Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From a quantum-electrodynamical light–matter description to novel spectroscopies

An Author Correction to this article was published on 12 September 2018

Abstract

Insights from spectroscopic experiments led to the development of quantum mechanics as the common theoretical framework for describing the physical and chemical properties of atoms, molecules and materials. Later, a full quantum description of charged particles, electromagnetic radiation and special relativity was developed, leading to quantum electrodynamics (QED). This is, to our current understanding, the most complete theory describing photon–matter interactions in correlated many–body systems. In the low-energy regime, simplified models of QED have been developed to describe and analyse spectra over a wide spatiotemporal range as well as physical systems. In this Review, we highlight the interrelations and limitations of such theoretical models, thereby showing that they arise from low-energy simplifications of the full QED formalism, in which antiparticles and the internal structure of the nuclei are neglected. Taking molecular systems as an example, we discuss how the breakdown of some simplifications of low-energy QED challenges our conventional understanding of light–matter interactions. In addition to high-precision atomic measurements and simulations of particle physics problems in solid-state systems, new theoretical features that account for collective QED effects in complex interacting many-particle systems could become a material-based route to further advance our current understanding of light–matter interactions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic evolution of our understanding of quantized coupled light–matter systems.
Figure 2: Theoretical description of photon–matter interacting systems.
Figure 3: Schematic description of the different components of the light–matter QED Hamiltonian.
Figure 4: Numerical example for a QEDFT calculation: study of a 3D sodium dimer in an optical cavity.
Figure 5: Calculated spectra for a 1D model dimer.

References

  1. Zeilinger, A., Weihs, G., Jennewein, T. & Aspelmeyer, M. Happy centenary, photon. Nature 433, 230 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  CAS  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  Google Scholar 

  4. Domcke, W. & Yarkony, D. R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63, 325–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y., Plummer, E. W. & Kempa, K. Foundations of plasmonics. Adv. Phys. 60, 799–898 (2011).

    Article  CAS  Google Scholar 

  6. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  CAS  Google Scholar 

  7. Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional mott insulators. Science 334, 200–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3D dirac materials. Nat. Commun. 8, 13940 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by non-linear phononics. Rep. Progress Phys. 79, 064503 (2016).

    Article  CAS  Google Scholar 

  10. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

    Article  CAS  Google Scholar 

  11. Svanberg, S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications Vol. 6. (Springer Science & Business Media, Dordrecht, Netherlands, 2012).

    Google Scholar 

  12. Kuzmany, H. Solid-State Spectroscopy: An Introduction (Springer Science & Business Media, Dordrecht, Netherlands, 2009).

    Book  Google Scholar 

  13. Cowan, J. A. Inorganic Biochemistry: An Introduction (John Wiley & Sons, Hoboken, NJ, USA, 1997).

    Google Scholar 

  14. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article  CAS  Google Scholar 

  15. Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    Article  CAS  Google Scholar 

  16. Galego, J., Garcia-Vidal, F. J. & Feist, J. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X 5, 041022 (2015).

    Google Scholar 

  17. Flick, J., Ruggenthaler, M., Appel, H. & Rubio, A. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl Acad. Sci. USA 114, 3026–3034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS  Google Scholar 

  19. Coles, D. M. et al. Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nat. Commun. 5, 5561 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Upton, L. T. et al. Optically excited entangled states in organic molecules illuminate the dark. J. Phys. Chem. Lett. 4, 2046–2052 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).

    Article  Google Scholar 

  23. Grynberg, G., Aspect, A. & Fabre, C. Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  24. Venema, L. et al. The quasiparticle zoo. Nat. Phys. 12, 1085–1089 (2016).

    Article  CAS  Google Scholar 

  25. Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer Science & Business Media, Dordrecht, Netherlands, 2012).

    Google Scholar 

  26. Karshenboim, S. G. Precision Physics of Simple Atoms and Molecule Vol. 745 (Springer, Berlin, Heidelberg, 2007).

    Google Scholar 

  27. Sommer, A. et al. Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  CAS  Google Scholar 

  29. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  CAS  Google Scholar 

  30. De Giovannini, U., Hübener, H. & Rubio, A. Monitoring electron-photon dressing in WSe2 . Nano Lett. 16, 7993–7998 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Sie, E. J., Lui, C. H., Lee, Y.-H., Kong, J. & Gedik, N. Observation of intervalley biexcitonic optical stark effect in monolayer WS2 . Nano Lett. 16, 7421–7426 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Kasprzak, J., et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Andrews, D. L. Physicality of the photon. J. Phys. Chem. Lett. 4, 3878–3884 (2013).

    Article  CAS  Google Scholar 

  34. Craig, D. P. & Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Courier Corporation, 1984).

    Google Scholar 

  35. Woods, L. M. et al. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 88, 045003 (2016).

    Article  Google Scholar 

  36. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Andrews, D. L. & Bradshaw, D. S. Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach. Eur. J. Phys. 25, 845 (2004).

    Article  Google Scholar 

  38. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  39. Mahon, B. How Maxwell's equations came to light. Nat. Photon. 9, 2–4 (2015).

    Article  CAS  Google Scholar 

  40. Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).

    Article  CAS  Google Scholar 

  41. Greiner, W. & Reinhardt, J. Field Quantization (Springer Science & Business Media, Dordrecht, Netherlands, 2013).

    Google Scholar 

  42. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, Hoboken, NJ, USA, 1989).

    Google Scholar 

  43. Bethe, H. A. The electromagnetic shift of energy levels. Phys. Rev. 72, 339–341 (1947).

    Article  CAS  Google Scholar 

  44. [No authors listed.] Nobel prizes 1965. Phys. Today 18, 58–59 (1965).

  45. Pauli, W. & Fierz, M. Zur theorie der emission langwelliger lichtquanten [German]. Il Nuovo Cimento (1924–1942) 15, 167–188 (1938).

    Article  CAS  Google Scholar 

  46. Spohn, H. Dynamics of Charged Particles and their Radiation Field (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  47. Derezinski, J. & Jakšic, V. Spectral theory of Pauli–Fierz operators. J. Funct. Analysis 180, 243–327 (2001).

    Article  Google Scholar 

  48. Bach, V., Fröhlich, J. & Sigal, I. M. Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207, 249–290 (1999).

    Article  Google Scholar 

  49. Hidaka, T. & Hiroshima, F. Pauli–Fierz model with kato-class potentials and exponential decays. Rev. Math. Phys. 22, 1181–1208 (2010).

    Article  Google Scholar 

  50. Rokaj, V., Welakuh, D. M., Ruggenthaler, M. & Rubio, A. Light-matter interaction in the long-wavelength limit: no ground-state without dipole self-energy. J. Phys. B Atom. Mol. Opt. Phys. 51, 034005 (2017).

    Article  CAS  Google Scholar 

  51. Nelson, E. Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964).

    Article  CAS  Google Scholar 

  52. Greiner, W., Müller, B. & Rafelski, J. Quantum Electrodynamics of Strong Fields (Springer-Verlag, Berlin, Heiderlberg, 2013).

    Google Scholar 

  53. Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. & Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012).

    Article  CAS  Google Scholar 

  54. The ALEPH Collaboration et al. Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257–454 (2006).

    Google Scholar 

  55. Marklund, M. & Shukla, P. K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591 (2006).

    Article  CAS  Google Scholar 

  56. Gooth, J. et al. Experimental signatures of the mixed axial-gravitational anomaly in the weyl semimetal NbP. Nature 547, 324 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Reich, E. S., Higgs physics on the cheap. Nature 495, 422–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Alicea, J. New directions in the pursuit of majorana fermions in solid state systems. Rep. Progress Phys. 75, 076501 (2012).

    Article  Google Scholar 

  59. Rundong, L., Jing, W., Xiao-Liang, Q. & Shou-Cheng, Z. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article  CAS  Google Scholar 

  60. Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Progress Phys. 69, 1325 (2006).

    Article  Google Scholar 

  61. Saleh, B. E. A., Teich, M. C. & Saleh, B. E. Fundamentals of Photonics, Vol. 22 (Wiley New York, 1991).

    Book  Google Scholar 

  62. Maier, S. A. Plasmonics: Fundamentals and Applications, (Springer Science & Business Media, Dordrecht, Netherlands, 2007).

    Book  Google Scholar 

  63. Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, 2012).

    Google Scholar 

  64. Haroche, S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013).

    Article  CAS  Google Scholar 

  65. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Miller, R. et al. Trapped atoms in cavity qed: coupling quantized light and matter. J. Phys. B Atom. Mol. Opt. Phys. 38, S551 (2005).

    CAS  Google Scholar 

  67. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  68. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  CAS  Google Scholar 

  69. Mu, Y. & Savage, C. M. One-atom lasers. Phys. Rev. A 46, 5944–5954 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Pellizzari, T. & Ritsch, H. Preparation of stationary Fock states in a one-atom Raman laser. Phys. Rev. Lett. 72, 3973–3976 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    Google Scholar 

  73. Schröter, M. et al. Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys. Rep. 567, 1–78 (2015).

    Article  CAS  Google Scholar 

  74. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  Google Scholar 

  75. Kiffner, M., Evers, J. & Keitel, C. H. Breakdown of the few-level approximation in collective systems. Phys. Rev. A 76, 013807 (2007).

    Article  CAS  Google Scholar 

  76. George, J. et al. Multiple Rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 153601 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Vukics, A. & Domokos, P. Adequacy of the Dicke model in cavity QED: A counter-no-go statement. Phys. Rev. A 86, 053807 (2012).

    Article  CAS  Google Scholar 

  78. Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, Dordrecht, Netherlands, 2013).

    Google Scholar 

  79. Yabana, K., Sugiyama, T., Shinohara, Y., Otobe, T. & Bertsch, G. F. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Phys. Rev. B 85, 045134 (2012).

    Article  CAS  Google Scholar 

  80. Lucchini, M. et al. Attosecond dynamical franz-keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Fratalocchi, A. & Ruocco, G. Single-molecule imaging with x-ray free-electron lasers: dream or reality? Phys. Rev. Lett. 106, 105504 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Lopata, K. & Neuhauser, D. Multiscale Maxwell–Schrödinger modeling: a split field finite-difference time-domain approach to molecular nanopolaritonics. J. Chem. Phys. 130, 104707 (2009).

    Article  PubMed  CAS  Google Scholar 

  83. Agrawal, G. P. Nonlinear Fiber Optics (Academic press, 2007).

    Google Scholar 

  84. Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    Article  CAS  Google Scholar 

  85. Keller, O. Quantum Theory of Near-Field Electrodynamics (Springer, 2012).

    Google Scholar 

  86. Fercher, A. F., Drexler, W., Hitzenberger, C. K. & Lasser, T. Optical coherence tomography principles and applications. Rep. Progress Phys. 66, 239 (2003).

    Article  Google Scholar 

  87. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Elsevier, 2013).

    Google Scholar 

  88. Collier, R. Optical Holography (Elsevier, 2013).

    Google Scholar 

  89. Gray, S. K. Theory and modeling of plasmonic structures. J. Phys. Chem. C 117, 1983–1994 (2012).

    Article  CAS  Google Scholar 

  90. Ramsey, N. F. Experiments with separated oscillatory fields and hydrogen masers. Rev. Mod. Phys. 62, 541–552 (1990).

    Article  CAS  Google Scholar 

  91. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Article  CAS  Google Scholar 

  92. Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-P. Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016).

    Article  PubMed  CAS  Google Scholar 

  93. Edelhoch, H., Brand, L. & Wilchek, M. Fluorescence studies with tryptophyl peptides. Biochemistry 6, 547–559 (1967).

    Article  CAS  PubMed  Google Scholar 

  94. Engel, E. & Dreizler, R. M. Density Functional Theory: An Advanced Course (Springer Science & Business Media, Dordrecht, Netherlands, 2011).

    Book  Google Scholar 

  95. Stefanucci, G. & Van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  96. Ruggenthaler, M. et al. Quantum-electrodynamical density-functional theory: bridging quantum optics and electronic-structure theory. Phys. Rev. A 90, 012508 (2014).

    Article  CAS  Google Scholar 

  97. de Melo, P. M. M. C. & Marini, A. Unified theory of quantized electrons, phonons, and photons out of equilibrium: a simplified ab initio approach based on the generalized Baym-Kadanoff ansatz. Phys. Rev. B 93, 155102 (2016).

    Article  CAS  Google Scholar 

  98. Almbladh, C.-O. & Hedin, L. in Handbook on Synchrotron Radiation (ed. Koch, E. E. ) 607–904 (North Holland, Amsterdam, 1983).

    Google Scholar 

  99. Flick, J., Ruggenthaler, M., Appel, H. & Rubio, A. Kohn–Sham approach to quantum electrodynamical density-functional theory: exact time-dependent effective potentials in real space. Proc. Natl Acad. Sci. USA 112, 15285–15290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pellegrini, C., Flick, J., Tokatly, I. V., Appel, H. & Rubio, A. Optimized effective potential for quantum electrodynamical time-dependent density functional theory. Phys. Rev. Lett. 115, 093001 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Truppe, S. et al. A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nat. Commun. 4, 2600 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Jansen, P., Bethlem, H. L. & Ubachs, W. Perspective: Tipping the scales: search for drifting constants from molecular spectra. J. Chem. Phys. 140, 010901 (2014).

    Article  PubMed  CAS  Google Scholar 

  103. Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).

    Article  Google Scholar 

  105. Pople, J. A. Nobel lecture: quantum chemical models. Rev. Mod. Phys. 71, 1267 (1999).

    Article  CAS  Google Scholar 

  106. Bonitz, M. Quantum Kinetic Theory (Springer, 1998).

    Google Scholar 

  107. Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129–192 (1994).

    Article  Google Scholar 

  108. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article  CAS  Google Scholar 

  109. Schollwöck, U. Time-dependent density-matrix renormalization-group methods. J. Phys. Soc. Japan 74, 246–255 (2005).

    Article  Google Scholar 

  110. Tanimura, Y. Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Japan 75, 082001 (2006).

    Article  CAS  Google Scholar 

  111. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors 5th edn (World Scientific Publishing Co, 2009).

    Book  Google Scholar 

  112. Axt, V. M. & Mukamel, S. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Rev. Mod. Phys. 70, 145 (1998).

    Article  CAS  Google Scholar 

  113. Essler, F. H. L., Frahm, H., Göhmann, F., Klümper, A. & Korepin, V. E. The One-Dimensional Hubbard Model (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  114. Hewson, A. C. The Kondo Problem to Heavy Fermions Vol. 2 (Cambridge Univ. Press, 1997).

    Google Scholar 

  115. Minguzzi, A., Succi, S., Toschi, F., Tosi, M. P. & Vignolo, P. Numerical methods for atomic quantum gases with applications to Bose–Einstein condensates and to ultracold fermions. Phys. Rep. 395, 223–355 (2004).

    Article  CAS  Google Scholar 

  116. Spuntarelli, A., Pieri, P. & Calvanese Strinati, G. Solution of the Bogoliubov–de Gennes equations at zero temperature throughout the BCS–BEC crossover: Josephson and related effects. Phys. Rep. 488, 111–167 (2010).

    Article  CAS  Google Scholar 

  117. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  118. Mulser, P. & Bauer, D. High Power Laser–Matter Interaction Vol. 238 (Springer Science & Business Media, Dordrecht, Netherlands, 2010).

    Book  Google Scholar 

  119. Bertsch, G. F., Iwata, J.-I., Rubio, A. & Yabana, K. Real-space, real-time method for the dielectric function. Phys. Rev. B 62, 7998 (2000).

    Article  CAS  Google Scholar 

  120. Hedin, L. & Lee, J. D. Sudden approximation in photoemission and beyond. J. Electron. Spectrosc. Related Phenomena 124, 289–315 (2002).

    Article  CAS  Google Scholar 

  121. Onida, Gi., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  CAS  Google Scholar 

  122. Ehrenreich, H. in The Optical Properties of Solids (ed. Tauc, J. ) 106 (Academic Press, 1966).

    Google Scholar 

  123. Mochán, W. L. & Barrera, R. G. Electromagnetic response of systems with spatial fluctuations. I. general formalism. Phys. Rev. B 32, 4984 (1985).

    Article  Google Scholar 

  124. Maki, J. J., Malcuit, M. S., Sipe, J. E. & Boyd, R. W. Linear and nonlinear optical measurements of the Lorentz local field. Phys. Rev. Lett. 67, 972 (1991).

    Article  CAS  PubMed  Google Scholar 

  125. Luppi, E., Hübener, H. & Véniard, V. Ab initio second-order nonlinear optics in solids: Second-harmonic generation spectroscopy from time-dependent density-functional theory. Phys. Rev. B 82, 235201 (2010).

    Article  CAS  Google Scholar 

  126. Reiher, M. & Wolf, A. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (John Wiley & Sons, 2014).

    Google Scholar 

  127. Bishop, R. F., Brandes, T., Gernoth, K. A., Walet, N. R. & Xian, Y. Recent Progress in Many-Body Theories (World Scientific Publishing Co, 2002).

    Book  Google Scholar 

  128. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    Article  CAS  Google Scholar 

  129. Gubernatis, J., Kawashima, N. & Werner, P. Quantum Monte Carlo Methods (Cambridge Univ. Press, 2016).

    Book  Google Scholar 

  130. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  CAS  Google Scholar 

  131. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys 78, 865–951 (2006).

    Article  CAS  Google Scholar 

  132. Li, Z. H. et al. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. Phys. Rev. Lett. 109, 266403 (2012).

    Article  PubMed  CAS  Google Scholar 

  133. Härtle, R., Cohen, G., Reichman, D. R. & Millis, A. J. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach. Phys. Rev. B 88, 235426 (2013).

    Article  CAS  Google Scholar 

  134. Ye, L. Z. et al. HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 608–638 (2016).

    Article  Google Scholar 

  135. Kong, L., Bischoff, F. A. & Valeev, E. F. Explicitly correlated R12/F12 methods for electronic structure. Chem. Rev. 112, 75–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V. & Schönhammer, K. Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299–352 (2012).

    Article  Google Scholar 

  137. Knecht, S., Legeza, Ö. & Reiher, M. Communication: Four-component density matrix renormalization group. J. Chem. Phys. 140, 041101 (2014).

    Article  PubMed  CAS  Google Scholar 

  138. Liu, W. Handbook of Relativistic Quantum Chemistry (Springer, Berlin, Heidelberg, 2016).

    Google Scholar 

  139. Pašteka, L. F., Eliav, E., Borschevsky, A., Kaldor, U. & Schwerdtfeger, P. Relativistic coupled cluster calculations with variational quantum electrodynamics resolve the discrepancy between experiment and theory concerning the electron affinity and ionization potential of gold. Phys. Rev. Lett. 118, 023002 (2017).

    Article  PubMed  Google Scholar 

  140. Hagen, G., Papenbrock, T., Hjorth-Jensen, M. & Dean, D. J. Coupled-cluster computations of atomic nuclei. Rep. Progress Phys. 77, 096302 (2014).

    Article  CAS  Google Scholar 

  141. Manthe, U. Wavepacket dynamics and the multiconfigurational time-dependent Hartree approach. J. Phys. Condens. Matter (2017).

  142. Culver, R. et al., Collective strong coupling of cold potassium atoms in a ring cavity. New J.Phys. 18, 113043 (2016).

    Article  CAS  Google Scholar 

  143. Hood, J. D. et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 113, 10507–10512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhong, X. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. (2017).

  145. Coles, D., et al. A nanophotonic structure containing living photosynthetic bacteria. Small 13, 1701777 (2017).

    Article  CAS  Google Scholar 

  146. Blanchet, V., Zgierski, M. Z., Seideman, T. & Stolow, A. Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy. Nature 401, 52–54 (1999).

    Article  CAS  Google Scholar 

  147. Tavernelli, I. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments. Acc. Chem. Res. 48, 792–800 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Shalabney, A., et al. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6, 5981 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Shalabney, A. et al. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem. Int. Ed. 54, 7971–7975 (2015).

    Article  CAS  Google Scholar 

  150. Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. Int. Ed. 55, 11462–11466 (2016).

    Article  CAS  Google Scholar 

  151. Wagner, R. E., Su, Q. & Grobe, R. Computational renormalization scheme for quantum field theories. Phys. Rev. A 88, 012113 (2013).

    Article  CAS  Google Scholar 

  152. Dicke, R. H., Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  CAS  Google Scholar 

  153. Scheibner, M. et al. Superradiance of quantum dots, Nat. Phys. 3, 106–110 (2007).

    Article  CAS  Google Scholar 

  154. Chang, D. E., Vuletic´, V. & Lukin, M. D. Quantum nonlinear optics–photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article  CAS  Google Scholar 

  155. Flick, J., Appel, H., Ruggenthaler, M. & Rubio, A. Cavity Born–Oppenheimer approximation for correlated electron–nuclear–photon systems. J. Chem. Theory Comput. 13, 1616–1625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Galego, J., Garcia-Vidal, F. J. & Feist, J. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 7, 13841 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ficek, Z. & Drummond, P. D. Nonclassical excitation in spectroscopy with squeezed light. Phys. Today 50, 34 (1997).

    Article  CAS  Google Scholar 

  159. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  Google Scholar 

  162. Andersen, M. L., Stobbe, S., Sørensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).

    Article  CAS  Google Scholar 

  163. Fernández-Domínguez, A. I., GarcíaVidal, F. J. & Martín-Moreno, L. Unrelenting plasmons. Nat. Photon. 11, 8–10 (2017).

    Article  CAS  Google Scholar 

  164. Sukharev, M. & Nitzan, A. Optics of exciton–plasmon nanomaterials. J. Phys. Condens. Matter 29, 443003 (2017).

    Article  PubMed  Google Scholar 

  165. Yamamoto, Y. S., Ozaki, Y. & Itoh, T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. C Photochem. Rev. 21, 81–104 (2014).

    Article  CAS  Google Scholar 

  166. Hell, S. W. Nanoscopy with focused light. Annalen Physik 527, 423–445 (2015).

    Article  CAS  Google Scholar 

  167. Maier, S. A. in Photonics Society Summer Topical Meeting Series, 2010 IEEE 66–67 (Playa del Carmen, 2010).

    Book  Google Scholar 

  168. Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Taminiau, T. H., Karaveli, S., Van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012).

    Article  PubMed  CAS  Google Scholar 

  172. Lindle, D. W. & Hemmers, O. Breakdown of the dipole approximation in soft-x-ray photoemission. J. Electron. Spectrosc. Related Phenomena 100, 297–311 (1999).

    Article  CAS  Google Scholar 

  173. Klimchitskaya, G. L., Mohideen, U. & Mostepanenko, V. M. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009).

    Article  Google Scholar 

  174. Derezinski, J. & Gérard, C. Mathematics of Quantization and Quantum Fields (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  175. Thirring, W. Quantum Mathematical Physics: Atoms, Molecules and Large (Springer Science & Business Media, Dordrecht, Netherlands, 2013).

    Google Scholar 

  176. Giesbertz, K. J. H. & Ruggenthaler, C. One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures. Preprint at https://arxiv.org/abs/1710.08805 (2017).

  177. European X-ray Free-Electron Laser. The European XFEL in international comparison. European XFELhttps://www.xfel.eu/facility/comparison/index_eng.html (2018).

  178. Bressler, C. & Chergui, M. Ultrafast x-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Chen, L. X., Zhang, X. & Shelby, M. L. Recent advances on ultrafast x-ray spectroscopy in the chemical sciences. Chem. Sci. 5, 4136–4152 (2014).

    Article  CAS  Google Scholar 

  180. Smith, J. W. & Saykally, R. J. Soft x-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 117, 13909–13934 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Schiff, L. I. Quantum Mechanics (McGraw-Hill, 1949).

    Google Scholar 

  182. Wacker, O.-J., Kümmel, R. & Gross, E. K. U. Time-dependent density-functional theory for superconductors. Phys. Rev. Lett. 73, 2915 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Vignale, G. & Rasolt, M. Density-functional theory in strong magnetic fields. Phys. Rev. Lett. 59, 2360 (1987).

    Article  CAS  PubMed  Google Scholar 

  184. Vignale, G. Mapping from current densities to vector potentials in time-dependent current density functional theory. Phys. Rev. B 70, 201102 (2004).

    Article  CAS  Google Scholar 

  185. Rajagopal, A. K. Time-dependent functional theory of coupled electron and electromagnetic fields in condensed-matter systems. Phys. Rev. A 50, 3759–3765 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Ruggenthaler, M., Mackenroth, F. & Bauer, D. Time-dependent Kohn–Sham approach to quantum electrodynamics. Phys. Rev. A 84, 042107 (2011).

    Article  CAS  Google Scholar 

  187. Tokatly, I. V. Time-dependent density functional theory for many-electron systems interacting with cavity photons. Phys. Rev. Lett. 110, 233001 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Ruggenthaler, M. Ground-state quantum-electrodynamical density-functional theory. Preprint at https://arxiv.org/abs/1509.01417 (2015).

  189. Strubbe, D. A., Lehtovaara, L., Rubio, A., Marques, M. A. L. & Louie, S. G. in Fundamentals of Time-Dependent Density Functional Theory (eds Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S. Gross, E. K. U. & Rubio, A. ) 139–166 (Springer, Berlin, Heidelberg, 2012).

    Book  Google Scholar 

  190. Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nature 8, 1296 (2017).

    Google Scholar 

  191. Schlawin, F. & Mukamel, S. Two-photon spectroscopy of excitons with entangled photons. J. Chem. Phys. 139, 244110 (2013).

    Article  PubMed  CAS  Google Scholar 

  192. Dorfman, K. E., Schlawin, F. & Mukamel, S. Stimulated Raman spectroscopy with entangled light: Enhanced resolution and path-way selection. J. Phys. Chem. Lett. 5, 2843–2849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Flick, J., Schaefer, C., Ruggenthaler, M., Appel, H. & Rubio, A. Ab-initio optimized effective potentials for real molecules in optical cavities: photon contributions to the molecular ground state. ACS Photon.https://doi.org/10.1021/acsphotonics.7b01279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kummel, S., Brack, M. & Reinhard, P.-G. Ionic and electronic structure of sodium clusters up to N = 59. Phys. Rev. B 62, 7602 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Research Council (ERC- 2015-AdG-694097). The authors thank Arunangshu Debnath, Klaas Giesbertz, Christian Schäfer and Martin Ruggenthaler for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Michael Ruggenthaler, Nicolas Tancogne-Dejean, Johannes Flick, Heiko Appel or Angel Rubio.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Polariton

A polariton is a bosonic quasi-particle formed by an excitation, such as an exciton or plasmon coupled (‘dressed’) with photons.

Polaritonic chemistry

Molecular systems strongly coupled to light show the emergence of polaritonic states, which can change the chemical properties of the molecules.

Electromagnetic vacuum

If all harmonic oscillators of the quantized electromagnetic field are in their ground state, the number of photons is zero, corresponding to the bare electromagnetic vacuum. However, when coupled to a matter system, the vacuum fluctuations induce changes in the matter system, which lead to the Lamb shift. This coupling forms the basis of vacuum-mediated (‘dark’) polaritonic chemistry.

Pauli Hamiltonian

The Pauli Hamiltonian comprises the standard Schrödinger Hamiltonian and the Pauli (Stern–Gerlach) term σ ·B(r), which describes the coupling between the electron spin (characterized by a vector of the usual Pauli matrices σ) and the magnetic field B(r).

Spinor representation

To represent the spin of a quantum particle a vector of wavefunctions can be used, in which each entry corresponds to a specific spin state of the particle. A spin one-half particle has two such entries, that is, spin up and spin down.

External fields

Fields that are externally controlled, fixed perturbations, such as pump and probe pulses or in the clamped nuclei approximation the nuclear attractive potential, whose sources are not included in theoretical description. These fields are usually classical but can also be of quantum nature.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruggenthaler, M., Tancogne-Dejean, N., Flick, J. et al. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat Rev Chem 2, 0118 (2018). https://doi.org/10.1038/s41570-018-0118

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-018-0118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing