Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery

Abstract

Solid sulfide electrolytes are key materials in all-solid-state lithium batteries because of their high lithium-ion conductivity and deformability, which enable the lithium-ion path to be connected between the material’s grain boundaries under pressure near room temperature. However, sulfur species are moisture-sensitive and exhibit high vapour pressures; therefore, syntheses of sulfide electrolytes need to be carefully designed. Liquid-phase reactions can be performed at low temperatures in controlled atmospheres, opening up the prospect of scalable processes for the preparation of sulfide electrolytes. Here, we review liquid-phase syntheses for the preparation of sulfide-based solid electrolytes and composites of electrolytes and electrodes, and we compare the charge–discharge performances of the all-solid-state lithium batteries using these components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of liquid-phase syntheses of sulfide electrolytes.
Fig. 2: Suspension synthesis of sulfide electrolyte.
Fig. 3: Dissolution–precipitation of sulfide electrolyte.
Fig. 4: Liquid-phase processes for composite electrodes of all-solid-state lithium batteries.

Similar content being viewed by others

References

  1. Tatsumisago, M., Nagao, M. & Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 1, 17–25 (2013).

    Article  Google Scholar 

  2. Hayashi, A., Sakuda, A. & Tatsumisago, M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Front. Energy Res. 4, 25 (2016).

    Article  Google Scholar 

  3. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  4. Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).

    Article  Google Scholar 

  5. Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Article  Google Scholar 

  6. Meesala, Y., Jena, A., Chang, H. & Liu, R.-S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017).

    Article  CAS  Google Scholar 

  7. Zheng, F., Kotobuki, M., Song, S., Lai, M. O. & Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018).

    Article  CAS  Google Scholar 

  8. Lim, H.-D. et al. Solid electrolyte layers by solution deposition. Adv. Mater. Interfaces 5, 1701328 (2018).

    Article  Google Scholar 

  9. Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 394, 74–85 (2018).

    Article  CAS  Google Scholar 

  10. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    Article  CAS  Google Scholar 

  11. Hayashi, A., Hama, S., Minami, T. & Tatsumisago, M. Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochem. Commun. 5, 111–114 (2003).

    Article  CAS  Google Scholar 

  12. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    Article  CAS  Google Scholar 

  13. Hong, H.Y-P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors Mater. Res. Bull. 13 117–124 (1978).

    Article  CAS  Google Scholar 

  14. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    Article  CAS  Google Scholar 

  15. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  16. Deiseroth, H.-J. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. 120, 767–770 (2008).

    Article  Google Scholar 

  17. Boulineau, S., Courty, M., Tarascon, J.-M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012).

    Article  CAS  Google Scholar 

  18. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  CAS  Google Scholar 

  19. Aono, H., Sugimoto, E., Sadaaka, Y., Imanaka, N. & Adachi, G. Y. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2−X(PO4)3, M=Al, Sc, Y, and La) systems. J. Electrochem. Soc. 136, 590–591 (1989).

    Article  CAS  Google Scholar 

  20. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  21. Tadanaga, K. et al. Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem. Commun. 33, 51–54 (2013).

    Article  CAS  Google Scholar 

  22. Nagao, M., Kitaura, H., Hayashi, A. & Tatsumisago, M. High rate performance, wide temperature operation and long cyclability of all-solid-state rechargeable lithium batteries using Mo-S Chevrel-phase compound. J. Electrochem. Soc. 160, A819–A823 (2013).

    Article  CAS  Google Scholar 

  23. Sakuda, A., Hayashi, A., Takigawa, Y., Higashi, K. & Tatsumisago, M. Evaluation of elastic modulus of Li2S-P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J. Ceram. Soc. Jpn 121, 946–949 (2013).

    Article  CAS  Google Scholar 

  24. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  25. Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

    Article  Google Scholar 

  26. Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).

    Article  CAS  Google Scholar 

  27. Hayashi, A., Muramatsu, H., Ohtomo, T., Hama, S. & Tatsumisago, M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 1, 6320 (2013).

    Article  CAS  Google Scholar 

  28. Park, K. H. et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-Ion batteries. Adv. Mater. 28, 1874–1883 (2016).

    Article  CAS  Google Scholar 

  29. Choi, Y. E. et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem 10, 2605–2611 (2017).

    Article  CAS  Google Scholar 

  30. Muramatsu, H., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 182, 116–119 (2011).

    Article  CAS  Google Scholar 

  31. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  32. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15, 459–463 (2003).

    Article  CAS  Google Scholar 

  33. Henkel, G. & Krebs, B. Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features–structural aspects and biological implications. Chem. Rev. 104, 801–824 (2004).

    Article  CAS  Google Scholar 

  34. Prouzet, E., Ouvrard, G., Brec, R. & Seguineau, P. Room temperature synthesis of pure amorphous nickel hexathiodiphosphate Ni2P2S6. Solid State Ion. 31, 79–90 (1988).

    Article  CAS  Google Scholar 

  35. Huang, Z.-L., Zhao, J.-T., Mi, J.-X., Mao, S.-Y. & Zheng, L.-S. Room temperature solid state synthesis and characterization of a new chromium thiophosphate Cr4(P2S6)3. J. Solid State Chem. 144, 388–391 (1999).

    Article  CAS  Google Scholar 

  36. Sakuda, A., Kitaura, H., Hayashi, A., Tadanaga, K. & Tatsumisago, M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses. Electrochem. Solid State Lett. 11, A1–A3 (2008).

    Article  CAS  Google Scholar 

  37. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article  CAS  Google Scholar 

  38. Sakuda, A., Hayashi, A., Hama, S. & Tatsumisago, M. Preparation of highly lithium-ion conductive 80Li2S· 20P2S5 thin-film electrolytes using pulsed laser deposition. J. Am. Ceram. Soc. 93, 765–768 (2010).

    Article  CAS  Google Scholar 

  39. Sakuda, A., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011).

    Article  CAS  Google Scholar 

  40. Ito, Y., Otoyama, M., Hayashi, A., Ohtomo, T. & Tatsumisago, M. Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. J. Power Sources 360, 328–335 (2017).

    Article  CAS  Google Scholar 

  41. Phuc, N. H. H., Yamamoto, T., Muto, H. & Matsuda, A. Fast synthesis of Li2S–P2S5–LiI solid electrolyte precursors. Inorg. Chem. Front. 4, 1660–1664 (2017).

    Article  CAS  Google Scholar 

  42. Lim, H.-D. et al. Designing solution chemistries for low-temperature synthesis of sulfide-based solid electrolytes. J. Mater. Chem. A 6, 7370–7374 (2018).

    Article  CAS  Google Scholar 

  43. Wang, Y. et al. Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis. Chem. Mater. 30, 990–997 (2018).

    Article  CAS  Google Scholar 

  44. Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013). This paper describes the suspension synthesis of β-Li 3 PS 4 and proposes the formation of a Li 3 PS 4 ·3THF complex as part of the reaction mechanism.

    Article  CAS  Google Scholar 

  45. Homma, K. et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 182, 53–58 (2011).

    Article  CAS  Google Scholar 

  46. Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384 (2015).

    Article  CAS  Google Scholar 

  47. Ito, S., Nakakita, M., Aihara, Y., Uehara, T. & Machida, N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J. Power Sources 271, 342–345 (2014). This paper describes the suspension synthesis of Li 7 P 3 S 11.

    Article  CAS  Google Scholar 

  48. Xu, R. C. et al. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochim. Acta 219, 235–240 (2016).

    Article  CAS  Google Scholar 

  49. Yao, X. et al. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016).

    Article  CAS  Google Scholar 

  50. Phuc, N. H. H., Totani, M., Morikawa, K., Muto, H. & Matsuda, A. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ion. 288, 240–243 (2016).

    Article  CAS  Google Scholar 

  51. Wang, H., Hood, Z. D., Xia, Y. & Liang, C. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J. Mater. Chem. A 4, 8091–8096 (2016).

    Article  CAS  Google Scholar 

  52. Sedlmaier, S. J. et al. Li4PS4I: a Li+ superionic conductor synthesized by a solvent-based soft chemistry approach. Chem. Mater. 29, 1830–1835 (2017).

    Article  CAS  Google Scholar 

  53. Phuc, N. H. H., Morikawa, K., Totani, M., Muto, H. & Matsuda, A. Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking. Solid State Ion. 285, 2–5 (2016).

    Article  CAS  Google Scholar 

  54. Phuc, N. H. H., Hirahara, E., Morikawa, K., Muto, H. & Matsuda, A. One-pot liquid phase synthesis of (100−x)Li3PS4xLiI solid electrolytes. J. Power Sources 365, 7–11 (2017).

    Article  Google Scholar 

  55. Calpa, M., Rosero-Navarro, N. C., Miura, A. & Tadanaga, K. Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Adv. 7, 46499–46504 (2017).

    Article  CAS  Google Scholar 

  56. Calpa, M., Rosero-Navarro, N. C., Miura, A. & Tadanaga, K. Preparation of sulfide solid electrolytes in the Li2S–P2S5 system by a liquid phase process. Inorg. Chem. Front. 5, 501–508 (2018).

    Article  CAS  Google Scholar 

  57. Wang, Y., Liu, Z., Zhu, X., Tang, Y. & Huang, F. Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J. Power Sources 224, 225–229 (2013). This is the first report of a liquid-phase reaction as well as dissolution–precipitation for sulfide electrolytes.

    Article  CAS  Google Scholar 

  58. Choi, S., Lee, S., Park, J., Nichols, W. T. & Shin, D. Facile synthesis of Li2S–P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST). Appl. Surf. Sci. 444, 10–14 (2018).

    Article  CAS  Google Scholar 

  59. Azuma, S. et al. Colloidal processing of Li2S–P2S5 films fabricated via electrophoretic deposition methods and their characterization as a solid electrolyte for all solid state lithium ion batteries. J. Ceram. Soc. Jpn 125, 287–292 (2017).

    Article  CAS  Google Scholar 

  60. Teragawa, S., Aso, K., Tadanaga, K., Hayashi, A. & Tatsumisago, M. Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J. Power Sources 248, 939–942 (2014).

    Article  CAS  Google Scholar 

  61. Teragawa, S., Aso, K., Tadanaga, K., Hayashi, A. & Tatsumisago, M. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J. Mater. Chem. A 2, 5095–5099 (2014).

    Article  CAS  Google Scholar 

  62. Yubuchi, S. et al. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources 293, 941–945 (2015). This paper describes the dissolution–precipitation of Li 6 PS 5 Cl through a Li 6 PS 5 Cl–ethanol solution and its application to all-solid-state lithium batteries.

    Article  CAS  Google Scholar 

  63. Rosero-Navarro, N. C., Kinoshita, T., Miura, A., Higuchi, M. & Tadanaga, K. Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619–1624 (2017).

    Article  CAS  Google Scholar 

  64. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A. & Tatsumisago, M. Lithium-ion-conducting argyrodite-type Li6PS5X (X=Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl. Energy Mater. 1, 3622–3629 (2018).

    Article  CAS  Google Scholar 

  65. Rosero-Navarro, N. C., Miura, A. & Tadanaga, K. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries. J. Power Sources 396, 33–40 (2018). The morphology of precipitated Li 6 PS 5 Cl particles is controlled by a dispersant in a homogeneous solution.

    Article  CAS  Google Scholar 

  66. Chida, S. et al. Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 44, 742–746 (2018).

    Article  CAS  Google Scholar 

  67. Yubuchi, S. et al. An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J. Mater. Chem. A 7, 558–566 (2019).

    Article  CAS  Google Scholar 

  68. Phuc, N. H. H., Morikawa, K., Mitsuhiro, T., Muto, H. & Matsuda, A. Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 23, 2061–2067 (2017). This paper describes the suspension process for the composite positive electrode of an all-solid-state lithium battery.

    Article  Google Scholar 

  69. Oh, D. Y. et al. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 5, 20771–20779 (2017).

    Article  CAS  Google Scholar 

  70. Zhang, Q. et al. Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. J. Mater. Chem. A 5, 23919–23925 (2017).

    Article  CAS  Google Scholar 

  71. Xu, R. C. et al. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J. Power Sources 374, 107–112 (2018).

    Article  CAS  Google Scholar 

  72. Rosero-Navarro, C., Miura, A. & Tadanaga, K. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. J. Sol-Gel Sci. Technol. 89, 303–309 (2019).

    Article  Google Scholar 

  73. Kim, D. H. et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017). This paper describes sheet-type all-solid-state batteries fabricated by a dissolution–precipitation process.

    Article  CAS  Google Scholar 

  74. Yubuchi, S., Hayashi, A. & Tatsumisago, M. Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide. Chem. Lett. 44, 884–886 (2015).

    Article  CAS  Google Scholar 

  75. Banerjee, A. et al. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. 55, 9634–9638 (2016).

    Article  CAS  Google Scholar 

  76. Uematsu, M. et al. Preparation of Na3PS4 electrolyte by liquid-phase process using ether. Solid State Ion. 320, 33–37 (2018).

    Article  CAS  Google Scholar 

  77. Kim, T. W., Park, K. H., Choi, Y. E., Lee, J. Y. & Jung, Y. S. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018).

    Article  CAS  Google Scholar 

  78. Xu, X. et al. Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim. Acta 276, 325–332 (2018).

    Article  CAS  Google Scholar 

  79. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, (653–658 (2008).

    Google Scholar 

  80. Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Review includes research achievements partially supported by the Japan Science and Technology Agency (JST), the Advanced Low Carbon Technology Research and Development Program (ALCA) and the Specially Promoted Research for Innovative Next Generation Batteries (SPRING) project.

Author information

Authors and Affiliations

Authors

Contributions

A.Mi., N.C.R.N., A.S. and K.T. wrote the draft. N.H.H.P., A.Ma., N.M., A.H. and M.T. discussed the Review. All the authors agreed upon the final version of the manuscript.

Corresponding authors

Correspondence to Kiyoharu Tadanaga or Masahiro Tatsumisago.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, A., Rosero-Navarro, N.C., Sakuda, A. et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat Rev Chem 3, 189–198 (2019). https://doi.org/10.1038/s41570-019-0078-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0078-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing