Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Porous metal–organic frameworks as emerging sorbents for clean air

Abstract

Sulfur dioxide and nitrogen oxides generated by anthropogenic activities are air pollutants that cause serious environmental problems and pose substantial health threats. Although established methods for emission desulfurization and denitrogenation already exist, more efficient and flexible technologies are still required. In this Review, we highlight state-of-the-art examples in which metal–organic frameworks (MOFs), an emerging class of porous sorbents, have been applied to the adsorptive removal of SO2 and NO2. MOFs can simultaneously exhibit superior adsorption capacities and exceptional selectivities for SO2 and NO2 in the presence of other flue and exhaust gases while maintaining their structural integrity. The highly crystalline nature and rich chemical functionality of MOFs have enabled the elucidation of host–guest interactions at a molecular level to afford insights and new knowledge that will inspire and inform the design of new generations of adsorbents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SO2 removal.
Fig. 2: Examples of metal–organic frameworks tested for SO2 removal.
Fig. 3: NOx abatement.

Similar content being viewed by others

References

  1. European Environment Agency. Sulphur dioxide (SO2) emissions. Indicator codes: APE 001. EEA https://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1 (2015).

  2. European Environment Agency. Nitrogen dioxides (NOx) emissions. Indicator codes: APE 002. EEA https://www.eea.europa.eu/data-and-maps/indicators/eea-32-nitrogen-oxides-nox-emissions-1/assessment.2010-08-19.0140149032-3 (2018).

  3. European Environment Agency. EEA: Air Quality in Europe-2017 report. Report no. 13/2017 (EEA, 2017).

  4. Edwards, P. M. et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 514, 351–354 (2014).

    Article  CAS  Google Scholar 

  5. United States Environmental Protection Agency. Acid Rain and Related Programs: 2006 Progress Report (EPA, 2006).

  6. United States Environmental Protection Agency. EPA base case v.4.10: chapter 5: emission control technologies. EPA https://www.epa.gov/sites/production/files/2015-07/documents/chapter_5_emission_control_technologies.pdf (2010).

  7. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. Hydrogen storage in metal organic frameworks. Chem. Rev. 112, 782–835 (2012).

    Article  CAS  Google Scholar 

  8. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  9. European Environment Agency. The impact of international shipping on European air quality and climate forcing: Technical Report No. 4/2013 (EEA, 2013).

  10. Aksoyoglu, S., Baltensperger, U. & Prévôt, A. S. H. Contribution of ship emissions to the concentration of air pollutants in Europe. Atoms. Chem. Phys. 16, 1895–1906 (2016).

    Article  CAS  Google Scholar 

  11. Srivastava, R. K., Jozewicz, W. & Singer, C. SO2 scrubbing technologies: a review. Environ. Prog. 20, 219–227 (2001).

    Article  CAS  Google Scholar 

  12. Pandey, R. A. et al. Flue gas desulfurization: physicochemial and biotechnological approaches. Crit. Rev. Environ. Sci. Technol. 35, 571–622 (2005).

    Article  CAS  Google Scholar 

  13. Jordan, R. J. The feasibility of wet scrubbing for treating waste-to-energy flue gas. J. Air Waste Manag. Assoc. 37, 422–430 (1987).

    CAS  Google Scholar 

  14. Tomas-Alonso, F. A new perspective about recovering SO2 off-gas in coal power plants: energy saving. Part I. Regenerable wet methods. Energy Sources 27, 1035–1041 (2005).

    Article  CAS  Google Scholar 

  15. Sporer, J. The Linde Solinox process: gypsum-free flue-gas desulphurization. Gas Sep. Purif. 6, 133–140 (1992).

    Article  CAS  Google Scholar 

  16. United States Environmental Protection Agency. Sulfur oxides control technology series: flue gas desulfurization magnesium oxide process, summary report No. 4/1981 (EPA, 1981).

  17. Yang, J. et al. Novel process of removal of sulfur dioxide by aqueous ammonia-fulvic acid solution with ammonia escape inhibition. Energy Fuels 30, 3205–3218 (2016).

    Article  CAS  Google Scholar 

  18. Tomas-Alonso, F. A new perspective about recovering SO2 off-gas in coal power plants: energy saving. Part II. Regenerable dry methods. Energy Sources 27, 1043–1049 (2005).

    Article  CAS  Google Scholar 

  19. Keener, T. C., Wang, J. & Khang, S. in Dry Scrubbing Technologies for Flue Gas Desulfurization (ed. Toole-O’Neil, B.) 607–690 (Springer, Boston, MA, 1998).

  20. Mathieu, Y. et al. Adsorption of SOx by oxide materials: a review. Fuel Process Technol. 114, 81–100 (2013).

    Article  CAS  Google Scholar 

  21. Bandosz, T. J. in Activated Carbon Surfaces in Environmental Remediation (ed. Bandosz, T. J.) 231–292 (Elsevier, 2006).

  22. Ray, G. C. & Box, E. O. Adsorption of gases on activated charcoal. Ind. Eng. Chem. 42, 1315–1318 (1950).

    Article  CAS  Google Scholar 

  23. Raymundo-Pinero, E., Cazorla-Amoros, D., de Lecea, C. S. M. & Linares-Solano, A. Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38, 335–344 (2000).

    Article  CAS  Google Scholar 

  24. Yang, S. et al. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J. Am. Chem. Soc. 135, 4954–4957 (2013).

    Article  CAS  Google Scholar 

  25. Cui, X. et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 29, 1606929 (2017).

    Article  Google Scholar 

  26. Carter, J. H. et al. Exceptional adsorption and binding of sulfer dioxide in a robust zirconium-based metal-organic framework. J. Am. Chem. Soc. 140, 15564–15567 (2018).

    Article  CAS  Google Scholar 

  27. Mochida, I. & Kisamori, S. Roles of surface oxygen groups on poly(acrylonitrile)-based acitve carbon fibers in SO2 adsorption. Langmuir 10, 1241–1245 (1994).

    Article  Google Scholar 

  28. Lizzio, A. A. & DeBarr, J. A. Mechanism of SO2 removal by carbon. Energy Fuels 11, 284–291 (1997).

    Article  CAS  Google Scholar 

  29. Britt, D., Tranchemontagne, D. & Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105, 11623–11627 (2008).

    Article  CAS  Google Scholar 

  30. Glover, T. G., Peterson, G. W., Schindler, B. J., Britt, D. & Yaghi, O. M. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 66, 163–170 (2011).

    Article  Google Scholar 

  31. DeCoste, J. B., Demasky, T. J., Katz, M. J., Farha, O. K. & Hupp, J. T. A. UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New J. Chem. 39, 2396–2399 (2015).

    Article  CAS  Google Scholar 

  32. Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  CAS  Google Scholar 

  33. Fernandez, C. A. et al. Gas-induced expansion and contraction of a fluorinated metal-organic framework. Cryst. Growth Des. 10, 1037–1039 (2010).

    Article  CAS  Google Scholar 

  34. Thallapally, P. K., Motkuri, R. K., Fernandez, C. A., McGrail, B. P. & Behrooz, G. S. Prussian blue analogues for CO2 and SO2 capture and separation applications. Inorg. Chem. 49, 4909–4915 (2010).

    Article  CAS  Google Scholar 

  35. Windisch Jr. C. F., Thallapally, P. K. & McGrail, B. P. Competitive adsorption study of CO2 and SO2 on CoII 3[CoIII(CN)6]2 using DRIFTS. Spectrochim. Acta A. 77, 287–291 (2010).

    Article  Google Scholar 

  36. Easun, T. et al. Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017).

    Article  CAS  Google Scholar 

  37. Tan, K. et al. Mechanism of preferential adsorption of SO2 into two microporous paddle wheel frameworks M(bdc)(ted)0.5. Chem. Mater. 25, 4653–4662 (2013).

    Article  CAS  Google Scholar 

  38. Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012).

    Article  CAS  Google Scholar 

  39. Savage, M. et al. Selective Adsorption of sulfur dioxide in a robust metal-organic framework material. Adv. Mater. 28, 8705–8711 (2016).

    Article  CAS  Google Scholar 

  40. Chernikova, V. et al. Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J. Mater. Chem. A 6, 5550–5554 (2018).

    Article  CAS  Google Scholar 

  41. United States Environmental Protection Agency. Technical Bulletin: Nitrogen Oxides (NO x ), Why and How They are Controlled (EPA, 1999).

  42. Amann, M., Klimont, Z. & Wagner, F. in Annual Review of Environment and Resources (eds Gadgil, A. & Liverman, D. M.) 31–55 (Annual Reviews, Palo Alto, 2013).

  43. Liu, Z. M. & Woo, S. I. Recent advances in catalytic deNOx science and technology. Catal. Rev. Sci. Eng. 48, 43–89 (2006).

    Article  CAS  Google Scholar 

  44. Ciardelli, C. et al. Reactivity of NO/NO2-NH3 SCR system for diesel exhaust aftertreatment: identification of the reaction network as a function of temperature and NO2 feed content. Appl. Catal. B 70, 80–90 (2007).

    Article  CAS  Google Scholar 

  45. Busca, G., Lietti, L., Ramis, G. & Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl. Catal. B 18, 1–36 (1998).

    Article  CAS  Google Scholar 

  46. Lesage, T., Verrier, C., Bazin, P., Saussey, J. & Daturi, M. Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al2O3 catalyst by operando FT-IR spectroscopy. Phys. Chem. Chem. Phys. 5, 4435–4440 (2003).

    Article  CAS  Google Scholar 

  47. Brandenberger, S., Krocher, O., Tissler, A. & Althoff, R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal. Rev. Sci. Eng. 50, 492–531 (2008).

    Article  CAS  Google Scholar 

  48. Neathery, J. K., Rubel, A. M. & Stencel, J. M. Uptake of NOx by activated carbons: bench-scale and pilot-plant testing. Carbon 35, 1321–1327 (1997).

    Article  CAS  Google Scholar 

  49. Shirahama, N. et al. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers. Carbon 40, 2605–2611 (2002).

    Article  CAS  Google Scholar 

  50. Hass, H. B., Dorsky, J. & Hodge, E. B. Nitration of propane by nitrogen dioxide. Ind. Eng. Chem. 33, 1138–1143 (1941).

    Article  CAS  Google Scholar 

  51. Kharasch, M. S. et al. Inhibition of polymerization-laborotory and plant control of popcorn polymer growth. Ind. Eng. Chem. Res. 39, 830–837 (1947).

    Article  CAS  Google Scholar 

  52. Shomali, M., Opie, D., Avasthi, T. & Trilling, A. Nitogen dioxide sterilization in low-resource environments: a feasibility study. PLOS ONE 10, e0130043 (2015).

    Article  Google Scholar 

  53. Levasseur, B., Petit, C. & Bandosz, T. J. Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. ACS Appl. Mater. Interfaces 2, 3606–3613 (2010).

    Article  CAS  Google Scholar 

  54. Petit, C., Levasseur, B., Mendoza, B. & Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Micropor. Mesopor. Mater. 154, 107–112 (2012).

    Article  CAS  Google Scholar 

  55. Ebrahim, A. M., Levasseur, B. & Bandosz, T. J. Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. Langmuir 29, 168–174 (2013).

    Article  CAS  Google Scholar 

  56. Ebrahim, A. M. & Bandosz, T. J. Effect of amine modification on the properties of zirconium- carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. Micropor. Mesopor. Mater. 188, 149–162 (2014).

    Article  CAS  Google Scholar 

  57. Peterson, G. W., Mahle, J. J., DeCoste, J. B., Gordon, W. O. & Rossin, J. A. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew. Chem. Int. Ed. 55, 6235–6238 (2016).

    Article  CAS  Google Scholar 

  58. Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mat. 17, 691–696 (2018).

    Article  CAS  Google Scholar 

  59. Ebrahim, A. M. & Bandosz, T. J. Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. ACS Appl. Mater. Interfaces 5, 10565–10573 (2013).

    Article  CAS  Google Scholar 

  60. Kvick, Å. et al. The structure of dinitrogen tetroxide N2O4: neutron diffraction study at 100, 60, and 20 K and ab initio theoretical calculations. J. Chem. Phys. 76, 3754–3761 (1982).

    Article  CAS  Google Scholar 

  61. Rosi, N. et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is provided by the UKRI (EPSRC — EP/I011870) and the European Research Council (ERC — AdG 742041 and ERC — PoC 665632).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and S.Y. researched data for the article. All authors contributed equally to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat Rev Chem 3, 108–118 (2019). https://doi.org/10.1038/s41570-019-0073-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0073-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing