic analysis of the EtOH-to-distillate technology through ethylene oligomerization.

    CAS  Google Scholar 

  171. 171.

    Nicholas, C. P., Rathbun, W. E., Kruse, T. M. & Pham, H. A. Composition of oligomerate. US Patent 9644159B2 (2017).

  172. 172.

    Nicholas, C. P., Krupa, S. L., Bussche, K. M. V. & Kruse, T. M. Process for making diesel by oligomerization of gasoline. US Patent 9663415B2 (2017).

  173. 173.

    Catani, R., Mandreoli, M., Rossini, S. & Vaccari, A. Mesoporous catalysts for the synthesis of clean diesel fuels by oligomerisation of olefins. Catal. Today 75, 125–131 (2002).

    CAS  Google Scholar 

  174. 174.

    Knottenbelt, C. Mossgas “gas-to-liquid” diesel fuels—an environmentally friendly option. Catal. Today 71, 437–445 (2002).

    CAS  Google Scholar 

  175. 175.

    Du Toit, F. B. Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams. US Patent 7271304B2 (2007).

  176. 176.

    de Klerk, A. Distillate production by oligomerization of Fischer−Tropsch olefins over solid phosphoric acid. Energy Fuels 20, 439–445 (2006).

    Google Scholar 

  177. 177.

    de Klerk, A. Oligomerization of Fischer−Tropsch olefins to distillates over amorphous silica−alumina. Energy Fuels 20, 1799–1805 (2006).

    Google Scholar 

  178. 178.

    de Klerk, A. Properties of synthetic fuels from H-ZSM-5 oligomerization of Fischer–Tropsch type feed materials. Energy Fuels 21, 3084–3089 (2007).

    Google Scholar 

  179. 179.

    Avidan, A. Gasoline and distillate fuels from methanol. Stud. Surf. Sci. Catal. 36, 307–323 (1988).

    CAS  Google Scholar 

  180. 180.

    Guillon, E., Cadran, N., Touchais, N. & Bournay, L. Flexible process for transformation of ethanol into middle distillates. US Patent 9475999B2 (2016).

  181. 181.

    Mazurek, H. Two stage process for catalytic conversion of olefins to higher hydrocarbons. US Patent 4925996 (1990).

  182. 182.

    Lane, J. The Digest’s 2017 Multi-Slide Guide to LanzaTech/PNNL Syngas-to-ATJ fuels. Biofuels Digest http://www.biofuelsdigest.com/bdigest/2017/08/28/the-digests-2017-multi-slide-guide-to-the-lanzatechpnnl-route-to-fuels-from-biomass-syngasmarch/ (2017).

  183. 183.

    LanzaTech. LanzaTech awarded $4M from DOE for low carbon jet and diesel demonstration facility. LanzaTech http://www.lanzatech.com/lanzatech-awarded-4m-doe-low-carbon-jet-diesel-demonstration-facility/ (2016).

  184. 184.

    US Office of Energy Efficiency & Renewable Energy. Energy department announces six projects for pilot- and demonstration-scale manufacturing of biofuels, bioproducts, and biopower. Energy.gov https://www.energy.gov/eere/articles/energy-department-announces-six-projects-pilot-and-demonstration-scale-manufacturing (2016).

  185. 185.

    ArcelorMittal. ArcelorMittal, LanzaTech and Primetals Technologies announce partnership to construct breakthrough €87m biofuel production facility. ArcelorMittal http://corporate.arcelormittal.com/news-and-media/news/2015/july/13-07-2015 (2015).

  186. 186.

    LanzaTech. Aemetis acquires license from LanzaTech with California exclusive rights for advanced ethanol from biomass including forest and ag wastes. LanzaTech http://www.lanzatech.com/aemetis-acquires-license-lanzatech-california-exclusive-rights-advanced-ethanol-biomass-including-forest-ag-wastes/ (2016).

  187. 187.

    ET Energy World. IOC and LanzaTech ink Rs 350 crore pact to construct bio-ethanol facility at Panipat refinery. ET Energy World https://energy.economictimes.indiatimes.com/news/oil-and-gas/ioc-and-lanzatech-to-construct-worlds-first-refinery-off-gas-to-bioethanol-production-facility-at-iocs-panipat-refinery/59529506 (2017).

  188. 188.

    China News Service. Beijing iron maker to turn waste gas into biofuels. ECNS.cn http://www.ecns.cn/business/2018/02-28/293914.shtml (2018).

  189. 189.

    Burton, F. Low carbon fuel achieves breakthrough. LanzaTech http://www.lanzatech.com/low-carbon-fuel-project-achieves-breakthrough-lanzatech-produces-jet-fuel-waste-gases-virgin-atlantic/ (2017).

  190. 190.

    LanzaTech. Virgin Atlantic and LanzaTech celebrate as revolutionary sustainable fuel project takes flight. LanzaTech http://www.lanzatech.com/virgin-atlantic-lanzatech-celebrate-revolutionary-sustainable-fuel-project-takes-flight/#_ftn1 (2018).

  191. 191.

    McDaniel, M. P. & DesLauriers, P. J. in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley VCH, 2000).

  192. 192.

    Ziegler, K., Holzkamp, E., Breil, H. & Martin, H. Polymerisation von äthylen und anderen olefinen. Angew. Chem. 67, 426–426 (1955).

    CAS  Google Scholar 

  193. 193.

    Martin, H. & Ziegler, K. Production of dimers and low molecular polymerization products from ethylene. US Patent 2943125 (1960).

  194. 194.

    Cecchin, G., Morini, G. & Piemontesi, F. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000).

  195. 195.

    Cossee, P. On the reaction mechanism of the ethylene polymerization with heterogeneous Ziegler–Natta catalysts. Tetrahedron Lett. 1, 12–16 (1960).

    Google Scholar 

  196. 196.

    Cossee, P. Ziegler–Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler–Natta catalysts. J. Catal. 3, 80–88 (1964).

    CAS  Google Scholar 

  197. 197.

    Peuckert, M. & Keim, W. A new nickel complex for the oligomerization of ethylene. Organometallics 2, 594–597 (1983).

    CAS  Google Scholar 

  198. 198.

    Jordan, R. F., Bajgur, C. S., Willett, R. & Scott, B. Ethylene polymerization by a cationic dicyclopentadienyl zirconium(iv) alkyl complex. J. Am. Chem. Soc. 108, 7410–7411 (1986).

    CAS  Google Scholar 

  199. 199.

    Britovsek, G. J. P. et al. Ethylene oligomerization beyond Schulz–Flory distributions. ACS Catal. 5, 6922–6925 (2015).

    CAS  Google Scholar 

  200. 200.

    Forestière, A., Olivier-Bourbigou, H. & Saussine, L. Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci. Technol. 64, 649–667 (2009).

    Google Scholar 

  201. 201.

    Lappin, G. R., Nemec, L. H., Sauer, J. D. & Wagner, J. D. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000).

  202. 202.

    Greiner, E. O. C., Blagoev, M. & Yamaguchi, Y. Chemical Economics Handbook: Linear Alpha-Olefins (IHS Chemical, 2013).

  203. 203.

    Keim, W. Oligomerization of ethylene to α-olefins: discovery and development of the Shell Higher Olefin Process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013).

    CAS  Google Scholar 

  204. 204.

    Skupinska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev. 91, 613–648 (1991).

    CAS  Google Scholar 

  205. 205.

    Svejda, S. A. & Brookhart, M. Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(ii) catalysts. Organometallics 18, 65–74 (1999).

    CAS  Google Scholar 

  206. 206.

    Gates, D. P. et al. Synthesis of branched polyethylene using (α-diimine) nickel(ii) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33, 2320–2334 (2000).

    CAS  Google Scholar 

  207. 207.

    Zhang, H. et al. Ethylene oligomerization over heterogeneous catalysts. Energy Environ. Focus 3, 246–256 (2014).

    Google Scholar 

  208. 208.

    Finiels, A., Fajula, F. & Hulea, V. Nickel-based solid catalysts for ethylene oligomerization — a review. Catal. Sci. Technol. 4, 2412–2426 (2014). This presents a review of supported Ni catalysts for ethylene oligomerization.

    CAS  Google Scholar 

  209. 209.

    Brogaard, R. Y. & Olsbye, U. Ethene oligomerization in Ni-containing zeolites: theoretical discrimination of reaction mechanisms. ACS Catal. 6, 1205–1214 (2016).

    CAS  Google Scholar 

  210. 210.

    Joshi, R., Zhang, G., Miller, J. T. & Gounder, R. Evidence for the coordination–insertion mechanism of ethene dimerization at nickel cations exchanged onto beta molecular sieves. ACS Catal. 8, 11407–11422 (2018).

    CAS  Google Scholar 

  211. 211.

    Andrei, R. D., Popa, M. I., Fajula, F. & Hulea, V. Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J. Catal. 323, 76–84 (2015).

    CAS  Google Scholar 

  212. 212.

    Toch, K., Thybaut, J., Arribas, M., Martínez, A. & Marin, G. Steering linear 1-alkene, propene or gasoline yields in ethene oligomerization via the interplay between nickel and acid sites. Chem. Eng. Sci. 173, 49–59 (2017).

    CAS  Google Scholar 

  213. 213.

    Lallemand, M., Finiels, A., Fajula, F. & Hulea, V. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Appl. Catal. A 301, 196–201 (2006).

    CAS  Google Scholar 

  214. 214.

    Lallemand, M. et al. NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Appl. Catal. A 338, 37–43 (2008).

    CAS  Google Scholar 

  215. 215.

    Martínez, A., Arribas, M. A., Concepción, P. & Moussa, S. New bifunctional Ni–H-beta catalysts for the heterogeneous oligomerization of ethylene. Appl. Catal. A 467, 509–518 (2013).

    Google Scholar 

  216. 216.

    Moussa, S., Arribas, M. A., Concepción, P. & Martínez, A. Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: the influence of support properties on nickel speciation and catalytic performance. Catal. Today 277, 78–88 (2016).

    CAS  Google Scholar 

  217. 217.

    Hwang, A. et al. Low temperature oligomerization of ethylene over Ni/Al-KIT catalysts. Catal. Lett. 147, 1303–1314 (2017).

    Google Scholar 

  218. 218.

    Heveling, J., van der Beek, A. & de Pender, M. Oligomerization of ethene over nickel-exchanged zeolite Y into a diesel-range product. Appl. Catal. 42, 325–336 (1988).

    CAS  Google Scholar 

  219. 219.

    Lacarriere, A. et al. Distillate-range products from non-oil-based sources by catalytic cascade reactions. ChemSusChem 5, 1787–1792 (2012).

    CAS  PubMed  Google Scholar 

  220. 220.

    Babu, B. H., Lee, M., Hwang, D. W., Kim, Y. & Chae, H.-J. An integrated process for production of jet-fuel range olefins from ethylene using Ni-AlSBA-15 and Amberlyst-35 catalysts. Appl. Catal. A 530, 48–55 (2017).

    CAS  Google Scholar 

  221. 221.

    Schultz, R. G. Olefin dimerization over cobalt-oxide-on-carbon catalysts: III. Oligomerization of ethylene. J. Catal. 7, 286–290 (1967).

    CAS  Google Scholar 

  222. 222.

    Xu, Z. et al. Olefin conversion on nitrogen-doped carbon-supported cobalt catalyst: effect of feedstock. J. Catal. 354, 213–222 (2017).

    CAS  Google Scholar 

  223. 223.

    Emrich, R., Heinemann, O., Jolly, P. W., Krüger, C. & Verhovnik, G. P. J. The role of metallacycles in the chromium-catalyzed trimerization of ethylene. Organometallics 16, 1511–1513 (1997).

    CAS  Google Scholar 

  224. 224.

    Dixon, J. T., Green, M. J., Hess, F. M. & Morgan, D. H. Advances in selective ethylene trimerisation–a critical overview. J. Organomet. Chem. 689, 3641–3668 (2004).

    CAS  Google Scholar 

  225. 225.

    Agapie, T. Selective ethylene oligomerization: recent advances in chromium catalysis and mechanistic investigations. Coord. Chem. Rev. 255, 861–880 (2011).

    CAS  Google Scholar 

  226. 226.

    Overett, M. J. et al. Mechanistic investigations of the ethylene tetramerisation reaction. J. Am. Chem. Soc. 127, 10723–10730 (2005).

    CAS  PubMed  Google Scholar 

  227. 227.

    McGuinness, D. S. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem. Rev. 111, 2321–2341 (2011).

    CAS  PubMed  Google Scholar 

  228. 228.

    Janiak, C. Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coord. Chem. Rev. 250, 66–94 (2006).

    CAS  Google Scholar 

  229. 229.

    Berard, S. et al. Process for the production of a fuel base from an ethylene feedstock implementing at least one oligomerization stage in the presence of a homogeneous catalytic system. US Patent US8957270B2 (2015).

  230. 230.

    Lilga, M. A. et al. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. US Patent 9771533B2 (2017).

  231. 231.

    Guerbet, M. Action des alcools éthylique, isobutylique, isoamylique, sur leurs dérivés sodés. C. R. Hebd. Acad. Sci. 128, 1002–1004 (1899).

    CAS  Google Scholar 

  232. 232.

    Aitchison, H., Wingad, R. L. & Wass, D. F. Homogeneous ethanol to butanol catalysis — Guerbet renewed. ACS Catal. 6, 7125–7132 (2016).

    CAS  Google Scholar 

  233. 233.

    Galadima, A. & Muraza, O. Catalytic upgrading of bioethanol to fuel grade biobutanol: a review. Ind. Eng. Chem. Res. 54, 7181–7194 (2015).

    CAS  Google Scholar 

  234. 234.

    Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2016).

  235. 235.

    Kozlowski, J. T. & Davis, R. J. Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal. 3, 1588–1600 (2013).

    CAS  Google Scholar 

  236. 236.

    Gabriëls, D., Hernández, W. Y., Sels, B., Van Der Voort, P. & Verberckmoes, A. Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal. Sci. Technol. 5, 3876–3902 (2015). This presents a thorough review of Guerbet condensation chemistry.

    Google Scholar 

  237. 237.

    Wu, X. et al. Catalytic upgrading of ethanol to n-butanol: progress in catalyst development. ChemSusChem 11, 71–85 (2018).

    PubMed  Google Scholar 

  238. 238.

    Yang, C. & Meng, Z. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites. J. Catal. 142, 37–44 (1993).

    CAS  Google Scholar 

  239. 239.

    Di Cosimo, J., Apesteguía, C., Ginés, M. & Iglesia, E. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J. Catal. 190, 261–275 (2000).

    Google Scholar 

  240. 240.

    Scalbert, J., Thibault-Starzyk, F., Jacquot, R., Morvan, D. & Meunier, F. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization? J. Catal. 311, 28–32 (2014).

    CAS  Google Scholar 

  241. 241.

    Meunier, F. C., Scalbert, J. & Thibault-Starzyk, F. Unraveling the mechanism of catalytic reactions through combined kinetic and thermodynamic analyses: application to the condensation of ethanol. CR Chim. 18, 345–350 (2015).

    Google Scholar 

  242. 242.

    Moteki, T. & Flaherty, D. W. Mechanistic insight to C–C bond formation and predictive models for cascade reactions among alcohols on Ca-and Sr-hydroxyapatites. ACS Catal. 6, 4170–4183 (2016).

    CAS  Google Scholar 

  243. 243.

    Ogo, S. et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J. Catal. 296, 24–30 (2012).

    CAS  Google Scholar 

  244. 244.

    Ho, C. R., Shylesh, S. & Bell, A. T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal. 6, 939–948 (2016).

    CAS  Google Scholar 

  245. 245.

    Tsuchida, T. et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 259, 183–189 (2008).

    CAS  Google Scholar 

  246. 246.

    Ogo, S., Onda, A. & Yanagisawa, K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl. Catal. A 402, 188–195 (2011).

    CAS  Google Scholar 

  247. 247.

    Hanspal, S., Young, Z. D., Shou, H. & Davis, R. J. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia. ACS Catal. 5, 1737–1746 (2015).

    CAS  Google Scholar 

  248. 248.

    Gines, M. J. & Iglesia, E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J. Catal. 176, 155–172 (1998).

    CAS  Google Scholar 

  249. 249.

    Pang, J. et al. Upgrading ethanol to n-butanol over highly dispersed Ni–MgAlO catalysts. J. Catal. 344, 184–193 (2016).

    CAS  Google Scholar 

  250. 250.

    Tu, Y.-J. & Chen, Y.-W. Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol. Ind. Eng. Chem. Res. 40, 5889–5893 (2001).

    CAS  Google Scholar 

  251. 251.

    Ni, M., Leung, D. Y. & Leung, M. K. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 32, 3238–3247 (2007).

    CAS  Google Scholar 

  252. 252.

    Takei, T., Iguchi, N. & Haruta, M. Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal. Surv. Asia 15, 80–88 (2011).

    CAS  Google Scholar 

  253. 253.

    Hagemeyer, H. J. in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2014).

  254. 254.

    Wang, C. et al. Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx. ACS Catal. 6, 210–218 (2016).

    CAS  Google Scholar 

  255. 255.

    Neurock, M., Tao, Z., Chemburkar, A., Hibbitts, D. D. & Iglesia, E. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu. Faraday Discuss. 197, 59–86 (2017).

    CAS  PubMed  Google Scholar 

  256. 256.

    Tsuchida, T., Sakuma, S., Takeguchi, T. & Ueda, W. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite. Ind. Eng. Chem. Res. 45, 8634–8642 (2006).

    CAS  Google Scholar 

  257. 257.

    Moteki, T., Rowley, A. T. & Flaherty, D. W. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol. ACS Catal. 6, 7278–7282 (2016).

    CAS  Google Scholar 

  258. 258.

    Ndou, A. S., Plint, N. & Coville, N. J. Dimerisation of ethanol to butanol over solid-base catalysts. Appl. Catal. A 251, 337–345 (2003).

    CAS  Google Scholar 

  259. 259.

    Ramasamy, K. K. et al. Role of calcination temperature on the hydrotalcite derived MgO–Al2O3 in converting ethanol to butanol. Top. Catal. 59, 46–54 (2016).

    CAS  Google Scholar 

  260. 260.

    Ferrin, P. et al. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted−Evans−Polanyi relations. J. Am. Chem. Soc. 131, (5809–5815 (2009).

    Google Scholar 

  261. 261.

    Wang, J.-H., Lee, C. & Lin, M. Mechanism of ethanol reforming: theoretical foundations. J. Phys. Chem. C 113, 6681–6688 (2009).

    CAS  Google Scholar 

  262. 262.

    Sun, Z. et al. Efficient catalytic conversion of ethanol to 1-butanol via the Guerbet reaction over copper-and nickel-doped porous. ACS Sustain. Chem. Eng. 5, 1738–1746 (2016).

    Google Scholar 

  263. 263.

    Marcu, I.-C., Tichit, D., Fajula, F. & Tanchoux, N. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal. Today 147, 231–238 (2009).

    CAS  Google Scholar 

  264. 264.

    Riittonen, T. et al. Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renew. Energy 74, 369–378 (2015).

    CAS  Google Scholar 

  265. 265.

    Zhang, C., Borlik, M. & Weiner, H. Coated hydrotalcite catalysts and processes for producing butanol. WO Patent 2014100131A1 (2012).

  266. 266.

    Zhang, C., Balliet, K. & Johnston, V. J. Catalysts and processes for producing butanol. US Patent 8962897B2 (2015).

  267. 267.

    Tan, E. C. et al. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading. Biofuel. Bioprod. Biorefin. 11, 41–66 (2017).

    CAS  Google Scholar 

  268. 268.

    Hanspal, S., Young, Z. D., Prillaman, J. T. & Davis, R. J. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts. J. Catal. 352, 182–190 (2017).

    CAS  Google Scholar 

  269. 269.

    Rao, K. K., Gravelle, M., Valente, J. S. & Figueras, F. Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions. J. Catal. 173, 115–121 (1998).

    CAS  Google Scholar 

  270. 270.

    Sels, B. F., De Vos, D. E. & Jacobs, P. A. Hydrotalcite-like anionic clays in catalytic organic reactions. Catal. Rev. 43, 443–488 (2001).

    CAS  Google Scholar 

  271. 271.

    Gangadharan, A., Shen, M., Sooknoi, T., Resasco, D. E. & Mallinson, R. G. Condensation reactions of propanal over CexZr1−xO2 mixed oxide catalysts. Appl. Catal. A 385, 80–91 (2010).

    CAS  Google Scholar 

  272. 272.

    Shen, W., Tompsett, G. A., Xing, R., Conner, W. C. Jr & Huber, G. W. Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides. J. Catal. 286, 248–259 (2012).

    CAS  Google Scholar 

  273. 273.

    Corma, A. & Iborra, S. Optimization of alkaline earth metal oxide and hydroxide catalysts for base-catalyzed reactions. Adv. Catal. 49, 239–302 (2006).

    CAS  Google Scholar 

  274. 274.

    Jordison, T. L., Lira, C. T. & Miller, D. J. Condensed-phase ethanol conversion to higher alcohols. Ind. Eng. Chem. Res. 54, 10991–11000 (2015).

    CAS  Google Scholar 

  275. 275.

    Tichit, D., Lutic, D., Coq, B., Durand, R. & Teissier, R. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J. Catal. 219, 167–175 (2003).

    CAS  Google Scholar 

  276. 276.

    Hamilton, C. A., Jackson, S. D. & Kelly, G. J. Solid base catalysts and combined solid base hydrogenation catalysts for the aldol condensation of branched and linear aldehydes. Appl. Catal. A 263, 63–70 (2004).

    CAS  Google Scholar 

  277. 277.

    Norman, D. W., Billodeaux, D. R. & Page, M. D. Dual catalyst system for the self-condensation of alcohols. US Patent 8809594B2 (2014).

  278. 278.

    Liu, P. & Hensen, E. J. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 135, 14032–14035 (2013).

    CAS  PubMed  Google Scholar 

  279. 279.

    Mielby, J. et al. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. 126, 12721–12724 (2014).

    Google Scholar 

  280. 280.

    Rekoske, J. E. & Barteau, M. A. Kinetics, selectivity, and deactivation in the aldol condensation of acetaldehyde on anatase titanium dioxide. Ind. Eng. Chem. Res. 50, 41–51 (2010).

    Google Scholar 

  281. 281.

    Young, Z. D., Hanspal, S. & Davis, R. J. Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal. 6, 3193–3202 (2016).

    CAS  Google Scholar 

  282. 282.

    Vannice, M. A. & Sen, B. Metal–support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J. Catal. 115, 65–78 (1989).

    CAS  Google Scholar 

  283. 283.

    Claus, P. Selective hydrogenation of α, β-unsaturated aldehydes and other C = O and C = C bonds containing compounds. Top. Catal. 5, 51–62 (1998).

    CAS  Google Scholar 

  284. 284.

    Moore, C. M. et al. Acetaldehyde as an ethanol derived bio-building block: an alternative to Guerbet chemistry. Green Chem. 19, 169–174 (2017). This is the first proposal of separating Guerbet chemistries to convert EtOH into heavy aldehydes.

    CAS  Google Scholar 

  285. 285.

    Liang, N., Zhang, X., An, H., Zhao, X. & Wang, Y. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation–hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst. Green Chem. 17, 2959–2972 (2015).

    CAS  Google Scholar 

  286. 286.

    Nakajima, T., Nameta, H., Mishima, S., Matsuzaki, I. & Tanabe, K. A highly active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water vapour. J. Mater. Chem. 4, 853–858 (1994).

    CAS  Google Scholar 

  287. 287.

    Bussi, J., Parodi, S., Irigaray, B. & Kieffer, R. Catalytic transformation of ethanol into acetone using copper–pyrochlore catalysts. Appl. Catal. A 172, 117–129 (1998).

    CAS  Google Scholar 

  288. 288.

    Nishiguchi, T. et al. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A 279, 273–277 (2005).

    CAS  Google Scholar 

  289. 289.

    Murthy, R. S., Patnaik, P., Sidheswaran, P. & Jayamani, M. Conversion of ethanol to acetone over promoted iron oxide catalysis. J. Catal. 109, 298–302 (1988).

    CAS  Google Scholar 

  290. 290.

    Nakajima, T., Tanabe, K., Yamaguchi, T., Matsuzaki, I. & Mishima, S. Conversion of ethanol to acetone over zinc oxide–calcium oxide catalyst: optimization of catalyst preparation and reaction conditions and deduction of reaction mechanism. Appl. Catal. 52, 237–248 (1989).

    CAS  Google Scholar 

  291. 291.

    Rahman, M. M., Davidson, S. D., Sun, J. & Wang, Y. Effect of water on ethanol conversion over ZnO. Top. Catal. 59, 37–45 (2016).

    Google Scholar 

  292. 292.

    Rodrigues, C. P., Zonetti, P. C., Silva, C. G., Gaspar, A. B. & Appel, L. G. Chemicals from ethanol—The acetone one-pot synthesis. Appl. Catal. A 458, 111–118 (2013).

    CAS  Google Scholar 

  293. 293.

    Orozco, L. M., Renz, M. & Corma, A. Carbon–carbon bond formation and hydrogen production in the ketonization of aldehydes. ChemSusChem 9, 2430–2442 (2016).

    CAS  PubMed  Google Scholar 

  294. 294.

    Sun, J. et al. Key roles of Lewis acid–base pairs on ZnxZryOz in direct ethanol/acetone to isobutene conversion. J. Am. Chem. Soc. 138, 507–517 (2015).

    PubMed  Google Scholar 

  295. 295.

    Iwamoto, M., Mizuno, S. & Tanaka, M. Direct and selective production of propene from bio-ethanol on Sc-loaded In2O3 catalysts. Chem. Eur. J. 19, 7214–7220 (2013).

    CAS  PubMed  Google Scholar 

  296. 296.

    Sun, J. et al. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid–base sites. J. Am. Chem. Soc. 133, 11096–11099 (2011).

    CAS  PubMed  Google Scholar 

  297. 297.

    Liu, C., Sun, J., Smith, C. & Wang, Y. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Appl. Catal. A 467, 91–97 (2013).

    CAS  Google Scholar 

  298. 298.

    Saus, A. & Schmidl, E. Benzyl sulfonic acid siloxane as a catalyst: Oligomerization of isobutene. J. Catal. 94, 187–194 (1985).

    CAS  Google Scholar 

  299. 299.

    Hauge, K., Bergene, E., Chen, D., Fredriksen, G. R. & Holmen, A. Oligomerization of isobutene over solid acid catalysts. Catal. Today 100, 463–466 (2005).

    CAS  Google Scholar 

  300. 300.

    Rehfinger, A. & Hoffmann, U. Formation of di-isobutene, main by-product of methyl tertiary butyl ethyl ether synthesis catalyzed by ion exchange resin. Chem. Eng. Technol. 13, 150–156 (1990).

    CAS  Google Scholar 

  301. 301.

    Izquierdo, J., Vila, M., Tejero, J., Cunill, F. & Iborra, M. Kinetic study of isobutene dimerization catalyzed by a macroporous sulphonic acid resin. Appl. Catal. A 106, 155–165 (1993).

    CAS  Google Scholar 

  302. 302.

    Alcántara, R. et al. Trimerization of isobutene over Amberlyst-15 catalyst. React. Funct. Polym. 45, 19–27 (2000).

    Google Scholar 

  303. 303.

    Yoon, J. W., Chang, J.-S., Lee, H.-D., Kim, T.-J. & Jhung, S. H. Trimerization of isobutene over a zeolite beta catalyst. J. Catal. 245, 253–256 (2007).

    CAS  Google Scholar 

  304. 304.

    Peters, M. W. & Taylor, J. D. Renewable jet fuel blendstock from isobutanol. US Patent 8975461B2 (2015).

  305. 305.

    Bomgardner, M. M. Gevo isobutyl alcohol power army copter. Chem. Eng. News 92, 11 (2014).

    Google Scholar 

  306. 306.

    Tsuchida, T., Yoshioka, T., Sakuma, S., Takeguchi, T. & Ueda, W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind. Eng. Chem. Res. 47, 1443–1452 (2008).

    CAS  Google Scholar 

  307. 307.

    Lovón-Quintana, J. J., Rodriguez-Guerrero, J. K. & Valença, P. G. Carbonate hydroxyapatite as a catalyst for ethanol conversion to hydrocarbon fuels. Appl. Catal. A 542, 136–145 (2017).

    Google Scholar 

  308. 308.

    US Environmental Protection Agency. Code of Federal Regulations, pt. 1065, subpart H. Engine fluids, test fuels, analytical gases and other calibration standards. Govinfo.gov https://www.govinfo.gov/content/pkg/CFR-2017-title40-vol37/xml/CFR-2017-title40-vol37-part1065.xml (2017).

  309. 309.

    Defence Standard 91–091. Turbine fuel, aviation kerosine type, Jet A-1 (UK Defence Standardization, 2016).

  310. 310.

    US National Library of Medicine. Hazardous substrances data bank. NIH.gov https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm (2019).

  311. 311.

    Lapuerta, M., Garcia-Contreras, R., Campos-Fernández, J. & Dorado, M. P. Stability, lubricity, viscosity, and cold-flow properties of alcohol−diesel blends. Energy Fuels 24, 4497–4502 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ExxonMobil.

Author information

Affiliations

Authors

Contributions

N.M.E. contributed the majority of the data research, writing and editing of the manuscript. M.D.K. additionally contributed to these areas, as well as to the discussion of content. Substantial discussion of content, reviewing and editing were contributed by J.S.B., J.A.D. and G.W.H.

Corresponding author

Correspondence to George W. Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eagan, N.M., Kumbhalkar, M.D., Buchanan, J.S. et al. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat Rev Chem 3, 223–249 (2019). https://doi.org/10.1038/s41570-019-0084-4

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing